当前位置:文档之家› 3D Discrete Contact Problems with Coulomb Friction and a Solution-Dependent Coefficient of Friction

3D Discrete Contact Problems with Coulomb Friction and a Solution-Dependent Coefficient of Friction

ADAMS常见问题

ADAMS 使用常见问题 1、ADAMS中的单位的问题 开始的时候需要为模型设置单位。在所有的预置单位系统中,时间单位就是秒,角度就是度。可设置: MMKS--设置长度为毫米,质量为千克,力为牛顿。 MKS—设置长度为米,质量为千克,力为牛顿。 CGS—设置长度为厘米,质量为克,力为达因。 IPS—设置长度为英寸,质量为斯勒格(slug),力为磅。 2、如何永久改变ADAMS的启动路径? 在ADAMS启动后,每次更改路径很费时,我们习惯将自己的文件存在某一文件夹下;事实上,在Adams的快捷方式上右击鼠标,选属性,再在起始位置上输入您想要得路径就可以了。 3、关于ADAMS的坐标系的问题。 当第一次启动ADAMs/View时,在窗口的左下角显示了一个三视坐标轴。该坐标轴为模型数据库的全局坐标系。缺省情况下,ADAMS/View用笛卡儿坐标系作为全局坐标系。ADAMS/View将全局坐标系固定在地面上。 当创建零件时,ADAMS/View给每个零件分配一个坐标系,也就就是局部坐标系。零件的局部坐标系随着零件一起移动。局部坐标系可以方便地定义物体的位置,ADAMS/View也可返回如零件的位置——零件局部坐标系相对于全局坐标系的位移的仿真结果。局部坐标系使得对物体上的几何体与点的描述比较方便。物体坐标系不太容易理解。您可以自己建一个part,通过移动它的位置来体会。 4、关于物体的位置与方向的修改 可以有两种途径修改物体的位置与方向,一种就是修改物体的局部坐标系的位置,也就就是通过MODIFY物体的position属性;令一种方法就就是修改物体在局部坐标系中的位置,可以通过修改控制物体的关键点来实现。我感觉这两种方法的结果就是不同的,但就是对于仿真过程来说,物体的位置就就是质心的位置,所以对于仿真就是一样的。 5、关于ADAMS中方向的描述。 对于初学的人来说,方向的描述不太容易理解。之前我们都就是用方向余弦之类的量来描述方向的。在ADAMS中,为了求解方程就是计算的方便,使用欧拉角来描述方向。就就是用绕坐标轴转过的角度来定义。旋转的旋转轴可以自己定义,默认使用313,也就就是先绕z轴,再绕x轴,再绕z轴。 6、Marker点与Pointer点区别 Marker:具有方向性, 大部分情況都就是伴随物件自动产生的,而 Point不具有方向性, 都就是用户自己建立的;Marker点可以用来定义构件的几何形状与方向,定义约束与运动的方向等,而Point点常用来作为参数化的参考点,若构件与参考点相连,当修改参考点的位置时,其所关联的物体也会一起移动或改变。

有机反应的常用条件

有机反应的常用条件 李 文 志 一、能使)(4+H KMnO 褪色的物质(氧化反应) 1、含碳碳双键、碳碳三键等不饱和键的物质。 2、苯的同系物 3、醇、酚、醛 二、能与溴水或2Br 的4ccl 反应的物质。 1、含碳碳双键、碳碳三键不饱和键的物质(加成反应) 2、有尽 2Br +(液)??→?3FeBr 化气 Br +HBr (取代反应) 3、苯酚与浓溴水(取代反应) 4、醛基使溴水褪色(氧化反应) HBr COOH CH O H Br CHO CH 23223+→++ 三、与2H 加成反应(Ni 作催化剂)(还原反应) 1、33222CH CH H CH CH Ni ?→?+= 2、3322CH CH H CH CH Ni ?→?+≡ 3、苯环与氢气加成 4、OH CH CH H CHO CH Ni 2323?→?+ 5、33233COHCH CH H COCH CH Ni -?→?+ 四、在NaOH 溶液条件下的反应 (一)卤代烃的水解反应和消去反应 1、NaBr OH CH CH NaOH Br CH CH 、+???→?+2323加热水 2、O H NaBr CH CH CH NaOH Br CH CH 、22323++=-???→?+加热乙醇 (二)酯的水解反应 3、OH CH COONa CH NaOH COOCH CH 3333+→+

(三)酚与NaOH 反应 4、 →+N a O H OH O H O N a 2+ (四)羧酸与NaOH 反应 O H COONa CH NaOH COOH CH 233+→+ 五、在浓硫酸、加热条件下的反应(一般有水生成,浓硫酸作用的催化剂、吸水剂) 1、 +????→?加热浓、SO H HNO 423 O H NO 22+ 取代反应 2、O H CH CH C HSO OH CH CH 222423170+↑=?浓 消去反应 3、乙酸与乙醇在浓硫酸、加热条件下发生反应 酯化反应 六、在稀硫酸条件下的反应 (一)酯的水解 O H CH COOCH CH 2323+OH CH CH COOH CH 233+ (二)糖的水解 1、O H O H C 2112212+???→?42SO H 稀 61266126O H C O H C + 蔗糖 葡萄糖 果糖 2、O H O H C 2112212+612624O H C ??→?酸或酯 麦芽糖 葡萄糖 3、612625106(O H nC O nH n O H C ??→?+酸或酯) 淀粉 葡萄糖 稀硫酸 △

adams常用函数

1.step可能是最常用的: step(time,0,0,1,50)+ step(time,4,0,6,-100)+ step(tme,9,0,10,50) 函数原形STEP(A,x1,h1,x2,h2) 解释:由数组A的x值,生成区间(x1,h1)至(x2,h2)之间的阶梯曲线,返回y值的数据。 举个常用的例子。 比如STEP(time,1,0,2,100) time在adams中是个递增的变量,相当于一个数组。那么step的返回值就是随着time变化的值。 这个例子将表示在time从(1,2)的过程中,返回值将从0,100。看看例子,两个小球,一个使用step 函数设置了位移,另外一个是参考。当然,这个变化过程,adams使用了缓和的图形,从其位移图中可以看出来。step既然是个返回值,就可以使用加减法了。如上例,如果设置下面的小球的位移如下:STEP(time,1,0,2,100)+step(time,2,0,3,400)+step(time,3,0,4,-200) 2.以前用过碰撞函数,有单向和双向函数的区分,其中系统的球面等碰撞为其特例! IMPACT (Displacement Variable, Velocity Variable, Trigger for Displacement Variable, Stiffness Coefficient, Stiffness Force Exponent, Damping Coefficient, Damping Ramp-up Distance) BISTOP (Displacement Variable, Velocity Variable, Low Trigger for Displacement Variable, High Trigger for Displacement Variable, Stiffness Coefficient, Stiffness Force Exponent, Damping Coefficient, Damping Ramp-up Distance) 3.if函数 这个函数最好不要使用,他的使用会带来突变,会使运算的时候不收敛。不过应急的时候还是可以一用。 if(time-1:1,0,if(time-2:0,-1,-1)) IF(Expression1: Expression2, Expression3, Expression4) adams要计算Expression1的值: 如果他的值小于0,则执行Expression2语句,如果Expression1的值等于0,则执行Expression3语句,如果Expression1的值大于0,则执行Expression4语句 我得if语句的意思是:如果时间小于1的时候,加速度为1,如果时间为1,加速度为0,如果时间大于1小于2,则加速度为0,如果时间大于、等于2则,加速度为-1 4. 我得一个想法 就是利用sign函数构造 比较常用的是给机构加上一个与运动方向相反的作用力等等可以先测量施加力对象的运动速度,然后利用速度的变化,插入measure到sign函数里面就可以获得与运动方向相反的作用力

论述化学反应器的分类和化学反应的基本类型

论述化学反应器的分类和化学反应的基本类型 <一>化学反应的基本类型 摘要 一提到化学反应类型,不少学生都认为是“化学反应基本类型”,答案只能在化合反应、分解反应、置换反应、复分解反应四种情况里选一种,除此之外的答案都是错的,这给学生带来很大困惑。本文探讨了“化学反应基本类型”的本质和局限性,并探讨了复分解反应的两个疑难问题。本文还详细介绍啦化学反应器的分类,让大家更详细的了解到在化学应用中化学反应器的分类 关键词;化学反应器化学反应基本类型原理 一、问题的提出 化学反应的基本类型有四种,即化合反应,分解反应,置换反应,复分解反应。在对化学反应进行分类时,学生常遇到以下困惑: 1.氧化还原反应、中和反应等反应为什么不属于反应基本类型? 2.有很多反应为什么没有相应的反应基本类型? 3.非金属氧化物与碱的反应为什么不属于复分解反应? 4.碳酸盐与酸的反应被认为是复分解反应,这是为什么? 对于这些问题,机械地利用概念来解释,缺乏说服力,而且第四个问题用概念无法解释,因为复分解反应的概念是两种化合物相互交换成分,生成另外两种化合物的反应,第四种反应有三种化合物生成。 欲解决这些问题,需要弄清楚“反应基本类型”内涵和外延。 二问题的解决 (一)探究所描述的化学反应信息 从具体实例来探究“反应基本类型”所描述的化学反应信息。 1. 3Fe+2OFeO,化合反应——几种成分(Fe和O)结合在一起。 2. 2Fe(OH)=FeO+3HO,分解反应——结合在一起的几种成分(Fe、O、H)分开。 3. Fe+CuSO=FeSO+Cu,置换反应——一种成分(Fe)替换另一种成分(Cu)。 4. 2Fe(OH)+6HCl=2FeCl+6HO,复分解反应——正价态成分(Fe和H)或负价态成分(OH 根和Cl)相互交换。 四种基本类型都是通过成分组合方式的变化来描述化学反应过程的,这就是“反应基本类型”的内涵。而氧化还原反应是通过电子的转移来描述化学反应过程的,中和反应是通过酸碱性的相互消除来描述化学反应过程的,它们的内涵与“反应基本类型”不相符合,所以都不把它们列入“反应基本类型”的范畴。 (二)反应基本类型外延 “反应基本类型”的外延只有四种,面对纷繁复杂的化学反应,这样的外延太窄了,部分反应特别是很多的有机化学反应被排除在“反应基本类型”之外。如同很多观众到了一个小剧场,位子不够,一部分人无法对号入座。所以像这样的情况,并不意味着它们根本上没有相应的反应类型,只是目前还不能对它们变化的特点进行恰当描述罢了。 查现代汉语词典,“基本”的含义有:①根本:人民是国家的~。②根本的:~矛盾。③主要的:~条件∣~群众。④大体上:大坝工程已经~完成。用“基本”来修饰反应类型,是哪种含义呢?是“根本”(最重要的意思)的反应,其它反应都不重要?是“主要的”反应,其它反应都是次要的反应?无论选择那种含义,都不合适。

齐逸翎 112017316002126 “蓝瓶子实验”最佳反应条件的探究

《化学实验教学研究》实验报告 实验项目“蓝瓶子实验”最佳反应条件的探究实验日期星期四上午□√下午□晚上□姓名学号同组人台号 实验目的: 1.了解“蓝瓶子实验”的反应原理 2.初步学习用简单比较法探究“蓝瓶子实验”的最佳反应条件实验教学目标: 知识与技能: 1.了解亚甲基蓝的变色原理及蓝瓶子实验的实验基本原理;2.知道简单比较法的原理并能够较为熟练地运用; 3.掌握“蓝瓶子实验”的最佳反应条件。 过程与方法: 1.学习通过简单比较法对实验最佳条件进行探索的方法;2.通过设计实验培养学生的实验探索能力、逻辑思维能力以及动手能力。 情感态度与价值观: 1. 通过团队合作培养学生的团队合作意识,提高科学素养; 2. 通过化学知识点的应用,增强学生学习化学的兴趣,感受化 学的神奇魅力。

实验原理: 亚甲蓝是一种氧化还原指示剂,易溶于水,能溶于乙醇。在碱性条件下,盛放在锥形瓶中的蓝色的亚甲蓝溶液可以被葡萄糖还原成无色的亚甲白溶液。亚甲蓝与亚甲白的结构式分别如图1和图2所示: 振荡锥形瓶中的混合液时,使其溶入空气或氧气后,亚甲白被氧气氧化成亚甲蓝,致使该混合液又呈现蓝色。若静置混合液,亚甲蓝又被葡萄糖原成无色的亚甲白。如此反复振荡、静置锥形瓶,其混合液在蓝色与无色之间互变,故称为蓝瓶子实验。其变色原理为: 这种现象又称为亚甲蓝的化学振荡。由蓝色出现至变成无色所需要的时间称之为振荡周期,振荡周期的长短受反应条件如亚甲蓝溶液的最佳溶剂选择、反应温度、氢氧化钠的用量等因素的影响。其中,亚甲蓝在葡萄糖与氧气反应中起着催化作用。

实验设计(或改进)思路: 在125ml的锥形瓶中加入一定量的3%的葡萄糖溶液、30%的氢氧化钠溶液,再滴加一定量的0.1%的亚甲基蓝溶液后精致,观察溶液颜色由蓝色变为无色后,在一定时间内以一定频率震荡锥形瓶至溶液的颜色又变为蓝色,如此反复,记录经历5个震荡周期所需要的时间。 第一,教材中给出的记录方式是记录在5min或10min内的震荡周期,但是在实际操作中,我们是记录5个震荡周期所需要的时间,我认为这样的方法更加方便直观,而且主观性没有那么强;第二,在进行实验操作时,因为本实验设计颜色变化,在震荡锥形瓶时应该以一张白色的A4纸为背景,这样方便观察颜色变化。这两点是对教材实验设计内容的改进。 在本实验中,影响震荡周期有这几个主要因素:亚甲基蓝的用量、葡萄糖溶液的用量、氢氧化钠溶液的用量、温度等等。此次实验我们探究的是前三个影响因素对震荡周期的影响。 实验研究的主要内容: 1.3%的葡萄糖溶液用量的探究; 2. 30%的氢氧化钠溶液用量的探究; 3.0.1%的亚甲基蓝溶液用量的探究 实验研究方案及实验记录: 实验内容:应用简单比较法,在3%葡萄糖溶液用量、30%氢氧化钠溶液用量、0.1%亚甲基蓝溶液这三个变量中,固定两个因素、改变一个因素的方法,通过记录5个振荡周期所需要的时间来探索蓝瓶子实验的最佳条件。(本实验周期记为溶液由“蓝色——无色——蓝色”为一个周期)具体实验设计如下: 一、葡萄糖浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 150 2 20+10 ml蒸馏水179 3 10+20 ml蒸馏水187 结论加入30ml 30%葡萄糖时,变色周期最短。 二、氢氧化钠浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 152 2 2 159 3 1 183 结论加入3ml 3%氢氧化钠溶液时,变色周期最短。 三、亚甲基蓝浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 152 2 4 133 3 2 129 结论加入2滴亚甲基蓝溶液时,变色周期最短。

ADAMS-STEP函数

在定义接触力时Normal Force有两个选项: 1、Restitution(Define a restitution-based contact); 2、Impact(Define an impact contact) 第二个选项就是利用IMPACT函数,它能方便地表达那种间歇碰撞力 (即达到某一位移值才激发的碰撞力)。 它的参数意义及力学基础: One-sided Impact (IMPACT) 1、理解:用只抗压缩的非线性的弹簧阻尼方法近似计算出单边碰撞力。 2、格式:IMPACT (Displacement Variable, Velocity Variable, Trigger for Displacement Variable, Stiffness Coefficient, Stiffness Force Exponent, Damping Coefficient, Damping Ramp-up Distance) 3、参数说明: Displacement Variable 实时位移变量值,通过DX、DY、DZ、DM等函数实时测量。 Velocity Variable 实时速度变量值,通过VX、VY、VZ、VM等函数实时测量。 Trigger for Displacement Variable 激发碰撞力的位移测量值。 Stiffness Coefficient or K 刚度系统。 Stiffness Force Exponent 非线性弹簧力指数。 Damping Coefficient or C 阻尼系数。

Damping Ramp-up Distance 当碰撞力被激发阻尼逐渐增大的位移值。 4、Impact函数的力学基理: IMPACT函数值由自变量值决定其有无: IMPACT = Off if s > so On if s <=so IMPACT函数的数学计算公式为: MAX {0, K(so - s)**e - Cv *STEP (s, so- d, 1, so ,0)} 参数说明: s ——位移变量 v ——速度变量 so——碰撞力的激发位移值 K ——刚度系数 C ——阻尼系数 D——阻尼逐渐增大的位移值

ADAMS中的函数

ADAMS/View中系统提供的数学函数大致分类介绍如下。 (1)基本数学函数 ABS(x) 数字表达式x的绝对值 DIM(x1,x2) x1>x2时x1与x2之间的差值,x1<x2时返回0 EXP(x) 数字表达式x的指数值 LOG(x) 数字表达式x的自然对数值 LOG10(x) 数字表达式x的以10为底的对数值 MAG(x,y,z) 向量[x,y,z]求模 MOD(x1,x2) 数字表达式x1对另一个数字表达式x2取余数 RAND(x) 返回0到1之间的随机数 SIGN(x1,x2) 符号函数,当x2>0时返回ABS(x),当x2<0时返回-ABS(x) SQRT(x) 数字表达式x的平方根值 (2)三角函数 SIN(x) 数字表达式x的正弦值 SINH(x) 数字表达式x的双曲正弦值 COS(x) 数字表达式x的余弦值 COSH(x) 数字表达式x的双曲余弦值 TAN(x) 数字表达式x的正切值 TANH(x) 数字表达式x的双曲正切值 ASIN(x) 数字表达式x的反正弦值 ACOS(x) 数字表达式x的反余弦值 ATAN(x) 数字表达式x的反正切值 ATAN2(x1,x2) 两个数字表达式x1,x2的四象限反正切值

(3)取整函数 INT(x) 数字表达式x取整 AINT(x) 数字表达式x向绝对值小的方向取整 ANINT(x) 数字表达式x向绝对值大的方向取整 CEIL(x) 数字表达式x向正无穷的方向取整 FLOOR(x) 数字表达式x向负无穷的方向取整 NINT(x) 最接近数字表达式x的整数值 RTOI(x) 返回数字表达式x的整数部分 位置/方向函数位置/方向函数用于根据不同输入变量计算有关位置或方向的参数。ADAMS/View中系统提供的位置/方向函数分类介绍如下。 (1)位置函数 LOC_ALONG_LINE 返回两点连线上与第一点距离为指定值的点 LOC_CYLINDRICAL 将圆柱坐标系下坐标值转化为笛卡儿坐标系下坐标值 LOC_FRAME_MIRROR 返回指定点关于指定坐标系下平面的对称点 LOC_GLOBAL 返回参考坐标系下的点在全局坐标系下的坐标值 LOC_INLINE 将一个参考坐标系下的坐标值转化为另一参考坐标系下的坐标值并归一化 LOC_LOC 将一个参考坐标系下的坐标值转化为另一参考坐标系下的坐标值

酶切反应条件的优化

当建立内切酶酶切反应体系时有几个关键因素需要考虑。比如如何在正确的反应体系中,加入适量的DNA、内切酶和缓冲液,就可以获得最佳酶切效果。根据定义,在50μl体系中,1单位的限制性内切酶可以在60分钟内完全切割1μg的底物DNA。上述酶、DNA与总反应体积的比值可以做为建立反应体系的参考数据。但是,目前大多数科研人员会遵循下表中所列的标准反应条件,使用5-10倍的过量酶切割DNA,这样有利于克服由于DNA来源不同、质量和纯度不同而造成的实验失败。 “标准”反应体系 内切酶 ?从冰箱取出后请一直置于冰上。 ?酶最后加入到反应体系中。 ?加入酶之前将反应混合物混匀,可以用移液枪上下吹打或轻弹管壁,然后在离心机中快速离心。切忌振荡混匀! ?当切割超螺旋质粒和琼脂糖包埋DNA时,通常需要超过1unit/μg的酶量以达到完全酶切。DNA ?避免酚、氯仿、酒精、EDTA、变性剂或过多盐离子的污染。 ?甲基化的DNA会抑制某些酶的切割效率。 缓冲液 ?使用终浓度为1X的缓冲液。 ?根据实验需要加入终浓度为100μg/ml的BSA(1:100稀释)。 ?在不需要BSA即可达到最佳活性的酶切反应中如果加入BSA也不会影响酶切效果。 反应总体积 ?建议在50μl反应体系中消化1μg底物DNA。 ?为避免星号活性,甘油浓度应<5%。 ?加入内切酶(贮存于50%甘油中)的量应不超过总体积的10%。 ?使用以下技术,内切酶的反应条件可能未达到最佳反应条件:克隆、基因分型、突变检测、基因定位、探针制备、测序和甲基化检测等。 ?内切酶贮存液中的添加物(如:甘油和盐)和底物溶液中尚存的残余物(如:盐、EDTA 或乙醇)会导致小体积反应体系出现问题。NEB提供了一系列高保真内切酶(方便建立反应体系。下述为小体积反应体系反应指南。 酶切反应体系的选择

ADAMS部分常用函数的说明

ADAMS常用函数的说明 一、几个常用函数的说明 1、 STEP函数 格式:STEP (x, x0, h0, x1, h1) 参数说明: x ―自变量,可以是时间或时间的任一函数 x0 ―自变量的STEP函数开始值,可以是常数或函数表达式或设计变量; x1 ―自变量的STEP函数结束值,可以是常数、函数表达式或设计变量; h0 ― STEP函数的初始值,可以是常数、设计变量或其它函数表达式; h1 ― STEP函数的最终值,可以是常数、设计变量或其它函数表达式。 2、 IF函数 格式:IF(表达式1: 表达式2, 表达式3, 表达式4) 参数说明: 表达式1-ADAMS的评估表达式; 表达式2-如果的Expression1值小于0,IF函数返回的Expression2值; 表达式3-如果表达式1的值等于0,IF函数返回表达式3的值; 表达式4-如果表达式1的值大于0,IF函数返回表达式4的值;

例如:函数IF(time-2.5:0,0.5,1) 结果:0.0 if time < 2.5 0.5 if time = 2.5 1.0 if time > 2.5 3、AKISPL函数 格式:AKISPL (First Independent Variable, Second Independent Variable,Spline Name, Derivati ve Order) 参数说明: First Independent Variable ——spline中的第一个自变量 Second Independent Variable(可选) ——spline中的第二自变量 Spline Name ——数据单元spline的名称 Derivative Order(可选) ——插值点的微分阶数,一般用0就可以了 例如: function = AKISPL(DX(marker_1, marker_2), 0, spline_1) spline_1用下表中的离散数据定义:

连续式反应釜结构和原理

连续式反应釜结构和原理 本文由岩征仪器整理 连续搅拌反应釜的基本结构如图: 反应釜由搅拌容器和搅拌机两大部分组成。搅拌容器包括筒体、换热元件及内构件。搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。筒体为通常为一圆柱形壳体,可以在罐内装入物料,他提供反应所需的空间,使物料在其内部进行化学反应;传热装置的作用是满足反应所需温度条件;搅拌装置包括搅拌器、搅拌轴等,是实现搅拌的工作部件;传动装置包括电动机、减速器、联轴器及机架等附件,它提供搅拌的动力;轴封装置是保证工作时形成密封条件,阻止介质向外泄漏的部件。 连续搅拌反应釜的基本原理: 在内层放入反应溶媒可做搅拌反应,夹层可通上不同的冷热源(冷冻液,热水或热油)做循环加热或冷却反应。 通过反应釜夹层,注入恒温的(高温或低温)热溶媒体或冷却媒体,对反应釜内的物料进行恒温加热或制冷。同时可根据使用要求在常压或负压条件下进行搅拌反应。 物料在反应釜内进行反应,并能控制反应溶液的蒸发与回流,反应完毕,物料可从釜底的出料口放出,操作极为方便。 连续式反应釜的控制难点 连续搅拌反应釜温度控制的难点主要反应在:

(1)复杂性、时滞性和非线性ls;a)化学反应的生产过程伴随着物理化学反应、生化反应、相变过程及物质和能量的转换和传递,因而是一个十分复杂的工业生产过程;b)所用反应釜容量大、釜壁厚,因此是一个热容量大、纯滞后时间长的被控对象;c)随着反应的进行,各传热媒体的传热系数成非线性变化,并且对各种外界环境的变化比较敏感;加上反应过程增益变化也会很大,甚至增益变化方向都是不一样的;而且,随着反应的进行,釜内固体颗粒增多,釜的传热系数也会随着发生不规则变化。 (2)难控性a)反应过程中,由于化学反应放热过程的复杂性和非线性,各传热媒体的传热系数成非线性变化,并对各种外部干扰的影响较敏感,使得控制有一定的难度;b)反应过程中如果热量移去不及时、不均匀,会使反应温度一直往上升,极易因局部过热而造成“飞温”现象,产生“爆聚”;反之,如果热量移去过多,会造成反应温度一直往下跌,造成反应熄灭。而聚合反应好坏的主要因素就是反应釜温度控制的好坏,温度的变化将直接影响产品的质量和产量,所以此过程的温度控制是重点也是难点;c)反应工艺以及反应设备的约束及外界环境对反应影响的不确定性因素也使得控制的难度增加。 (3)建模难反应过程化学反应机理较为复杂,尤其是聚合反应过程涉及物料、能量的平衡,反应动力学等,加上外界条件如原料纯度、催化剂类型、原料添加数量的变化、热水温度、循环冷却液流量的变化等对系统的影响较大,推导机理模型较为困难;又由于化

化学反应发生条件

①金属+氧气→金属氧化物 除Ag、Pt、Au外的金属,一般都可以和氧气发生化合反应,金属越活泼,与氧化合就越容易,反应就越剧烈。金属氧化物大多是碱性氧化物。 ②碱性氧化物+水→可溶性碱 可溶性碱对应的碱性氧化物能与水反应生成对应的碱,K2O、Na2O、BaO都能跟水反应。Ca(OH)2微溶于水,它对应的CaO也能与水反应。其余的碱性氧化物一般与水不反应或不易反应。 ③碱→碱性氧化物+水 不溶性的碱在加热的条件下,一般可分解为对应的碱性氧化物和水。碱中的金属越不活泼,则该碱越容易分解。 ④非金属+氧气→非金属氧化物 除F2、CI2、Br2、I2外的非金属一般都可直接与O2反应生成非金属氧化物。非金属氧化物大多是酸性氧化物。 ⑤酸性氧化物+水→含氧酸 除不溶性的SiO2外,常见的酸性氧化物都可与水反应生成对应的含氧酸。 ⑥含氧酸→酸性氧化物+水 在一定条件下,含氧酸分解可生成酸性氧化物(酸酐)和水 ⑦金属+非金属→无氧酸盐 此处的非金属H2、O2 除外。当金属越活泼,非金属也越活泼时,反应就越容易进行。 ⑧酸性氧化物+碱性氧化物→含氧酸盐 强酸(H2SO4、HNO3)的酸酐与活泼金属的氧化物在常温下即可反应,其余的需要在加热或高温条件下才能发生反应。

⑨碱性氧化物+酸→盐+水 强酸(H2SO4、HNO3、HCI)可与所有碱性氧化物反应,弱酸(H2CO3、H2S等)只能和活泼金属的氧化物反应。 ⑩酸性氧化物+碱→盐+水 酸性氧化物在一般条件下都可与强碱溶液反应,但SiO2与NaOH固体(或KOH 固体)需在强热条件下才发生反应。 ⑾酸+碱→盐+水 参加反应的酸和碱至少有一种是易溶于水的。 ⑿碱+盐→另一种碱+另一种盐 参加反应的碱和盐必须都能溶于水,同时生成物必须有难溶物或者易挥发的碱(NH3·H2O) ⒀酸+盐→另一种酸+另一种盐 酸和盐反应的前提条件比较复杂,在现阶段应掌握以下几点: 这里所说的酸和盐的反应是在水溶液中发生的复分解反应,必须符合复分解反应发生的条件,酸与盐才能发生反应。 如果反应物中的盐是难溶的,那么生成物必须都是可溶的,否则反应将不能继续进行。在实验室用石灰石制取CO2时,只能选用盐酸而不能用硫酸,就是这个道理。 必须掌握弱酸盐(如Na2CO3、CaCO3)跟强酸HCI、H2SO4、HNO3的反应,和生成BaSO4、AgCI的反应。 ⒁盐+盐→另两种盐 参加反应的两种盐必须都能溶于水,若生成物中有一种是难溶性的盐时,则反应可以进行。 ⒂金属+酸→盐+氢气 在金属活动性顺序里, 排在氢前的金属能从酸溶液中把氢置换出来。 这里的酸主要是指盐酸 和稀硫酸。浓硫酸和硝酸因有强氧化性,跟金属反应时不会生成氢气,而是生成盐、水、和 其他气体。

反应器类型

反应器类型 管式反应器、固定床,流化床 1、管式反应器 一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。此外,管式反应器可实现分段温度控制。其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。 管式反应器与釜式反应器还是有差异的,至于是否可以换回还要看你的反应的工艺要求和反应过程如何,一般的说,管式反应器属于平推流反应器,釜式反应器属于全混流反应器,你的反应过程对平推流和全混流的反应有无具体的要求?管式反应器的停留时间一般要短一些,而釜式反应器的停留时间一般要长一些,从移走反应热来说,管式反应器要难一些,而釜式反应器容易一些,可以在釜外设夹套或釜内设盘管解决,你的这种情况,能否可以考虑管式加釜的混合反应进行,即釜式反应器底部出口物料通过外循环进入管式反应器再返回到釜式反应器,可以在管式反应器后设置外循环冷却器来控制温度,反应原料从管式反应器的进口或外循环泵的进口进入,反应完成后的物料从釜式反应器的上部溢流出来,这样两种反应器都用了进去。 2、固定床反应器 又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止不动,流体通过床层进行反应。它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层则填装固体反应物。涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。 固定床反应器有三种基本形式:①轴向绝热式固定床反应器(图1)。

7第七章连续反应

第七章 连续反应 一、工艺流程简介 连续带搅拌的釜式反应器(CSTR)是化工过程中常见的单元操作。丙烯聚合过程是典型的连续反应。如流程图7-1所示,丙烯聚合过程采用了两釜并联进料串联反应的流程。聚合反应是在己烷溶剂中进行的,故称溶剂淤浆法聚合。首釜D-201 设有夹套冷却水散热及汽化散热。汽化后的气体经冷却器E-201进入D-207罐。D-207罐上部汽化空间的含氢(分子量调节剂)的未凝气通过鼓风机C-201经插入釜底的气体循环管返回首釜,形成丙烯气体压缩制冷回路。第二釜D-202采用夹套冷却和浆液釜外循环散热。 工艺流程简介如下:新鲜丙烯进料经阀门V1进入储罐D-207。后续工段回收的循环丙烯经阀门V2进入储罐D-207。再经泵P-201打入釜D-201。己烷经过阀门V6和V7分别进入釜D-201和D-202。首釜由阀门V8与V9分别加入催化剂A和活化剂B。汽相丙烯经阀门V10进入釜D-202作为补充进料。少量的氢气通过调节阀进入两釜,分别用于控制聚丙烯熔融指数。熔融指数表征了聚丙烯的分子量分布。 首釜的主要操作点有:超压或停车时使用的放空阀V11,釜底泄料阀V13,夹套加热热水阀V4,搅拌电机开关M01,气体循环冷却手动调整旁路阀V3,鼓风机开关C01(备用鼓风机开关C1B)。 第二釜的主要操作点有:超压或停车时使用的放空阀V12,釜底泄料阀V14,夹套加热热水阀V5,夹套冷却水阀V15,搅拌电机开关M02,浆液循环泵电机开关P06。 储罐D-207的主要操作点有:丙烯进料阀V1,循环液相回收丙烯进料阀V2,丙烯输出泵P-201开关P01(备用泵开关P1B)。 二、控制系统简介 首釜的控制点有:LIC-03浆液液位调节器(反作用),调节阀位于釜底出料管线上。TIC-03气体循环冷却器E-201出口温度调节器(反作用),调节阀位于冷却水出口管线上。TIC-04釜温调节器(反作用),调节阀位于夹套冷却水入口管线上。AIC-01聚丙烯熔融指数调节器(正作用),调节阀位于釜顶氢气入口管线上。 第二釜的控制点有:LIC-04浆液液位调节器(反作用),调节阀位于釜底出料管线上。TIC-06釜温调节器(反作用),调节阀位于冷却器E-202冷却水出口管线上,通过冷却循环浆液控制釜温。AIC-02聚丙烯熔融指数调节器(正作用),调节阀位于釜顶氢气入口管线上。 储罐D-207的控制点有:LIC-02液位调节器(反作用),调节阀位于泵P-201出口管线上。 三、主要画面说明 图7-1、图7-2、图7-3和图7-4中的指示仪表、调节器、手操器和开关说明如下。 1.指示仪表 PI-01 储罐D-207压力(0~2 MPa) PI-02 釜D-201压力 (0~2 MPa)

PCR反应条件

一.PCR介绍: PCR是体外酶促合成特异DNA片段的一种方法,为最常用的分子生物学技术之一。典型的PCR由1。高温变性模式板;2。引物与模板退火;3,引物沿模板延伸三步反应组成一个循环,通过多次循环使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93~94度)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72度将单核苷酸从引物的3端开始掺入,以止的基因为模板从5`—3`方向延伸,合成DNA的新互补链。 二.PCR反应体系的组成与反应条件的优化 PCR反应体系由反应缓冲液(10*PCR Buffer).脱氧核苷三磷酸底物(dNTPmix)耐热DNA 聚合酶(Taq酶)、寡聚核苷酸引物(Primer1,Primer2)、靶序列(DNA模板)五部分组成。各个组份都能影响PCR结果的好坏。 1.反应缓冲液一般随Taq DNA聚合酶供应。标准缓冲液含:50mmol/L KCL,10mmol/Ltris-HCL 室温),L 的浓度对反应的特异性及产量有着显著影响。浓度过高,使反应特异性降低;浓度过低,使产物减少,在各种单核苷酸浓度为200umol/L时,Mg为L较合适。若样品中含EDTA或其他螯合物,可适当增加Mg的浓度。在高深浓度DNA及dNTP条件下进行反应时,也必须相应调节Mg的浓度。据经验,一般以~2mmol/L(终浓度)较好。 2..dNTP 高浓度dNTP易产生错误掺入,过高则可能不扩增;但浓度过低,将降低反应产物的产时。PCR中常用终浓度为50~400umol/L的dNTP。四种脱氧三磷酸核工整酸的浓度应相同,如果其中任何一种的浓度明显不同于其他几种时(偏高或偏低),就会诱发聚合酶的错误掺入作用,降低合成速度,过早终止延伸反应。此外,dNTP能与Mg结合使游离的Mg浓度降低。因此,dNTP的浓度直接影响到反应中起重要作用的Mg浓度。 DNA聚合酶在100ul反应体系中,一般加入2~4u的酶量,中以达到每分钟延伸1000~4000个核苷酸的掺入速度。酶量过多将导致产生非特异性产物。但是,不同的公司或不同批次的产品常有很大的差异,由于酶的浓度对PCR反应影响极大,因此应当作预试验或使用厂家推荐的浓度。当降低反应体积时(如20ul或50ul),一般酶的用量仍不小于2u,否则反应效率将降低。 4..引物引物是决定PCR结果的关键,引物设计在PCR反应中极为重要。要保证PCR反应能准确、特异、有效地对模板进行扩增,通常引物设计要遵循以下几条原则: (1)。引物的长度以15~30bp为宜,一般(G+C)的含量在45%~55%,Tm值高于55度。

adams常见函数总结

ADAMS常用函数总结 在使用adams的过程中,由于函数比较多,大概有11种之多,如1、Displacement Fu nction 2、Velocity Functions 3、Acceleration Functions 4、Contact Functions 5、Spline Functions 6、Force in Object Functions 7、Resultant Force Functi ons 8、Math Functions 9、Data Element Access 10、User-Written Subroutine Invocation 11、Constants & Variables。 在adams中也有帮助文档,但是对于初学者来说还是有一定的难度的,基于这种情况我总结了一下几种常用的函数,希望能够起到抛砖引玉的作用! 1、STEP函数 格式:STEP (x, x0, h0, x1, h1) 参数说明: x―自变量,可以是时间或时间的任一函数 x0 ―自变量的STEP函数开始值,可以是常数或函数表达式或设计变量; x1 ―自变量的STEP函数结束值,可以是常数、函数表达式或设计变量 h0 ―STEP函数的初始值,可以是常数、设计变量或其它函数表达式 h1 ―STEP函数的最终值,可以是常数、设计变量或其它函数表达式 2、IF函数 格式:IF(表达式1: 表达式2, 表达式3, 表达式4) 参数说明: 表达式1-ADAMS的评估表达式; 表达式2-如果的Expression1值小于0,IF函数返回的Expression2值; 表达式3-如果表达式1的值等于0,IF函数返回表达式3的值; 表达式4-如果表达式1的值大于0,IF函数返回表达式4的值; 例如:函数IF(time-2.5:0,0.5,1) 结果:0.0 if time < 2.5 0.5 if time = 2.5 1.0 if time > 2.5 3、AKISPL函数 格式:AKISPL (First Independent Variable, Second Independent Variable,Spline Name, Derivative Order) 参数说明: First Independent Variable——spline中的第一个自变量 Second Independent Variable (可选) ——spline中的第二自变量Spline Name——数据单元spline的名称 Derivative Order (可选) ——插值点的微分阶数,一般用0就可以function = AKISPL(DX(marker_1, marker_2, marker_2), 0, spline_1) spline_1用下表中的离散数据定义 自变量x 函数值y -4.0 -3.6 -3.0 -2.5 -2.0 -1.2

过敏反应类型

过敏反应的类型 2013-08-03 | 阅:1 转:4 | 分享 修改 Ⅰ.第一型过敏反应(hypersensitivity-typeⅠ) 免疫反应是宿主为保护个体,免于外来异物之入侵的保卫系统,但当此反应过当或不适当时,便造成过敏反应(hypersensitivity)。Gell 和Coombs 根据反应发生的快慢及反应的机转,分类成四种。这些分类是为了说明方便,在实际上并没有如此地界限分明,有时一个疾病是好几类过敏反应合并造成的。四类型的过敏反应包括: a.第一型立即式IgE 担任过敏反应(immediate, IgE-mediated hypersensitivity) b.第二型抗体依靠型毒杀过敏反应(antibody dependent cytotoxicity hypersensitivity) c.第三型免疫复合物造成的过敏反应(immune complex-mediated hypersensitivity) d.第四型延迟性T-细胞担任过敏反应(delayed T cell-mediated hypersensitivity) 1.IgE 担任过敏反应的过程(overall scheme of IgE-mediated hypersensitivity) a. 第一次暴露到过敏原(allergen) b. 体内产生IgE 抗体对抗此抗原 c. IgE 抗体和肥胖细胞(mast cell) 结合 d. 第二次再碰到(challenge) 过敏原 e. 此过敏原和肥胖细胞上的IgE 结合,活化肥胖细胞 f. 被活化的肥胖细胞释放很多媒介物(mediators) g. 这些媒介物作用到各组织,造成临床征症,而有气喘...等反应。 2.IgE抗体的特性(characteristics of IgE antibody) IgE 抗体是第一型过敏反应发生的最重要因子,它有下列特性: a. 对热(56℃,30min) 不稳定 b. 在血清中浓度最低

高中化学反应中的连续反应教师版

高中化学反应中的连续反应 一、特征网络: (一)当连续反应物是氧气:)(222酸或碱D C B A O H O O ??→??→??→? (二) (1)当X 是氧化剂时 当X 是氯气时: 当X 是水: (2)当X 是还原剂时 当X 是碳 当X 是铁 当X 是硫离子 (3)当X 是酸或酸性气体 (4)当X 是碱或碱性气体

二、巩固练习 1、下列关系图中,A是一种正盐,B是气态氢化物,C是单质,F是强酸。当X无论是强酸还是强碱时都有如下转化关系(其他产物及反应所需条件均略去),当X是强碱时,过量的B跟Cl2反应除生成C外,另一产物是盐酸盐 下列说法中正确的是() A、当X是强酸时,A、 B、 C、 D、 E、F中均含有同一种元素,F是H2SO4 B、当X是强碱时,A、B、 C、 D、 E、F中均含有同一种元素,F是HNO3 C、B与Cl2的反应可能是氧化还原反应,也可能不是 D、当X是强酸时,C在常温下是气态单质 2、化合物A、B、C、D各由两种元素组成,甲、乙、丙是三种单质。这些常见的化合物 与单质之间存在如下关系(已知化合物C是一种有机物), 以下结论不正确的是() A.上图所示的五个转化关系中,有三个是化合反应 B.上述转化关系所涉及的化合物中有一种是电解质

C.甲、乙、丙三种单质的晶体均是分子晶体 D.上图所示的五个转化关系中,均为放热反应 3.下列关系图中,A是一种正盐,B是气态氢化物,C是单质,F是强酸。当X无论是强酸还是强碱时都有如下转化关系(其他产物及反应所需条件均已略去),当X是强碱时,B跟Cl2反应除生成C外,另一产物是盐酸盐。 用化学式号填写下列空格: (1)A是__________。 (2)当X是强酸时,A、B、C、D、E、F均含同一种元素,F是__________。 (3)当X是强碱时,A、B、C、D、E、F均含同一种元素,F是__________。 (4)B跟Cl2反应的化学方程式是________________________________________。 答案: (1)A是(NH4) 2S。 (2)F是_____H2SO4 _____。 (3) F是_____ HNO3____。 (4) H2S+Cl2→S+2HCl 8NH3+3Cl2→N2+6NH4Cl 4.如图,各物质有下列转化关系: 请回答以下问题: ①若C是可用作自来水消毒的气体,D、E是氧化物,D转化为E时,增加氧的质量约是D物质总质量的25.8%,则A是___NaCl___。 ②若B为常见金属或非金属单质,E是酸酐,且为易挥发的晶体,则A是____Na2S __;D 转化为E的一定条件是_____500℃,催化剂,常压____。 ③若C是水,B是有机化合物,且是同系物中相对分子质量最小的物质,E能使紫色石蕊试液变红色。则A是__ 乙醇_ 。 5.A、B、C、D、E、F、G、H、I九种物质存在如下的转化关系。其中A、D都是短周期元素单质。A所含的元素原子在短周期元素中半径最大(稀有气体除外);E在常温常压下是气体,它可漂白品红溶液。 (1) 请依次写出A、B的化学式:、。 (2) 请依次写出G、C的电子式:、。 (3) 请写出以下变化的化学方程式: D→E ;

相关主题
文本预览
相关文档 最新文档