当前位置:文档之家› 湿度传感器HS1101

湿度传感器HS1101

湿度传感器HS1101
湿度传感器HS1101

湿度传感器HS1101

摘要

随着社会信息科学的发展,控制理论和电子技术也在不断更新,基于微控制器的高度智能化测控技术逐步成为现实。其中以单片机为核心实现数字控制器因其体积小、成本低、功能强、简便易行而得到了广泛的应用。室内湿度测控由于其重要性的日益突出,技术也越来越成熟。本文主要讨论基于AT89S51单片机的以HS1101作为前端湿敏元件的室内湿度检测系统。

本系统采用层次化、模块化设计,以HS1101湿敏芯片的传感器作为测量的器件,所得到的数据经过NE555振荡电路处理后,通过ADC0809模数转换器件接入到AT89S51单片机,以单片机为核心对数据进行记录、存储、处理和报警。本文在设计过程中主要做了以下几个方面的工作:一是讨论并选择系统的总体设计方案;二是对传感器、A/D转换器和单片机进行设计和选择;三是对单片机及其跟PC机进行通信的接口进行电路及软件系统的设计。

本系统的设计还处于理论阶段,是在论证了各种方案和搜集了各种的资料后提出的一种切实可行的室内湿度监测系统。本系统完全满足一般小实验室的湿度测控系统的要求,实现了对室内湿度状况的全面、实时和长期的监测,也实现了室内湿度检测的自动化智能化。

关键词:AT89S51;HS1101;AD转换器;RS-232;传感器

Abstract

With the social development of information science, control theory and electronic technology has been updated too, based on the micro-controller, the technology of highly intelligent micro-controller monitoring has gradually become a reality. Among them, single-chip digital controller as the core because of their small size, low cost, powerful, simple and widely used. Indoor humidity measurement and controlling has been growing importance because of the prominent and the more and more mature technology. This article focused on a single chip AT89S51 based HS1101 humidity sensor as a front-end indoor humidity detection system.

The system has a hierarchical, modular design, and uses HS1101 humidity sensor chip as a measurement device. The data obtained after treatment NE555 oscillator circuit through the ADC0809 AD converter connecting to the AT89S51 micro-controller, a single machine as the core of the data record, storage, processing and alarm. In this paper, the main job of the design is the following points: First, to discuss the overall design and program so to select the appropriate system; Second, design and selection of the sensor, A / D converter, and a single-chip; third is a Micro Controller Unit to communicate with the PC interface and software systems for circuit design.

The design of the system is still in the theoretical stage, and it is to demonstrate a variety of programs and collected information on the various proposed a practical indoor humidity monitoring systems. Satisfy the system of small laboratory humidity measurement and control system requirements, the indoor humidity has been to achieve the status of a comprehensive, real-time and long-term monitoring, and also make the indoor humidity intelligent and automated testing to come true.

Keywords: AT89S51; HS1101; AD converter; RS-232; sensor

目录

第一章前言 (1)

1.1 概述 (1)

1.2 实验室湿度测控的意义 (1)

1.3 实验室湿度测控的现状与发展 (2)

1.3.1传统的分立式湿度测量 (2)

1.3.2模拟集成湿度传感器测量 (2)

1.3.3智能湿度传感器测量 (2)

1.4 本课题的设计方案 (3)

第二章湿度测量电路设计 (4)

2.1 传感器的认识 (4)

2.1.1传感器的静态特性 (4)

2.1.2传感器的动态特性 (5)

2.2 湿度传感器的选择 (6)

2.2.1湿度及其表示方法 (6)

2.2.2湿度传感器HS1101 (6)

2.3 湿度测量电路 (8)

2.3.1NE555时基电路 (8)

2.3.2基于555振荡电路的湿度测量电路设计 (9)

第三章核心电路的设计 (10)

3.1 ADC0809模数转换器 (10)

3.1.1ADC0809应用简介 (10)

3.1.2测湿电路与单片机连接 (11)

3.1.3湿度误差补偿插值法子程序 (11)

3.2 单片机电路的设计 (12)

3.2.1MCS-51单片机 (12)

3.2.2AT89S51单片机 (13)

3.2.3时钟晶振电路和复位电路 (13)

3.3 总体电路系统 (14)

3.3.1LED报警设计 (14)

3.3.2系统总设计 (15)

3.4 电路PCB版图设计 (17)

第四章单片机与PC间的串行通讯 (20)

4.1 RS-232-C接口 (20)

4.2 单片机和PC通信连接 (20)

4.3 简单软件设计 (22)

4.3.1下位机软件设计 (22)

4.3.2上位机程序设计 (23)

第五章结论 (24)

参考文献 (25)

致谢 (26)

附录 (27)

第一章前言

1.1概述

湿度,被定义为表示大气干燥程度的物理量。即在一定的温度下在一定的体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。湿度测量技术的发展已有200多年的历史,人们早就发现了人的头发随大气湿度变化而伸长或缩短的现象,因而制成了毛发湿度计。但是人们对于湿度传感器中的湿敏元件的认识,是从1938年美国F.W.Dunnore研制成功浸涂式氯化锂湿敏元件才开始的。

无论是在科研、实验生产、粮食储备、军火储备还是植物生长、大学校园里面的实验室元器件的保养,湿度的测量、传输和控制都跟其有着密不分的关系。环境的湿度有人们的视野里出现,并其重要性逐渐提高,使湿度的测控具有与环境温度的测控有着相同的重要意义。为了确保实验生产过程中得到很好的质量保证,为了确保实验室的元器件能够很好延续使用生命周期,湿度测量的提出已经引起了工作者的注意。在现代社会信息科技的不断迅速发展中,计算机技术、网络传输和湿敏元件的高速更新,使得湿度的测量正朝着自动化、网络化发展。在实验室的监控中,湿度测量的出现使得元器件的保养达到更好、使用周期更长、性能保持更好。所以实验室湿度测控有着广阔和应用发展空间。

现在技术中,对湿度的测量有方法多种多样,也较为容易实现。但精度和反应度却是各种方法中的瓶颈,本系统的设计就是从精度上和高反应度上进行测控、选器件、系统的设计,尽可能使做出来的系统可以更好更精确更实时地检测到室内湿度的变化,并及时读取数据进行处理,最终显示在个人电脑终端,使得工作者能够在最短的时间内对环境不断发生变化的湿度有着实时的了解,并可以针对不同的状况做出不同的反应。

1.2实验室湿度测控的意义

每个实验室都有着自己的微小气候,在其中湿度有着非常重要的影响力。高湿容易使人体散热量增加、容易使人体丧失热蒸发机能,导致热疲劳。实验室湿度高于70%为高气湿,人将感到不适;低于30%为低气湿,人感到口鼻干燥;最舒适的湿度为 40%~60%[1]。在实验室所使用的各种仪器设备中,空气湿度对其影响是非常明显的,无论是使用过程对精度的影响,还是在保养过程中使得容易老化,容易被侵蚀。

综上所述,无论是从人体健康的角度还是从元器件使用的角度上看,对实验室的湿度测控的意义都是非常重大的。

1.3实验室湿度测控的现状与发展

人们研究湿度测量的历史也算是久远,对在实验室中进行湿度测控也更是随着实验信息技术的发展而不断更新换代。实验室室内湿度测控的发展大致经历了以下三个阶段:传统的分立式湿度测量;模拟集成湿度传感器测量;智能湿度传感器测量[2]。

1.3.1传统的分立式湿度测量

传统的电阻湿度计、半导体湿敏元器件等,都属于分立式湿度测量元件,使用这些元器件来进行测量湿度的,统称为分立式湿度测量。20世纪50年代以来,随着传统的电阻、电容湿度计的出现,湿度测量走向了一个新的台阶。此类测量方法所使用的元件通常不能单独完成测量任务,使用时还需要配上二次仪表,才能完成湿度测量及控制功能。其主要缺点是外围电路比较复杂、测量精度比较低、分辨力不高,还有就是它们的体积比较大、使用起来不够方便。所以,传统的分立式湿度测量方法受到了现在科学技术发展的挑战,已经逐渐被淘汰。到了20世纪90年代,这种室内湿度测控已经很难再找到了。

1.3.2模拟集成湿度传感器测量

在20世纪80年代中,采用硅半导体集成工艺的集成湿度传感器问世,它是将湿度传感器集成在一个芯片上、可完成湿度测量及模拟信号输出功能的专用IC,它属于最简单的一种集成湿度传感器。用这种模拟集成湿度传感器来进行实验室室内湿度测控,外围电路是较为简单,所以这种测量方法最为广泛应用。本系统也是基于这样集成IC的传感器HS1101来进行设计的。

1.3.3智能湿度传感器测量

智能湿度传感器的未来测量发展的一个重要的方向,也是室内湿度测控的必然发展,更是微电子技术、计算机技术和自动测试技术的结晶。智能湿度测控器也是在智能湿度传感器的基础上发展起来的。智能湿度测控器适配各种微控制器,构成智能化湿敏控制系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪,既可以工作在连续转换模式,亦可选择单次转换模式。

进入21世纪的第一个年代,智能湿度测控技术正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器测量和网络传感器测控、研制单片测量系统等高科技的方向迅速发展。

总之,随着计算机技术、应用电子技术、传感器智能化技术、机械电子一体化技术和计算机网络技术研究的发展,室内湿度测控已经成为各个国家在保养电子元器件、实时监测室内湿度等国际市场竞争力的前沿性研究领域。

1.4本课题的设计方案

本课题所设计的系统有三个原则:1、操作维护方便,为了利于系统的推广,在设计时应该充分采用操作内置或简化的方法,以尽量减少对操作人员专用知识的要求,也便于进行维修。2、可靠性,本系统所有的环节中,都应该有着可靠性的思想,从选用可靠性高的元器件;供电电源采用抗干扰措施;进行多向滤波等作为出发点。3、性价比,本课题所设计的系统的核心是单片机,它本身有着多个优势,要使得系统能够广泛地应用,在充分考虑可靠性的同时,尽可能降低成本,提高系统的性价比。

本文将从以下几个方面展开工作:一是确定测湿电路的设计方案;二是进行单片机核心电路的设计;三是对单片机及通信接口进行简单的概述;四是对所有的工作进行总结。

本次课题的设计系统的示意图如图1-1。

图1-1:系统示意图

第二章 湿度测量电路设计

2.1 传感器的认识

传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。通常由敏感元件和转换元件组成。其中,敏感元件是指传感器中能够直接感受被测量的部分,转换元件指传感器中能将敏感元件输出转换为适于传输和测量的电信号部分。

有些国家和有些科学领域,将传感器称为变换器、检测器或探测器等。应该说明,并不是所有的传感器都能明显分清敏感元件与转换元件两个部分,而是二者全为一体。例如半导体气体、湿度传感器等,它们一般都是将感受的被测量直接转换为电信号,没有中间转换环节[3]。

2.1.1 传感器的静态特性

所谓传感器的静态特性,是指在稳态信号作用下,传感器输出-输入之间的关系特性。衡量传感器静态特性的重要指标有线性度、灵敏度、迟滞和重复性。

1. 线性度

传感器的线性度用传感器的输出与输入之间的线性程度表示。如果不考虑迟滞和蠕变效应,一般可用下面的多项式表示。

2012+n n y a a x a x a x =+++…

(2. 1)

式中:y ――输出量; x ――输入物理量;

0a ――零位输出; 1a ――传感器线性灵敏度;

23,,n a a a …,――待定常数。

在使用非线性特性的传感器时,如果非线性项的方次不高,在输入量变化范围不大条件下,可以用切线或割线等直线来近似地代表实际曲线的一段。

2. 灵敏度

灵敏度是指传感器在稳态下输出变化对输入变化的比值,一般用n S 来表示,

式中:y d ――输出量的变化; x d ――输入量的变化。

对于线性传感器,它的灵敏度就是它的静态特性的斜率。非线性传感器的灵敏度为一变量。一般希望传感器的灵敏度高,在满量程范围内是恒定的,即传

x d

y

d n S =

(2. 2)

感器的输出-输入特性为直线。

3. 迟滞

在相同工作条件下做全量程范围校准时,下行程(输入量由小到大)和反行程(输入量由大到小)所得输出输入特性曲线往往不重合。也就是说,对应同一大小的输入信号,传感器正反行程的输出信号大小不相等,此即迟滞现象。迟滞(或称回程误差)正是用来描述传感器在正反行程期间特性曲线不重合程度的。

迟滞的大小常用正反行程最大输出差值max y ?对满量程输出S F y .的百分比来表示的[4]。

4. 重复性

重复性是指在相同工作条件下,输入量按同一方向作全量程多次测试时,所得传感器特性曲线不一致性的程度。多次重复测试的曲线重复性好,误差也小。重复特性的好坏是与许多因素有关的,与产生迟滞现象具有的原因。

其它的特性还有分辨力,传感器能检测到的最小输入增量称分辨力,在输入零点附近的分辨力称为阈值;零漂,传感器在零输入状态下,输出值的变化零漂,零漂可用相对误差表示,也可用绝对误差表示。

2.1.2 传感器的动态特性

传感器动态特性是指输入量随时间动态变化时,其输出与输入的关系。很多传感器要在动态条件下检测,被测量可能以各种形式随时间变化。只要输入量是时间的函数,则其输出量也将是时间的函数,其间的关系要用动态特性来说明。为研究传感器的动态特性,可建立其动态数学模型,用数学中的逻辑推理和运算方法,分拆传感器在动态变化的输入量作用下,输出量如何随时间改变。实际中,输入信号随时间的变化形式多种多样,无法统一研究,所以通常只分析传感器在标准输入信号作用下的输出。

研究动态特性可以从时域和频域两个方面采用瞬态响应法和频率响应法来分析。由于输入信号的时候函数形式是多种多样的,在时域内研究传感器的响应特性时,只能研究几种特定的输入时间函数如阶跃函数、脉冲函数和斜坡函数等的响应特性。

对于任意输入()t x 所引起的响应()t y ,可以利用两个函数的卷积关系,即系统的响应()t y 等于冲激响应函数()t h 同激励()t x 的卷积,即

()()()()()?-=*=t

d t x h t x t h t y 0

τ

ττ(2. 3)

2.2 湿度传感器的选择

2.2.1 湿度及其表示方法

在自然界中,凡是有水和生物的地方,在其周围的大气里总是含有或多或少的水汽。

大气中含有水汽的多少,表示大气中的干、湿程度,用湿度来表示,也就是说,湿度表示大气干湿程度的物理量。

大气湿度有两种表示方法:绝对湿度与相对湿度。 绝对湿度

绝对湿度表示单位体积空气里所含水汽的质量,其表示为

式中: ρ――被测空气的绝对(g /3m ,mg /3m ); V M ――被测空气中水汽的质量(g ,mg ); V ――被测空气的体积(3m )。

相对湿度:

相对湿度是气体的绝对湿度(v ρ)与同一温度下,水蒸汽已达到饱和的气体的绝对湿度(W ρ)之比,常用%RH 来表示。即

式中:v P ――待测气体的水汽分压;

W P ――同一温度下水蒸汽的饱和水汽压[3]。

2.2.2 湿度传感器HS1101

湿度传感器HS1101是基于独特工艺设计的电容元件,这些相对湿度传感器可以大批量生产。可以应用于办公室自动化,车厢内空气质量控制,家电,工业控制系统等。它有以下几个显著的特点:

1、全互换性,在标准环境下不需校正

2、长时间饱和下快速脱湿

3、可以自动化焊接,包括波峰或水浸

4、高可靠性与长时间稳定性

5、专利的固态聚合物结构

6、可用于线性电压或频率输出回路

7、快速反应时间

V

M V =ρ(2. 4)

RH

P P T

W V %100?????

??=相对湿度(2. 5)

HS1101的简单物照图如图2-1[5]。

图2-1:HS1101实物照

相对湿度在0%~100%RH 范围内;电容量由162pF 变到200pF,其误差不大于 2%RH ;响应时间小于5s ;温度系统为0.04pF/℃。可见其精度是较高的。其湿度-电容响应曲线如图2-2:

图2-2:HS1101湿度-电容响应曲线

HS1101的一些常用参数如表2-1:

20 40 60 80 100 相对湿度%

2.3湿度测量电路

HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。涉及如何将电容的变化量准确地转变为计算机易于接受的信号时,常用两种方法:一是将HS1101置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;另一种是将HS1101置于555振荡电路中,将电容值的变化转为与之呈反比的电压频率信号,可直接被计算机所采集。

2.3.1NE555时基电路

NE555是一个能产生精确定时脉冲的高稳度控制器,其输出驱动电流可达200mA.。在多谐振荡器工作方式时,其输出的脉冲占空比由两个外接电阻和一个外接电容确定;在单稳态工作方式时,其延时时间由一个外接电阻和一个外接电容确定,它可以延时数微秒到数小时。其工作电压范围为:4.5V≤

V16V。

cc

NE555的框图如图2-3所示[5]。

图2-3:NE555框图

2.3.2 基于555振荡电路的湿度测量电路设计

图2-4:测湿电路图

把HS1101和NE555同时接入电路中的电路设计原理图如图2-4所示。NE555电路功能的简单概括为:当6端和2端同时输入为“1”时,3端输出为“0”;当6端和2端同时输入为“0”时,3端输出为“1”。在此电路中,555定时器正是根据这一功能用作多稳态触发器输出频率信号的。

当电源接通时,由于6和2端的输入为“0”,则定时器3脚输出为“1”;又由于C1 两端电压为0,故cc V 通过R2 和R3 对C1充电,当C1 两端电压达到2cc V /3 时,定时电路翻转,输出变为“0”。此时555定时器内部的放电BJT 的基极电压为“1”,放电BJT 导通,从而使电容C1 通过R3 和内部放电BJT 进行放电,当C1 两端电压降低到cc V /3 时,定时器又翻转,使输出变为“1”,内部放电BJT 截止,VCC 又开始通过R2 和R3 对C1 充电,如此周而复始,形成振荡。其工作循环中的充电时间为h T =0.7(R2+R3)C1;放电时间为1T = 0.7R3*C1; 输出脉冲占空比为q =(R2+R3)/(R2+2R3),为了使输出脉冲占空比接近50%,R2应远远小于R3。当外界湿度变化时,HS1101 两端电容值发生改变,从而改变定时电路的输出频率。因此只要测出555的输出频率,并根据湿度与输出频率的关系,即可求得环境的湿度[6]。

第三章 核心电路的设计

3.1 ADC0809模数转换器

在单片机应用中,特别是在实时控制系统中,常常需要把外界连续变化的物理量(如湿度、湿度、压力、流量),变成数字量送入计算机内进行加工处理。反之,也需要将计算机输出的数字量转为连续变化的模拟量,用心控制调节一些执行机构,实现对被控对象的控制。这种由模拟量变为数字量,或由数字量转为模拟量的转换,通常叫做模/数,或数/模转换。用以实现这类转换的器件,叫做模/数(A/D )转换器或数/模(D/A )转换器[7]。

3.1.1 ADC0809应用简介

ADC0809具有8路模拟量输入,可在程序控制下对任意通道进行A/D 转换,输出8位二进制数字量。其主要性能有:逐次比较型;CMOS 工艺制造;单电源供电;无需外部进行零点和满量度调整;可锁存三态输出,输出与TTL 兼容;易与各种微控制器接口;具有锁存控制的8路模拟开关;分辨率为8位;功耗为15mW ;转换时间(kHz f CLK 500=)为128s μ;转换精度为%4.0±[8]。

ADC0809的引脚图如图3-1所示。

图3-1:ADC0809引脚图

3.1.2 测湿电路与单片机连接

NE555的输出端跟ADC0809的IN0通道相接,则ADC0809芯片的地址选通为ADDR0,ADDR1,ADDR2都接地。ADC0809的转换时钟由单片机的ALE 提供。ADC0809的典型转换频率为640kHz ,ALE 信号频率与晶振频率有关,如果晶振频率取12MHz ,则ALE 的频率为2MHz ,所以ADC0809的时钟端CLK 与单片机的ALE 端相接时,要考虑分频。8051通过地址线P2.0和读写控制线RD 、WR 来控制模拟输入通常地址锁存、启动和输出允许。测湿电路与单片机的连接图如图3-2所示。

图3-2:测湿电路与单片机连接图

3.1.3 湿度误差补偿插值法子程序

从NE555时基电路中输出的是一个模拟信号,ADC0809的作用就是要把这个单片机不能识别的模拟信号转换成一个可以读取的数字信号。这时所用到的计算机思想就是插值法[9]。即当ADC0809的输入与输出特性为非线性时,可以用一个单调非线性函数()x f u =来表示。将x 的值分成几个小段区间,每个区间的端点k x 都对就一个输出k u ,把这些k x 、k u 编成表格存储起来。实际的测量值i x 一定会落在某个区间()1,+k k x x 内,即k x

图3-3是对ADC0809的操作流程图。

图3-3:ADC0809操作流程图

3.2单片机电路的设计

3.2.1MCS-51单片机

所谓的单片机就是把中央处理器CPU、存储器ROM/RAM、输入输出接口电路以及定时器/计数器等部件制作在一块集成电路芯片中,构成一个完整的微型计算机――单片微型计算机。由于单片机把各种功能部件集成在一块芯片上,因此它的结构紧凑、超小型化、可靠性高、价格低廉、易于开发应用。

MCS-51单片机包括8031、8051、8751等很多型号,其代表型号为8051。

3.2.2 AT89S51单片机

本课题所设计的系统的核心采用的是AT89S51单片机,它是一个低功耗、高性能的CMOS8位单片机,片内含有4kBytesISP 的可反复擦写1000次的Flash 只读程序存储器,器件采用ATMEL 公司的高密度、非易失性存储技术制造,芯片内集成了通用8位中央处理器和ISP Flash 存储单元。它具有以下特点:40个引脚,4k Bytes Flash 片内程序存储器,128 bytes 的随机存取数据存储器(RAM ),32个外部双向输入/输出(I/O )口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT )电路,片内有时钟振荡器。

HMOS 制造工艺的MCS-51单片机都采用40引脚的双列直插(DIP )方式,CHMOS 制造工艺的80C31/80C51除采用DIP 封装方式外,还采用PLCC 方形的封装方式。图3-4是AT89S51的PDIP 封装引脚图[10]。

图3-4:AT89S51的PDIP 封装

其中,有主电源引脚cc ss V V 和,外接晶体引脚XTAL1和XTAL2,控制引脚ST PD

R V /、ALE/PROG 、PSEN 、DD V EA /,输入输出接口P0~P3。

3.2.3 时钟晶振电路和复位电路

AT89S51单片机在实际应用中,时钟电路用于产生时钟信号,时钟信号是单片机内部各种各样的微小操作的时间基准,在此基础上,控制器按照指令的功能产生一系列在时间上有一定次序的信号,这些信号用来控制相关的逻辑电路工

作,实现指令的功能。复位对单片机来说,是程序还没开始执行,是在做准备工作。

本系统在设计上对复位电路设计成上电复位加手动复位。这样使用起来比较方便,就算是在程序“跑飞”时,也可以手动复位,不用再重起单片机电源。其Protel DXP电路图如图3-5[11]。

图3-5:AT89S51复位与晶振电路

3.3总体电路系统

3.3.1LED报警设计

本设计中,在ST89S51单片机的P1.0口外接一个LED二极管作为对湿度测控的报警输出。当湿敏元件HS1101对室内的湿度检测时,达到某个值,就会在P1.0端口输出高电平,使得LED发亮,以及时通知工作人员进行相关的操作。

其电路原理图如图3-6所示。

图3-6:系统报警电路

3.3.2系统总设计

基于51单片机的HS1101传感器湿度测控系统,主要由几个部分组成:传感器数据采集电路,模数转换电路,LED报警电路,单片机主板电路等。其程序流程图如图3-7所示。

图3-7:系统总流程图

从流程图可以知道,本系统在设计过程中包括了几个子程序:读湿度子程序,湿度转换子程序,计算湿度子程序,比较子程序。

本系统的部原理图如图4-8所示 下面对本次设计的总电路进行说明。

首先,AT89S51单片机具有许多特点,其功能强大、I/O 接口多,但其内部的数据暂存存储器的空间其实是比较小的,当用于多位的外围外接芯片时,会出现内部RAM 使用不足的状况。所以,在本系统设计中,考虑到目前只是计划应用于较小的机房中,监测点不多,因此本文没有对片内RAM 进行扩展或是改换单片机的型号。在实际编程中实现本系统的功能应该没有太大的障碍。

AT89S51具有4个I/O 接口,它们分别是P0口、P1口、P2口和P3口。本文进行设计时只是用到了其中的部分接口,与本系统的其它部分进行连接,分别实现了不同的功能。例如:P1.0口通过电阻用于LED 的外接;P2.0和P0所有接口接ADC0809模数转换器等等。

8051的0INT 接口通过非门与ADC0809的EOC 接口相接,

RD WR 和通过两个或非门跟ADC0809的START 、ALE 和OE 相连,这样就可以使得8051可以通过读写控制线来控制输入通道地址的锁存、启动和输出允许。

NE555电路中的参数选择为:R1=1K 、R2=499K 、R3=576K 、R4=909K 。其中R1与555的频率输出引脚相连,起输出短路保护作用,防止输出电流过大。R4是用作555定时器内部温度补偿的,其应该具有1%的精度。由于这里采用的是Texas Instruments 生产的NE555,所以根据微调R4和R3取值分别为909K 和576K 。

基于单片机的温湿度测量仪设计

单片机课程设计报告 题目:基于单片机的温湿度仪表设计 班级:智能科学与技术1201班

学生姓名:文波 学号:120407130 指导教师:朱建光 成绩: 工业大学 摘要 温度和湿度是两个最基本的环境参数,人们生活与温湿度息息相关。在日常生活、工业、医学、环境保护、化工、石油等领域,经常需要对环境温度和湿度进行测量和控制。准确测量温湿度在生物制药食品加工、造纸等行业更是至关重要。因此,研究温湿度的测量方法和装置具有重要的意义。 随着科技的不断发展,单片机技术已经普及到我们的工作、生活、科研等各个领域。已经成为一种比较成熟的技术。由于单片机集成度高、功能强、可靠性高、体积小、功耗低、使用方便等优点,目前已经渗透到我们工作和生活的方方面面。 本设计STC89C52为主要控制器件,以DHT11为数字温度传感器的新型数字温湿度计。本设计主要包括硬件电路的设计和系统软件的设计。

目录 第一章目标及主要任务 (3) 第二章硬件设计 (3) 2.1系统设计方案 (3) 2.2 STC89C52介绍 (4) 2.3 DHT11数字传感器介绍 (5) 2.4电路设计 (7) 第三章软件设计 (11) 3.1 系统软件主程序流程 (11) 3.2 DHT11数据采集流程 (13) 第四章结论与调试 (13)

附录(程序清单) (14) 参考文献 (22) 第一章目标及主要任务 在本次课程设计中,为实现对温湿度的检测与显示,主要利用以STC89C52为核心构架硬件电路,DHT11温湿度传感器采集环境温度及湿度信息(温度检测围:0℃至+50℃。测量精度:2℃.;湿度检测围:20%-90%RH检测精度:5%RH),数码管直接显示温度和湿度(显示方式:温度:两位显示;湿度:两位显示);同时利用C语言编程实现温湿度信息的显示功能。 扩展功能:可设置温湿度报警值,温湿度超过设置的响应报警值,会发出报警信号。 第二章硬件设计 2.1 系统设计方案

基于SHT75温湿度传感器的设计与应用

基于SHT75温湿度传感器的设计与应用 Design and Application of Temperature and Humidity Sensors Based on SHT75 作者:刘锋王平付蔚重庆邮电大学网络控制技术与智能仪器仪表重点实验 室来源: 电子产品世界 摘要:系统基于SHT75温湿度传感器,利用EPA总线技术,实现有线网络的通信和对工业现场温度与湿度的监测,为用户提供一个适时性与便利性的远程监测系统。 关键词:EPA总线技术;网络通信;SHT75;温湿度传感器 *本项目得到了国家863项目(2006AA040301)资助。 2008年9月17日收到本文修改稿。 引言 在工业现场,特别是那些环境因素对生产过程影响比较大的车间,对现场环境因素的监测很重要,而随着工业自动化的迅速发展,工业以太网在工业中应用的普及,它能使用户对现场的一些环境因素实现一个远程的监测,突显其便利性和适时性。本系统就是基于SHT75温湿度传感器,利用工业以太网技术,实现对工业现场的温湿度的远程监测。 温湿度测量的系统设计

在工业现场中使用温湿度传感器,为了达到远程监测的目的,就少不了与工业以太网或其它工业现场总线网络相连,本系统就利用工业以太网技术,由传感器SHT75采集工业现场的温湿度,经过CPU处理,通过工业以太网进行通信,实现上位机对现场环境温湿度的数据采集、监测。 本温湿度测量系统包含了微处理器(C8051F120)、存储器、传感器模块、网络通信接口、串口通信等重要组成部分。在该设计中,电源使用了以太网供电设备,该设备除了用于网口通信,还提供设计中所需要的电源。该电源经过电平转换,为微处理器、存储器、传感器模块等提供所需的+5V和+3.3V电压。微处理器 C8051F120通过I/O口与传感器模块进行数据交换。温湿度测量系统的硬件框图如图1所示。 图1 温湿度测量系统框图 处理器C8051F120

光纤湿度传感器应用的文献综述

光纤通信原理(论文) 文献综述 学院:电气工程学院 题目:光纤湿度传感器应用

光纤湿度传感器研究进展 文献综述 学院:电气工程学院专业:通信工程 摘要:光纤湿度传感器是传感器的重要组成部分,而光纤湿度传感器的使用敏感材料也很多,原理也各有异同,导致传感器结构不同、检测方式有差异和成本相差较大等问题,引起了研究者的广泛兴趣。本文比较了几种主要光纤湿度传感器的特点,并对光纤湿度传感技术目前存在的问题及发展趋势进行了讨论。 关键词:光纤湿度传感器;湿度;敏感材料 1.引言 光纤湿度传感器具有体积较小,响应速度较快,抗电磁干扰强,适应温度范围大,动态范围较大,灵敏度非常高的特点,在恶劣的环境中能发挥天然的优势。因而在国防科研、石油化工和电力等领域的湿度检测中有着广阔的应用前景[ 1]。 光学湿度传感器主要是利用光学材料在空气相对湿度发生变化后, 材料的物理和化学特性将发生变化,介质感受到相应的变化,从而引起波长光学参数,光波导和反射系数的变化进行的湿度测量[1]。 2.光纤湿度传感器的分类 按照不同的传感原理,光纤湿度传感器可分为两类:一类是光功率检测型[12],即外界湿度变化引起传输光功率的变化,如基于锥形光纤[13-15] [16,17]、塑料包层石英光纤[18,19]等湿度传感器;另一类是波长检测型 [20,21],即外界湿度变化引起涂敷在传感器表面的湿敏材料有效折射率发生变化,进而导致中心波长发生漂移,如基于布拉格光纤光栅[22-25]、长周期光纤光栅[26-29]、光纤Fabry-Perot腔[30-33]等湿度传感器。 1.3.1 2.1光功率检测型 2.1.1光纤传光式湿度传感器 光纤传光式湿度传感器的传感原理为:当湿敏材料薄膜与空气湿度相互接触后,湿敏材料发生化学反应导致其光学参数发生变化。因此,通过测量湿敏材料

集成湿度传感器HIH3610

Humidity Sensors Humidity Sensor HIH-3610 Series Sensing and Control FEATURES ? Molded thermoset plastic housing with cover ? Linear voltage output vs %RH ? Laser trimmed interchangeability ? Low power design ? High accuracy ? Fast response time ? Stable, low drift performance ? Chemically resistant TYPICAL APPLICATIONS ? Refrigeration ? Drying ? Metrology ? Battery-powered systems ? OEM assemblies The HIH-3610 Series humidity sensor is designed specifically for high volume OEM (Original Equipment Manufacturer) users. Direct input to a controller or other device is made possible by this sensor’s linear voltage output. With a typical current draw of only 200 μA, the HIH-3610 Series is ideally suited for low drain, battery operated systems. Tight sensor interchangeability reduces or eliminates OEM production calibration costs. Individual sensor calibration data is available. The HIH-3610 Series delivers instrumentation-quality RH (Relative Humidity) sensing performance in a low cost, solderable SIP (Single In-line Package). Available in two lead spacing configurations, the RH sensor is a laser trimmed thermoset polymer capacitive sensing element with on-chip integrated signal conditioning. The sensing element's multilayer construction provides excellent resistance to application hazards such as wetting, dust, dirt, oils, and common environmental chemicals. WARNING PERSONAL INJURY ? DO NOT USE these products as safety or emergency stop devices, or in any other application where failure of the product could result in personal injury. Failure to comply with these instructions could result in death or serious injury. WARNING MISUSE OF DOCUMENTATION ? The information presented in this product sheet is for reference only. Do not use this document as system installation information ? Complete installation, operation, and maintenance information is provided in the instructions supplied with each product. Failure to comply with these instructions could result in death or serious injury.

智能绝对湿度传感器绝对湿度变送器绝度湿度

智能绝对湿度传感器 使用说明书 绝对湿度传感器性能达到了国内外一流水平,是目前湿度环境测试的最理想产品之一。采用原装进口湿敏元件,配以先进的单片机电路和全量程温度补偿电路设计,保证了传感器在全量程输出具有线性好、精度高、稳定性能强、一致性好、使用寿命长、远距离传输不失真、响应速度快、抗干扰能力强等优点。温度测量精度±0.3℃、湿度测量精度±2%RH,绝对湿度精度±0.5g。 本产品可以根据用户的需要增加温湿度的上下限报警功能(开关量输出)。 应用场合: 广泛应用于图书、档案馆、超市、生产车间、工业自动化、HVAC 暖通空调、医药化工、通讯机房、环境监测、洁净厂房、智能楼宇、电信基站本品可配套计算机系统和二次仪表,使用方便,连接简单。 一、性能参数 1、供电:电流型:DC24V

电压型、网络型:DC24V(12V~24VDC) 2、测量精度:温度±0.3℃(10℃~50℃,其它段不高于±1.5℃);湿度±2%RH(10%RH~90%RH,其它段不高于±4%RH);绝对湿度精度±0.5g(10℃~50℃范围内,其它段不高于±1g) 3、量程: 网络型:温度-40℃~125℃,湿度:0%RH~100%RH 电流(电压型):温度在-40℃~125℃范围内用户自定,湿度:0%RH~100%RH。 4、输出值 网络型:全量程输出温度、湿度、和绝对湿度 电流(电压)型:在0~200g范围内用户自定 5、显示分辨率0.1 6、电路工作条件:-40℃~75℃,5%RH~95%RH(非结露) 7、探头工作条件:-40℃~125℃,0%RH~100%RH(非结露),螺纹安装或者法兰安装时,被测气体内的压力不超过2MPa; 8、液晶同步显示:温度/湿度 温度/露点/绝对湿度 9、负载:电压输出阻抗250Ω,电流输出阻抗≤500Ω 10、绝缘强度>500MΩ 11、传感器漂移:湿度≤1%RH/y,温度≤0.1℃/y 12、测量重复性:湿度≤1%RH,温度≤0.1℃ 13、安装方式:壁挂:葫芦孔挂装或螺丝固定墙面

传感器电容式湿度传感器的应用重点

题目传感器电容式湿度传感器的应用 姓名 学号 系(院)_电子电气工程学院_ 班级 目录 前言 (3) 1. 绪论 (1) 1.1电容式传感器的工作原理 (1)

1.2电容式传感器的特点 . (4) 2. 系统设计 (6) 2.1硬件电路设计 (6) 2.2 湿敏电容器的特性 (8) 2.3 电容式传感器数据处理 (8) 2.4测试结果 (8) 结论 (10) 参考文献 (11) 淄博职业学院 前言 人类的生存和社会活动与湿度密切相关,随着现代化的实现,很难找出一个与湿度无关的领域来。在电子科学技术日益发达的今天, 人类对自身的生活环境及工作环境要求越来越高。湿度的监测与控制在国民经济各个部门,如国防、科研、煤炭开采和井下监测以及人生活等诸多领域有着非常广泛的应用。众所周知, 湿度的测量较复杂,而对湿度进行控制更不易。人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代工作条件和环境的要求。为此,人们研制了各种湿度传感器,其中电阻和电容型湿度传感器以其测量范围宽, 响应速度快, 测量精度高, 稳定性好, 体积小, 重量轻,制造工艺简单等显示出极大的优越性, 在实际中得到了广泛应用。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同。其性能和技术指标有很大差异,因而价格也相差甚远。湿度是一个重要的物理量,航天航空,计量等许多环境中需要在高温下进行湿度的测量,很多行业中,如发电、纺织食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格,目前,在低温条件下,(通常是指100℃以下),湿度

测量已经相对成熟,有商品化产品,并广泛应用于各种行业,另外有许多以行业需要在高温环境下测量湿度,如航天航空、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高炉等场合,这时,湿度测量结果往往不如低温环境下的测量结果理想,另外,在恶劣的环境下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业化气体时,将使精度大大下降。然而,随着科技的进步,人们对湿度的测量设备进行了越来越深层的研究,本文就以电容型湿度传感器进行阐述。 1. 绪论 1.1电容式传感器的工作原理 电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。 这里主要介绍电容式传感器的原理、结构类型、测量电路及其工程应用。当被测量的变化使S 、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。当式中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。调频电路实际是把电容式传感器作为振荡器谐振回路的一部分, 当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此必须加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

DHT11温湿度传感器

基于单片机的DHT11温湿度 传感器设计 姓名:史延林 指导老师:黄智伟 学院:电气工程学院 学号:20094470321 摘要: 温湿度是生活生产中的重要的参数。本设计为基于单片机的温湿度检测与控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器DHT11主要实现对温度、湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52进行数据的分析和处理,为显示和报警电路提供信号,实现对温

湿度的控制报警。报警系统根据设定报警的上下限值实现报警功能,显示部分采用LCD1602液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。 关键词:单片机;DHT11温湿度传感器; LCD1602显示 第一章:课程构思 1.1课题背景 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间内温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国内外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。1.2主要内容

基于湿度传感器地测量电路设计

扬州大学能源与动力工程学院 课程设计报告 题目:基于湿度传感器的测量电路设计 课程:传感器与测控电路课程实习 专业:测控技术与仪器 班级: 测控0802 姓名: 学号: 指导老师:

总目录第一部分:任务书 第二部分:课程设计报告 第三部分:设计电路图 第四部分:实习报告

《传感器与测控电路课程实习》课程设计任务书 课题:基于湿度传感器的测量电路设计 一个电子产品的设计、制作过程所涉及的知识面很广;加上电子技术的发展异常迅 速,新的电子器 件的功能在不断提升,新的设计方法不断发展,新的工艺手段层出不穷, 它们对传统的设计、制作方法提岀了新的挑战。但对于初次涉足电子产品的设计、制作 来说,了解并实践一下传感器选择与测控电路的设计、制作的基本过程是很有必要的。 由于所涉及的知识面很广,相应的具体内容请参考本文中提示的《传感器原理及应用》, 《测控电路》,《模拟电子技术基础实验与课程设计》,《电子技术实验》等书的有关章节。 一、 基于湿度传感器的测量电路设计简介 应用IH3605型温度传感器与集成运放设计测量湿度的电路,测量相对湿度(RH)的 范围为0%、 100%,电路输岀电压为O'lOV 。要求测量电路具有调零功能和温度补偿功能。 使用环境温度为0°C ?85°C 。 二、 基于湿度传感器的测量电路设计的工作原理:IH3605型湿度传感器 本课题中测量电路组成框图如下所示: 测量电路由湿度传感器,差动放大器,同相加法放大器等主电路组成;为了实现温 度补偿功能,选 择钳电阻温度传感器采集坏境温度,通过转换电桥和差动放大,输入同 相加法器实现加法运算,补偿坏境温度对湿度传感器的影响,其中转换电桥工作电压由 差动放大器输出电压通过电压跟随器提供。 三、设计目的 湿 度 ! I 传 感 器

湿度传感器的应用.

湿度传感器工作原理及应用 人类的生存和社会活动与湿度密切相关。随着现代化的实现,很难找出一个与湿度无关的领域来。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同.其性能和技术指标有很大差异,因而价格也相差甚远。对使用者来说,选择湿度传感器时,首先要搞清楚需要什么样的传感器;自己的财力允许选购什么档次的产品,权衡好“需要与可能”的关系,不致于盲目行事。我们从与用户的来往中,觉得有以下几个问题值得注意。 1.选择测量范围 和测量重量、温度一样,选择湿度传感器首先要确定测量范围。除了气象、科研部门外,搞温、湿度测控的一般不需要全湿程(0-100%RH)测量。在当今的信息时代,传感器技术与计算机技术、自动控制拄术紧密结合着。测量的目的在于控制,测量范围与控制范围合称使用范围。当然,对不需要搞测控系统的应用者来说,直接选择通用型湿度仪就可以了。下面列举一些应用领域对湿度传感器使用温度、湿度的不同要求,供使用者参考(见表1)。用户根据需要向传感器生产厂提出测量范围,生产厂优先保证用户在使用范围内传感器的性能稳定一致,求得合理的性能价格比,对双方来讲是一件相得益彰的事情。2、选择测量精度 和测量范围一样,测量精度同是传感器最重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。例如进口的1只廉价的湿度传感器只有几美元,而1只供标定用的全湿程湿度传感器要几百美元,相差近百倍。所以使用者一定要量体裁衣,不宜盲目追求“高、精、尖”。 生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一指定温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。众所周知,相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。 多数情况下,如果没有精确的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。对于要求精确控制恒温、恒湿的局部空间,或者需要随时跟踪记录湿度变化的场合,再选用±3% RH 以上精度的湿度传感器。与此相对应的温度传感器.其测温精度须足±0.3℃以上,起码是±0.5℃的。而精度高于±2%RH的要求恐怕连校准传感器的标准湿度发生器也难以做到,更何况传感器自身了。国家标准物质研究中心湿度室的文章认为:“相对湿度测量仪表,即使在20—25℃下,要达到2%RH的准确度仍是很困难的。” 3、考虑时漂和温漂 几乎所有的传感器都存在时漂和温漂。由于湿度传感器必须和大气中的水汽相接触,所以不能密封。这就决定了它的稳定性和寿命是有限的。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期负责重新标定。请使用者在选择传感器时考虑好日后重新标定的渠道,不要贪图便宜或迷信洋货而忽略了售后服务问属。 温漂在上1节已经提到。选择湿度传感器要考虑应用场合的温度变化范围,看所选传感器在指定温度下能否正常工作,温漂是否超出设计指标。要提醒使用者注意的是:电容式湿度传感器的温度系数α是个变量,它随使用温度、湿度范围而异。这是因为水和高分子聚合物的介电系数随温度的改变是不同步的,而温度系数α又主要取决于水和感湿材料的介电系数,所以电容式湿敏元件的温度系数并非常数。电容式湿度传感器在常温、中湿段的温度系数最小,5-25℃时,中低湿段的温漂可忽略不计。但在高温高湿区或负温高湿区使用时,就一定要考虑温漂的影响,进行必要的补偿或订正。

湿度传感器原理与应用知识

湿度传感器原理与应用知识 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类 湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。有关湿度测量,早在16世纪就有记载。许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。 湿敏元件主要分为二大类:水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。目前应用较多的均属于这类湿敏元件。另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。 1、电解质湿敏元件 利用潮解性盐类受潮后电阻发生变化制成的湿敏元件。最常用的是电解质氯化锂(LiCl)。从1938年顿蒙发明这种元件以来,在较长的使用实践

高分子电容型湿度传感器研制

电子器件 Chinese Journal of Electron Devices 第39卷第3期2016年6月 Vol 39 No.3 June 2016 Research on High Polymer Capacitive Humidity Sensor TANG Chen ,WAN Heng *,WANG Kaikai (School of Electrical and Electronic Engineering ,Shanghai Institute of Technology ,Shanghai 201418,China ) Abstract :With the rapid development of industry ,the temperature sensing and controling are increasingly strin?gent.Temperature sensors are hard to keep up with people ’s needs.This article through the micropore surface struc?ture optimization design of the humidity sensor and the humidity sensitive material improves the humidity sensing properties.The measurement of humidity sensor circuit optimization is improved ,and finally verified by experi?ments measuring the effect of humidity sensor improved superior.Key words :high polymer ;humidity sensitive capacitor ;moisture measurement ;humidity sensor EEACC :7230;7320R doi :10.3969/j.issn.1005-9490.2016.03.014 高分子电容型湿度传感器研制 汤 辰,万 衡*,王凯凯 (上海应用技术学院电气与电子工程学院,上海201418) 摘 要:随着工业的快速发展,对温度检测和控制日益严格,温度传感器已无法跟上人们的需求,通过优化湿度传感器的表 面结构和对感湿材料微孔设计提高了感湿特性,增强感湿材料的感湿特性,并对湿度传感器测量电路进行改进,提高微小电容测量,设计湿度测试系统。通过实验验证了改进后的湿度传感器测量效果更优越。 关键词:高分子;湿敏电容;湿度测量;湿度传感器中图分类号:TP253 文献标识码:A 文章编号:1005-9490(2016)03-0571-05 随着我国的经济快速发展,许多行业诸如电力、电子石化、冶金、医疗、航空航天等对湿度测量的精度要求越来越严格,湿度测量逐渐成为一门重要的研究领域。湿度传感器从简单化向集成化、多参数化、智能化方向迅速发展[1]。高分子湿敏电容作为第三代的湿度传感器迅速发展起来,但目前电容型湿度传感器在实际应用中常存在线性差、湿滞大、精度低、成品率低、性能不稳定等缺点,特别在低湿范围(0.2%RH~10%RH )内电容量几乎上没有变化,易出现失灵现象。鉴于此,本文重点从湿敏电容结构设计和对湿度测量电路改进两个方面提高湿度传感器测量特性。 1 湿敏电容结构设计 1.1 微孔设计 根据Fick 扩散第二法则和Darcy 流动法则,水 分子在微孔中的扩散过程可用式(1)表示: M t /M sat =1-8π2∑m =0∞ 1(2m +1) 2exp é?ù?-π2D (2m +1)2t l (1) 式中:M t 为t 时的吸收量;M sat 为完全浸润时的吸收量;l 为厚度;m 为微孔的数量;D 为扩散系数,其 中D 与微孔的直径和体积的分布相关。 从上述公式可以看出水分子在感湿材料扩散,和感湿材料微孔的数量和大小有直接关系。同时再根据聚酰亚胺的感湿机理,发现当环境湿度改变以后,有效介电常数的变化由式(2)给出: Δεr ≈KPR H εH 2 o (2) 式中:K 为比例系数,R H 为相对湿度,P 为感湿膜的 气孔率。又因电容的变化与εr 有关,也就与相对湿度有关,可以给出当相对湿度改变时,电容发生的相对变化为: ΔC p =ε0Δεr A d =KPR H εH 2 O ε0A d (3) 感湿材料的微孔设计对湿度测量结果有直接 ————————————收稿日期:2015-07-15 修改日期:2015-08-14

基于单片机的湿度传感器设计

基于单片机的湿度传感器设计 一系统方案 1.1系统功能 本文设计的湿度传感器应具备以下功能: (1)能够感受环境中的湿度变化。 (2)能够将环境中的湿度变化转化为电信号。 (3)系统能够对采集到的湿度信号进行分析处理。 (4)能够将环境中的湿度以相对湿度的形式显示出来便于观察记录。 (5)系统反应快、灵敏度高、稳定性好,具有一定的抗干扰能力。 (6)电路简单,操作方便、性价比高、实用性强。 根据系统功能要求,湿度传感器系统图包含以下模块: 信号采集模块信号处理存储模块信号显示模块 图1.1湿度传感器系统框图 1.2系统组成模块 1.2.1信号采集模块设计 本设计为智能式湿度传感器的设计,信号采集模块主要是用于测量环境中湿度变化,并将湿度变化转变成电信号的变化。因此,我们需要一个湿度传感器。和测量范围一样,测量精度同是传感器最重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。 生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一指定温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。众所周知,相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。多数情况下,如果没有精确的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。因此在本次设计中选用DHT11温湿传感器作为本次设计湿度采集模块。 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的

CHR-01阻抗型高分子湿度传感器湿敏电阻产品规格书

CHR-01阻抗型高分子湿度传感器 (湿敏电阻)产品规格书 一.应用范围: 本资料适用于阻抗型高分子湿度传感器,型号CHR-01 二.外型尺寸及内部结构示意图: 1—外壳(ABS) 2—基片(AL2O3) 3—电极4—感湿材料5—引脚 三.电性能参数表1 工作电压1V AC(50Hz ~ 2 K Hz) 检测范围20%~ 90% RH 检测精度±5% 工作温度范围最高使用温度0℃~+85℃120℃ * 特征阻抗范围30 (21 ~ 40.5) KΩ ( 60%RH, 25℃) 响应时间≤12 s (20%~ 90%) 湿度飘移(/年)≤±2% RH 湿滞≤ 1.5%RH * 元件使用在(85 - 120℃)时,需在高温下标定,器件外壳需另制 ** 25℃标准曲线见图2 *** 0-60℃阻抗特性数据见表2及图3

表2:0~60℃湿度阻抗特性数据 单位: KΩ * 所有数据均由LCR数字电桥在1VAC/1KHZ测试所得。 四、应用电路建议 1、如使用模拟电路,建议将湿度信号变为电压信号输出,请向厂家索取。 2、可采用555时基或RC振荡电路,将湿度传感器等效为阻抗值,测量振荡频率输出,振荡频率在1K Hz左右,(在60%RH,25℃)(建议串联电容采用温度系数低,精度在±5% J级有机聚合物电容,例如涤纶或聚丙烯类电容) 3、对于采用单片机电路采集信号,可参考厂家提供的《湿度传感器单片机应用指南》 五.引用标准 GB/T15768-95 电容式湿敏元件及湿度传感器总规范 SJ/T10431-93 湿敏元件用湿度发生器和湿度测试方法 SJ20760-99 高分子湿度传感器总规范 六.注意事项 1.不要对元件使用直流电源,检测时请使用电桥阻抗(LCR)测试设备 2.避免硬物或手指直接接触元件表面,以免划伤或污染敏感膜 3.焊接时温度不能过高(<180℃,2S 膜表面),使用低温烙铁或用镊子保护 4.尽量避免在以下环境中直接使用:盐雾,腐蚀性气体:强酸(硫酸,盐酸), 强碱,有机溶剂(酒精,丙酮等)

湿度传感器原理及其应用

湿度传感器的原理及其应用 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类及感湿特点 湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。 国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点: 1、精度和长期稳定性 湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。 2、湿度传感器的温度系数 湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般 0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。 3、湿度传感器的供电 金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。 4、互换性 目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。 5、湿度校正 校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。 二、对湿度传感器性能作初步判断的几种方法 在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。

CHR-02型高分子湿度传感器.

CHR02型 高分子湿度传感器规格书 HUMIDITY SENSOR SPECIFICATIONS 一.原理 阻抗型高分子湿度传感器(湿敏电阻, 采用功能高分子膜涂敷在带有导电电极陶瓷衬底上,形成阻抗随相对湿度变化成对数变化的敏感部件,导电机理为水分子的存在影响高分子膜内部导电离子的迁移率。 二、应用 适合电子温湿度计,加湿机,除湿机,空调以及其他需湿度测量的场所 三、特性 具有良好的敏感特性及防水性能,并具备优异的长期稳定性。可直接替代国内外各类其他同类产品。 四、型号命名 C HR 02 — XXX X X 公司代号湿敏电阻编号阻值尺寸外壳 233 (23 K Ω L 大 Y 带圆型外壳 313 (31K Ω S 小 F 带方型外壳 653 (65K Ω N 无外壳备注: 1、标称阻值指在温度为25℃,相对湿度为60%RH 下所测量阻抗值 2、尺寸 L:指引脚间距为5.08mm , S :引脚间距为2.54mm

3、外壳通常情况下L 型选大尺寸圆型外壳,S 型选方形小外壳具体尺寸见图 一、图二 4、本规格书所有参数均由LCR 数字电桥在(1K Hz ,1V 下所测阻抗 5、基本参数 温度为25℃,相对湿度为60%RH 型号 20% 30% 40% 50% 60% 70% 80% 90% 产品名称高分子湿敏电阻广州西博臣科技有限公司发行 日期 2005年2月 31日型号 CHR02 系列 批准: 版本1 2005年1月10日 审核: 版本2 编制: 版本3 CHR02-223 2200 660 180 64 23 9.8 4.3 2.2 CHR02-313 2300 680 230 78 31 14 6.7 3.6 CHR02-653 5000 1800 530 180 65 26 12 5.8 单位:K 五、电性能参数表1 工作电压1V AC(50Hz ~ 2 K Hz 检测范围20%~ 90% RH 检测精度±5% 工作温度范围最高使用温度0℃~+85℃120℃ *

基于单片机的土壤温湿度检测计设计设计

目录 1 绪论 (1) 1.1选题背景及意义 .................................... 错误!未定义书签。 1.2设计任务与要求 .................................... 错误!未定义书签。 2 总体方案设计 (3) 3单元模块设计 (5) 3.1各单元模块功能介绍及电路设计 (5) 3.1.1时钟模块简介 (5) 3.1.2 复位模块简介 (6) 3.1.3 报警模块简介 (6) 3.1.4 显示模块简介 (7) 3.2特殊器件的介绍 (8) 3.3.1 土壤湿度传感器简介 (8) 3.3.2 51系列单片机简介 (9) 3.3.3 LCD1602简介 (9) 3.3.4 蜂鸣器简介 (13) 3.3各单元模块的联接 (13) 4软件设计 (14) 4.1软件设计原理 (14) 4.2软件设计所用工具 (15) 4.3系统软件流程框图 (15) 5系统调试 (16) 5.1 硬件调试 (16) 5.2 软件调试 (16) 6系统功能及结论 (17) 6.1系统功能功能实现情况 .............................. 错误!未定义书签。 6.2设计中遇到的问题及解决 (17) 6.3后期展望 .......................................... 错误!未定义书签。7总结与体会 ............................................. 错误!未定义书签。8参考文献 . (20) 附录1:相关设计图 (21) 附录2:元器件清单表 (23) 附录3:相关设计软件 (24)

基于单片机SHT 温湿度传感器检测程序

基于51单片机SHT11温湿度传感器检测程序(含电路图) ? 下面是原理图: 下面是SHT11与MCU连接的典型电路: 下面是源代码: #include #include /******************************************************** 宏定义 ********************************************************/ #define uint unsigned int #define uchar unsigned char #define noACK 0 #define ACK 1 #define STATUS_REG_W 0x06 #define STATUS_REG_R 0x07 #define MEASURE_TEMP 0x03 #define MEASURE_HUMI 0x05 #define RESET 0x1e enum?{TEMP,HUMI}; typedef?union?//定义共用同类型 {

unsigned?int?i; float?f; } value; /******************************************************** ?位定义 ********************************************************/ sbit lcdrs=P2^0; sbit lcdrw=P2^1; sbit lcden=P2^2; sbit SCK = P1^0; sbit DATA = P1^1; /******************************************************** 变量定义 ********************************************************/ uchar table2[]="SHT11 温湿度检测"; uchar table3[]="温度为:℃"; uchar table4[]="湿度为:"; uchar table5[]="."; uchar wendu[6]; uchar shidu[6]; /******************************************************** 1ms延时函数 ********************************************************/ void?delay(int?z) { int?x,y; for(x=z;x>0;x--) for(y=125;y>0;y--); } /******************************************************** 50us延时函数 ********************************************************/ void?delay_50us(uint t) { uint j; for(;t>0;t--) for(j=19;j>0;j--); } /******************************************************** 50ms延时函数 ********************************************************/ void?delay_50ms(uint t) { uint j;

相关主题
文本预览