当前位置:文档之家› 浅谈几种积分计算方法

浅谈几种积分计算方法

浅谈几种积分计算方法
浅谈几种积分计算方法

浅谈几种积分计算方法

作者:刘清贵 单位:湖南常德西洞庭一中 职称:中教一级

关键词:不定积分,定积分,被积函数,换元法,分部积分法 摘 要:对几种类型积分的计算方法进行介绍

在高等数学的学习中,积分的计算无疑是一个非常重要的内容。在进行积分计算时,我们常用的方法有:直接积分法,换元积分法,分部积分法等等。而对于一些特殊的积分,我们往往需要一些比较特殊的方法来进行计算。在本文中,我将谈谈几种特殊积分的计算方法:

㈠ 型的积分

这种类型的积分,如果直接使用一些常规方法,是很难计算出来的,即使能够计算出来,过程也十分繁琐。实际上,在该类积分计算中,灵活使用 的换元,计算将大大简化。

例1: 计算

解:原式=

考虑到

故原式=

?++±dx bx x x 1124

2

例2:计算:

解:略提示:

㈡型的积分

对于该类型的积分,如果分母可以因式分解成:

(A1Sinx+B1Cosx)(A2Sinx+B2Cosx),则计算较简单。如果分母不能加上他因式分解时,可以通过待定系数法进行被积函的分解后再进行相应计算。

例3 计算:

解:∵2Sin2x﹣4Sinx·Cosx+5Cos2x

=1+(Sinx﹣2Cosx)2

=6﹣(2Sinx+Cosx)2

故设:Sinx+Cosx=A(Cosx+2Sinx)+B(2Cosx﹣Sinx)

解之有:A= B=

故原式=

事实上,对于的计算也可以采用

如上的类似方法进行计算:

例4:计算:

解:令:Sinx+Cosx=S(2Sinx+3Cosx)+B(2Cosx-3Sinx)

解元有:A= B=-

故原式

㈢巧化对称式,简化计算:

对于及型的积分与其与之类似的积分,除可以使用配方法结合换元法进行计算外还可以先化为对称式,再直接用公式进行直接计算:

例5:计算:(b>0)

解:令A=-B=-

则:(x-a)(b-x)=[(x+A)+B][B-(x+A)]

原式=

㈣定积分的回归解法:

有些定积分直接利用牛顿——莱布尼兹公式计算是不能计算的,其中一部分定积分可以恰当的换元或分部积分之后,再利用回归解法求解:例6:证明:若函数f(x)于闭区间[0,1]上连续

则:∫

证明:令t=π﹣x,则f(Sinx)=f(Sin(π﹣t))=f(Sint)

当x=0时,t=π,当x=π时,t=0

代入原式,得:

由于定积分若存在,则与积分变量无关,故

即有:

浅谈几种综合国力测算方法

.
研究生课程(论文类)试卷
2 0 1 6 /2 0 1 7 学年第一学期
课程名称:
国民经济统计学
课程代码:
论文题目: 浅谈几种综合国力测算方法
学生姓名:
专业﹑学号:
统计学
学院:
理学院
课程(论文)成绩: 课程(论文)评分依据(必填):
任课教师签字: 日期: 年 月 日
.

.
浅谈几种综合国力测算方法
摘要:综合国力,是国家实力和权力的综合体现。国家实力是指一国自己做事的 能力,是一个绝对概念。有学者把实力定义为“逾越障碍和影响结果的能力”[1] 。 权力则指一国促使别国做事的能力,是一个相对概念。有学者将权力定义为“促 使其他行为体做其原本不会去做的事情”[2] 。在国际竞争中,国家实力与权力这 两个概念的最根本区别在于:实力不以国家关系为前提,或无须以他国为参照系, 而权力则是以国家关系为前提。
一、中西方对综合国力观点的差异
对于综合国力的定义,中西方学者的观点存在若干差异,西方学者侧重于强 调国家权力的比较,其代表思想是以强权治为中心。20 世纪 80 年代美国中央情 报局前副局长克莱因说:“国家在国际舞台的实力是该国政府影响他国政府主动 或者被动去做某件事的能力,不论是通过说服、威胁甚至是通过武力。”而在今 天变化多端的国际环境下,西方学者认为,国家实力并不只是国家之间相互影响 的能力。而是利用经济、军事、外交或其他软实力相结合的方法来影响他国的能 力。
但中国学者则更偏向于国家实力的比较,认为综合国力更多的是强调国家的 和平与发展,即再保护本国国家利益的基础上,与他国互惠互利、和平共处。学 者黄硕风在其 2001 年出版的《综合国力新论》中说道:“综合国力是国家生存 与发展所拥有的全部实力,包括物质力、精神力及国际影响力”,学者王诵芬在 其 1996 年出版的《世界主要国家综合国力研究》中写道:“综合国力是国家拥 有的各种力量的有机总和,是国家赖以生存和发展的基础,也是强国确立国际地 位、发挥国际影响作用的基础。”
.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

几种常用数值积分方法的比较汇总

学科分类号110.3420 州 GUIZHOU NORMAL COLLEGE 本科毕业论文 题目—几种常用数值积分方法的比较_____________ 姓名潘晓祥学号1006020540200 院(系)数学与计算机科学学院 __________________ 专业数学与应用数学年级_____________2010级 指导教师雍进军职称______________________讲师 二O—四年五月

贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月曰

贵州师范学院本科毕业论文(设计)任务书

研究方法: 本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton —Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较完成期限和采取的主要措施: 本论文计划用6个月的时间完成,阶段的任务如下: (1) 7月份查阅相关书籍和文献; (2) 8月份完成开题报告并交老师批阅; (3) 9月份完成论文初稿并交老师批阅; (4) 10月份完成论文二搞并交老师批阅; (5) 11月份完成论文三搞; (6) 12月份定稿. 主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成 主要参考文献及资料名称: [1] 关治?陆金甫?数学分析基础(第二版) [M].北京:等教育出版社.2010.7 [2] 胡祖炽.林源渠.数值分析[M]北京:等教育出版社.1986.3 [3] 薛毅.数学分析与实验[M] 北京:业大学出版社2005.3 [4] 徐士良.数值分析与算法[M].北京:械工业出版社2007.1 [5] 王开荣.杨大地.应用数值分析[M]北京:等教育出版社2010.7 [6] 杨一都.数值计算方法[M].北京:等教育出版社.2008.4 [7] 韩明.王家宝.李林.数学实验(MATLAB版[M].上海:济大学出版社2012.1 [8] 圣宝建.关于数值积分若干问题的研究[J].南京信息工程大学.2009.05.01. : 42 [9] 刘绪军.几种求积公式计算精确度的比较[J].南京职业技术学院.2009. [10] 史万明.吴裕树.孙新.数值分析[M].北京理工大学出版社.2010.4. 指导教师意见: 签名: 年月日

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分论文

§ 1 定积分概念 教学要求: 知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1. 曲边梯形的面积; 2. 变力所作的功 二、定积分的定义 从上面两个例子看出,不管是求曲边梯形的面积或是计算变力作的功,它们都归结为对问题的某些量进行“分割、近似求和、取极限”,或者说都归结为形如 ∑=?n i i i x f 1 )(ξ 的和式极限问题。我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。由此我们可以给定积分下一个定义 定义 设 )(x f 是定义在区间],[b a 上的一个函数,在闭区间],[b a 上任取 n-1个分b x x x x a n i i =<<<<<<-ΛΛ11 把 [a,b] 分成 n 个小闭区间,我们称这些分点和小区间构成的一个分割,用T 表示, 分割的细度用}max {||||i x T ?=表示,在分割T 所属的各个小区间内各取一点],[1i i i x x -∈ξ称为介点,作和式 ∑=?n i i i x f 1 )(ξ 以后简记为 ∑)(T f

此和式称为)(x f 在],[b a 上属于分割T 的积分和(或黎曼和,设J 是一个确定的数,若对任意0>ε总存在某个0>δ,使得 ],[b a 上的任何分割T ,只要它的细度δ<||||T ,属于分割T 的所有积分和 ∑)(T f 都有 ε<-∑|)(|J T f 则称)(x f 在],[b a 上可积,称J 为函数)(x f 在区间],[b a 上的定积分(或黎曼积 分),记作 ?b a f(x)dx 其中)(x f 称为积分函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分 的上限和下限。 利用积分的定义,前面提到曲边梯形面积可简洁的表示为 ?=b a dx x f S )( 变力作功问题可表示为 ?=b a dx x F W )( 三.理解定积分定义要注意以下三点: 1)定积分定义与我们前面讲的函数极限的“δε-”定义形式上非常相似,但是两者之间还是有很大差别的。对于定积分来说,给定了细度||||T 以后,积分和并不唯一确定,同一细度分割由无穷多种,即使分割确定,介点i ξ仍可以任意选取,所以积分和的极限比前面讲的函数极限要复杂的多。 2)定积分是积分和的极限,积分值与积分变量的符号无关 ???==b a b a b a du u f dx x f dt t f )()()(

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分的数值计算方法[含论文、综述、开题-可编辑]

设计 (20 届) 定积分的数值计算方法 所在学院 专业班级信息与计算科学学生姓名学号 指导教师职称 完成日期年月

摘要:数值计算是许多科学与工程计算的核心.定积分的数值计算方法有很多,其中一些常用的计算方法有牛顿-科茨求积公式,梯形求积公式,辛普森求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等.本篇论文主要介绍定积分数值计算的多种方法,并对其中几种做了比较评述,最后给出了梯形求积公式,龙贝格积分法在Matlab环境中的编程实现. 关键词:牛顿-科茨求积公式;复合求积公式;高斯求积公式

Some numerical methods of definite integral Abstract: Numerical calculation is the core of many science and engineering calculation. There are many numerical calculation methods, including some commonly used numerical methods are Newton – Cotes Quadrature formula, Trapezoidal Quadrature formula, Simpson formula,Composite Quadrature formula, Romberg Quadrature method, Gaussian Quadrature formula, chebyshev Quadrature formula, and so on. This theies mainly introduces Some numerical methods of definite integral and compare several of these methods, finally gives the Trapezoidal Quadrature formula, Romberg Quadrature method in the Matlab environment for programming realize. Key words:Newton – Cotes Quadrature formula; Composite Quadrature formula; Gaussian Quadrature formula

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

不定积分的计算

不 定义:如果在区间I 上,可导函数F (x )的导函数为f (x ),即对任一x ∈I ,都有 ()()dF(x)=f(x)dx F x f x '=或 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上连续,那么在区间I 上存在可导函数F (x ),使对任一x I ∈都有 ()()F x f x '= 简单地说:连续函数一定有原函数。 一、换元积分法 1、第一类换元法 定理:设f (u )具有原函数,()u x ?=可导,则有换元公式:()[()]()[()]u x f x x dx f u ???='=?, 设要求()g x dx ?,如果函数g (x )可以化为g x [()]()x x ??'?()=的形式,那么 ()()[()]()[()]u x g x dx f x x dx f u du ???='==?? . 这样,函数g (x )的积分即化为函数f (u )的积分,如果能求得f (u )的原函数,那么也 就求出了g(x)的原函数。 例,求 ? 解:被积函数中,cos2x 是一个复合函数:cos2x=cosu ,u=2x ,常数因子恰好是中间变量u 的导数,因此,作变换u2x ,便有: 2cos 2cos 22cos 22()cos sin 22cos 2sin 2xdx x dx x x dx udu u c u x xdx x c =?=?= =+==+?????即 将代入得 2、第二类换元法 定理:设()x t ?=是单调的可导的函数,并且()0t ?'≠,又设[()]()f t t ??'具有原函数,则有换元公式:1 x ()[[()]()]t f x dx f t t dt ???-='=??() (2) 其中1 x ?-()是()x t ?=的反函数。 证明:设[()]()f t t ??'的原函数为()t Φ,记1 [()](x F x ?-Φ=),利用复合函数及反函数的 求导法则。得到:1 F ()[()]()[()]()() d dt x f t t f t f x dt dx t ????Φ''= ? =? ==' 即F(x)是f (x )的原函数,所以有:1 ()()[()]f x dx F x c x c ?-=+=Φ+? =1 () [[()]()]t x f t t dt ? ??-='?

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

浅谈复积分的计算方法

山东财经大学学士学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在论文中作了明确的说明并表示了谢意。本声明的法律结果由本人承担。 学位论文作者签名: 年月日 山东财经大学关于论文使用授权的说明 本人完全了解山东财经大学有关保留、使用学士学位论文的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文的全部或部分内容,可以采用影印或其他复制手段保存论文。 指导教师签名:论文作者签名: 年月日年月日 浅谈复积分的计算方法

摘要 复积分即是指复变函数积分.在复变函数的分析理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算中理论上处于关键地位, 因此,对复积分及其计算的研究显得尤为重要.复变函数中的积分不仅是研究解析函数的重要工具,也是它的后继课程积分变换的基础,所以就复变函数的积分计算方法进行总结和探讨是十分必要的.柯西积分公式、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.留数定理不仅可以用来计算复积分,而且可以用来计算实积分,它把实积分和复积分的相关知识有机的结合起来. 本文讨论了留数定理与复变函数积分之间的内在联系,并举例说明了留数定理、柯西积分定理、柯西积分公式和柯西高阶导数公式之间的密切关系.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式、留数定理等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.复变函数中积分分闭曲线和非闭曲线两类.本文就这两种积分的计算方法进行总结和探讨. 关键词:复积分;柯西积分定理;柯西积分公式;留数定理 Discussion on the computational methods of complex integration

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

相关主题
文本预览