当前位置:文档之家› 高中数学竞赛几何专题(1)从调和点列到Apollonius圆到极线

高中数学竞赛几何专题(1)从调和点列到Apollonius圆到极线

高中数学竞赛几何专题(1)从调和点列到Apollonius圆到极线
高中数学竞赛几何专题(1)从调和点列到Apollonius圆到极线

从交比到调和点列到Apollonius 圆到极线极点

2010年10月17日结束的2010年全国高中数学联赛平面几何题目为:如图1,锐角三角形 ABC 的外心为 O ,K 是边 BC 上一点(不是边 BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .

求证:若OK ⊥MN ,则ABDC 四点共圆. K N M O

A

B

C

D

图 1

本题颇有难度,参考答案的反证法让有些人“匪夷所思”,其实这是一系列射影几何中常见而深刻结论的自然“结晶”,此类问题在国家队选拔考试等大赛中屡见不鲜。本文拟系统的介绍交比、调和点列、完全四边形、Apollonius 圆、极线等射影几何的重要概念及应用,抽丝剥茧、溯本求源,揭示此类问题的来龙去脉,并在文中给出上题的一种简洁明了的直接证明。

知识介绍

定义1 线束和点列的交比:如图2,共点于O 的四条直线被任意直线所截的有向线段比/AC BC AD BD

称为线束OA 、OC 、OB 、OD 或点列ACBD 的交比。[1] 定理1 线束的交比与所截直线无关。 B

C O

A D

图 2

证明:本文用[ABC]表示ABC 面积,则

[][]//[][]AC BC AOC BOC AOD BOD AD BD

sin sin /sin sin sin sin /sin sin CO AOC CO COB DO AOD DO BOD

AOC COB AOD BOD ∠∠=

∠∠∠∠=∠∠ 从而可知线束交比与所截直线无关。

定义2 调和线束与调和点列:交比为-1,即AC BC AD BD

=- 的线束称为调和线束,点列称为调和点列。显然调和线束与调和点列是等价的,即调和线束被任意直线截得的四点均为调和点列,反之,调和点列对任意一点的线束为调和线束。

定理2 调和点列常见形式:(O 为CD 中点)

(1)、211D C

A A

B A =+

(2)、2*

O C O B O A = (3)、 AC*AD=AB*AO

(4)、 AB*OD=AC*BD

证明:由基本关系式变形即得,从略。

定理3 一直线被调和线束中的三条平分当且仅当它与第四边平行(由定义即得,证略) 定义3 完全四边形:如图3,凸四边形ABCD 各边延长交成的图形称为完全四边形ABCDEF ,AC 、BD 、EF 称为其对角线(一般的四条直线即交成完全四边形)[2]。 定理4 完全四边形对角线互相调和分割。即AGCH 、BGDI 、EHFI 分别构成调和点列。 G

I H C A E

D

B

F

图 3

分析:只需证EHFI 为调和点列,其余可类似证得,也可由线束的交比不变性得到。 证法一:面积法[][][][]

HE IF AEC BDF HF IE AFC BDE ?= [][][][][][][][]AEC ACD BDF BEF ACD AFC BEF BDE =

1EC AD DC AF CD AF EC AD =??=,即HE IE HF IF

=。 证法二:由Ceva 定理1=??BE AB DA FD HF EH ,由Menelaus 定理得到1=??BE

AB DA FD IF EI ,故 HE IE HF IF

=,即EHFI 为调和点列。

定理5 完全四边形ABCDEF 中,四个三角形AED 、ABF 、EBC 、FDC 的外接圆共点,称为完全四边形的密克(Miquel )点。

证明:设出两圆交点,证它在其余圆上即可。

O C D

A B

P

图 4

定义4 阿波罗尼斯(Apollonius )圆:到两定点A 、B 距离之比为定值k (01k k >≠且)的点的轨迹为圆,称为Apollonius 圆,为古希腊数学家Apollonius 最先提出并解决[2](注:当k=1时轨迹为AB 中垂线也可看成半径为无穷大的圆)。

证明:如图4由AP=kPB ,则在AB 直线上有两点C 、D 满足,AC

AD

AP

BC BD BP ==故PC 、

PD 分别为∠APB 的内外角平分线,则CP ⊥DP ,即P 点的轨迹为以CD 为直径的圆O(O 为CD 中点)。(注:解析法亦可证得)

显然图4中ACBD 为调和点列。

定理6 在图4中,当且仅当PB ⊥AB 时,AP 为圆O 的切线。

证明:当PB ⊥AB 时∠APC=∠BPC=∠CDP 故AP 为圆O 的切线,反之亦然。

定理7 Apollonius 圆与调和点列的互推

如下三个条件由其中两个可推得第三个:

1.PC (或PD )为∠APB 内(外)角平分线

2. CP ⊥PD

3.ACBD 构成调和点列(证略)

定义5 反演:设A 为○O (r )平面上点,B 在射线OA 上,且满足OA*OB=r*r ,则称A 、B 以○O 为基圆互为反演点。

定理8 图4中,以Apollonius 圆为基圆,AB 互为反演点。(由定理2(2)即得。)

定义6 极线与极点:设A 、 B 关于○O (r )互为反演点,过B 做OA 的垂线l 称为A 点对圆O 的极线;A 点称为l 的极点。[3]

定理9 当A 点在○O 外时,A 的极线为A 的切点弦。(由定理6即得。)

B

Q

C

P O

A

D

图 5 定理10 若A 的极线为l ,过A 的圆的割线ACD 交l 于B 点,则ACBD 为调和点列。 证明:如图5,设A 的切点弦为 PQ ,则

[][]BC QPC CP CQ AP AC AC BD QPD DP DQ AD AQ AD

==?=?=即ACBD 为调和点列。 定理11 配极定理:如图6,若A 点的极线通过另一点D ,则D 点的极线也通过A 。一般的称A 、D 互为共轭点。

证法一:几何法,作AF ⊥OD 于F ,则DFGA 共圆,得OF*OD= OG*OA =2

OI ,由定义6知AF 即为D 的极线。

G

F

J

I H

C

B O

A D

图 6 证法二:解析法,设圆O 为单位圆,A (11,x y ), D (22,x y ),A 的极线方程为111xx yy +=,由D 在其上,得21211x x y y +=,则A 在221xx yy +=上,即A 在D 的极线上。

定理12 在图6中,若A 、D 共轭,则

2222

2222AD A +D O D G +DG (G +BG )+(DG BG )

=A +D O A A A ===-的幂的幂(对圆)

证明:的幂的幂(对圆)

定义7 调和四边形:对边积相等的圆内接四边形称为调和四边形。(因圆上任意一点对此

四点的线束为调和线束,故以此命名)

定理13 图5中PDQC 为调和四边形。

证明:由定理9的证明过程即得。

例题选讲

例1 如图7,过圆O 外一点P 作其切线PA 、PB ,OP 与圆和AB 分别交于I 、M ,DE 为过M 的任意弦。求证:I 为△PDE 内心。(2001年中国西部数学奥林匹克)

分析:其本质显然为Apollonius 圆。

证明:由定理6知圆O 为P 、M 的Apollonius 圆,则DI 、EI 分别为△PDE 的内角平分线,即I 为△PDE 内心。 I

D M

A

B

O

P

E

图 7

例2 如图8,△ABC 中,AD ⊥BC ,H 为AD 上任一点,则∠ADF=∠ADE (1994年加拿大数学奥林匹克试题) L

K E

F

D A

B

C H

图 8

证明:对完全四边形AFHEBC ,由定理4知FLEK 为调和点列。又AD ⊥BC ,由定理7得∠ADF=∠ADE 。 J G

I H C A

E D

B

F

图 9

例3 如图9,完全四边形ABCDEF 中,GJ ⊥EF 与J ,则∠BJA=∠DJC (2002年中国国家集训队选拔考试题)

证明:由定理4及定理7有∠BJG=∠DJG 且∠AJG=∠CJG ,则∠BJA=∠DJC 。 2

1

P D Y Q

D'I X E

F A

B C

图 10

例4 已知:如图10,△ABC 内角平分线BE 、CF 交于I ,过I 做IQ ⊥EF 交BC 于P ,且IP=2IQ 。求证:∠BAC=60°

证明:做AX ⊥EF 交BC 于Y ,由定理4知AD ’ID 为调和点列,故''IQ D I DI PI AX D A DA YA

===,又IP=2IQ ,则AX=XY ,即EF 为AY 中垂线,由正弦定理12CF FY FA CF sin FYC sin sin sin FAC

===∠∠∠∠,则AFYC 共圆,同理AEYB 共圆,故∠BYF=∠BAC=∠CYE=∠EYF ,故∠BAC=60°。

E F

G C

A

B O

P D

图 9

例5 如图11,P 为圆O 外一点,PA 、PB 为圆O 的两条切线。PCD 为任意一条割线,CF 平行PA 且交AB 于E 。求证:CE=EF (2006国家集训队培训题)

证明:由定理10及定理3即得。

例6 如图12,PAB 、PCD 为圆O 割线,AD 交BC 于E ,AC 交BD 于F ,则EF 为P 的极线。(1997年CMO 试题等价表述)

证法一:作AEB 外接圆交PE 于M ,则PE*PM=PA*PB=PC*PD ,故CDME 共圆(其实P 为三圆根心且M 为PAECBD 密克点),从而∠BMD=∠BAE+∠BCD=∠BOD , BOMD 共圆。∠OMT=∠OMB+∠BMT=∠ODB+∠BAE=90°故M 为ST 中点,PS*PT= PA*PB=PE*PM ,由定理2(3)知E 在P 极线上,同理F 亦然,故EF 为P 的极线。

S

T

M

E

C

A O

B D

图 10 W V

U

T S

E C A

O P B D

图 11

证法二:如图13,设PS 、PT 为圆O 切线。在△ABT 中,可以得到**AU BV TW UB VT WA = sin sin sin sin sin sin AS AST BD BDA TC TCB BS BST DT TDA AC ACB ∠∠∠??=∠∠∠1AS BD TC PS PB PC BS AC DT

PB PC PT ??=??= 由塞瓦定理逆定理知ST 、AD 、BC 三线共点于E ,同理F 亦然,故EF 为P 的极线。

至此,点P 在圆O 外时,我们得到了P 点极线的四种常见的等价定义:

1、过P 反演点做的OP 的垂线。

2、过P 任意作割线PAB ,AB 上与PAB 构成调和点列的点的轨迹所在的直线。

3、P 对圆O 的切点弦。

4、过P 任意做两条割线PAB 、PCD ,AD 、BC 交点与AC 、BD 交点的连线。(注:切线为

割线特殊情形,故 3、4是统一的)

例7 △ABC 内切圆I 分别切BC 、AB 于D 、F ,AD 、CF 分别交I 于G 、H 。求证:3DF GH FG DH

?=?(2010年东南数学奥林匹克)

H

G

C B I

F D E

图 12

证明:如图14,由定理13知GFDE 为调和四边形,据托勒密定理有GD*EF=2FG*DE , 同理HF*DE=2DH*EF 相乘得 GD*FH= 4DH*FG 又由托勒密定理GD*FH= DH*FG+FD*GH ,代入即得 3DF GH FG DH

?=? F

G

J

K E C A

B H

D I

图 13

例8 已知:如图15,△ABC 内切圆切BC 于D ,AD 交圆于E ,作CF=CD ,CF 交BE 于G 。求证:GF=FC (2008年国家队选拔)

证明:设另两切点为H 、I ,HI 交BD 于J ,连JE 。由定理10知AEKD 为调和点列,由定理11知AD 的极点在HI 上,又AD 极点在BD 上,故J 为AD 极点;则JE 为切线,BDCJ 为调和点列,由CF=CD 且JD=JE 知CF//JE ,由定理3知GF=FC 。

(注:例8中BDCJ 为一组常见调和点列)

例9 如图16,圆内接完全四边形ABCDEF 中AC 交BD 于G ,则EFGO 构成垂心组(即任意一点是其余三点的垂心)。

证明:据例6知EG ,FG 共轭,由定理12

2222(EG FG E G G E F EO FO -=++

--的幂的幂)-(F的幂的幂)=的幂的幂=

则OG ⊥EF ,其余垂直同理可证。

P G

F

E O

A

B D

C

图 14

注:△EFG 称为极线三角形。本题结论优美深刻,初版于1929年的[4]已有介绍,它涉及到调和点列、完全四边形、密克点、极线、Apollonius 圆、垂心组等几何中的核心内容。本文开头提到的2010年联赛题为本题的逆命题,熟悉上述内容的情况下,采用参考答案的反证法在情理之中:如图1,设D 不在圆O 上,令AD 交圆O 于E ,CE 交AB 于P ,BE 交AC 于Q 。由例9得PQ//MN ;由定理4得MN 、AD 调和分割BC ,同理PQ 亦然,则PQ//MN//BC ,从而K 为BC 中点,矛盾!故ABCD 共圆。

其实本题也可直接证明,如下:如图17,由例3得∠1=∠2;又K 不是BC 中点,类似

例4证明可得OBJC 共圆;∠MJB=∠NJC=12

BOC =∠BAC ,由定理5得J 为ABDCMN 密克点,则∠BDM=∠BJM=∠BAN 故ABDC 共圆。 21

J K

N M O

A

B C

D

图 15

以例9为背景的赛题层出不穷,再举几例,以飨读者。

例10 △ADE 中,过AD 的圆O 与AE 、DE 分别交于B 、C ,BD 交AC 于G ,直线OG 与△ADE 外接圆交于P 。求证:△PBD 、△PAC 共内心(2004年泰国数学奥林匹克) 分析:本题显然为密克点、Apollonius 圆、极线及例9等深刻结论的简单组合。

证明:如图16,由定理5及例9知PG 互为反演点,据定理8知圆O 为PG 的Apollonius 圆,由例1知△PBD 与△PAC 共内心。

例11 △ABC 中,D 在边BC 上且使得∠DAC=∠ABC ,圆O 通过BD 且分别交AB 、AD 于E 、F ,DE 交BF 于G , M 为AG 中点,求证:CM ⊥AO (2009年国家队选拔)

K

L J M

G

C A

O

B D E F

图 16

证明:如图18,设EF 交BC 于J 。由定理3得AKGL 为调和点列,由定理2(4)有LK*GM=LG*KA ,又∠CAD=ABD=∠JFD 故EJ//CA ,则LJ LK LG JC KA GM

==即JG//CM 而由例9有JG ⊥OA ,故CM ⊥AO 。

例9中OG ⊥EF 对圆外切四边形亦然。

例12 如图19,设圆O 的外切四边形A ’B ’ C ’D ’对边交于 E ’F ’,A ’C ’交B ’D ’交于G ’,则OG ’⊥E ’F ’。(2009年土耳其国家队选拔) B'

D'

A'

E'C'F'G'F E O

A

B

D C

图 17

证明:设四边切点为ABCD ,AC 交BD 于G ,AB 交CD 于E ,AD 交BC 于F ,由例6知BD 、AC 极点E ’、F ’在EF 上,则G ’与G 重合,由例9,即得OG ’⊥E ’F ’。

L H

M B D E

C A

O F

G

I

图 18

例13 如图20,ABCD 为圆O 的外切四边形,OE ⊥AC 于E ,则∠BEC=∠DEC(2006年协作题夏令营测试题)

分析:由定理7知垂直证等角必为调和点列。

证明:如图20,做出辅助线,由例12知FI 、GH 、BD 共点于M ,且为AC 的极点,从而

OE 也过M ,且BLDM 构成调和点列,由定理7得∠BEC=∠DEC 。

最后我们看一道伊朗题及其推广

例14 △ABC 内切圆I 切BC 于D ,AD 交I 于K 。BK 、CK 交I 于E 、F ,求证:BF 、AD 、CE 三线共点。(2002年伊朗国家队选拔考试题)

分析:本题一般思路为Ceva 定理计算,计算量较大。而且有人将其推广为对AD 上任意一点K ,都有本结论成立(如图21)。推广题难度极大,网络上有人用软件大量计算获证,也有高手通过复杂的计算得证[5]。其实从调和点列、极线角度看本题结论显然,对推广题证明如下:

F E J C B A

I

M

D N

K

图 19 证明:如图21,设另两个切点MN 交BC 于J ,由例8得BDCJ 为调和点列,故对AD 上K 点,由定理1知EF 必过J 点;由定理4 对完全四边形BEFCJK 必有 CE 、BF 、AK 共点。

练习:

1 H 是锐角△ABC 的垂心,以BC 为直径作圆,自A 作切线AS 、AT 。求证:S 、H 、T 三点共线。(1996CMO 试题)

提示:本题为例6特例

2 求证在完全四边形ABCDEF 中,过AC 、BD 交点做AB 平行线被CD 、EF 平分。 提示:由定理4及定理3即得

3 △ABC 中,AD ⊥BC ,H 为AD 上一点,BH 、CH 分别交对边于E 、F ,EF 交AD 于K ,任意做过K 的直线与CF 、CE 、CD 交于M 、N 、Q ,都有∠MDF=∠NDE 。(2003年保加利亚数学奥林匹克)

提示:由例2及定理4类比例3即得。

4 设以O 为圆心的圆经过△ABC 的两个顶点A 、C ,且与边AB 、BC 分别交于两个不同的点K 和N ,又△ABC 和KBN 的外接圆交于点B 及另一点M ,求证:∠OMB 为直角。(第22届IMO )

提示:由定理3及例9即得

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 % 棱柱的分类 棱柱的性质 , ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成 ` 的角分别是α、β、γ,那么: cos2α + cos2β + co s2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 图1-1 棱柱 图1-2 长方体 图1-1 棱柱

棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 【 V 棱柱 = S 底 ·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2-2 圆柱的性质 ⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 - 2-4 圆柱的面积和体积公式 S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 3-2 正棱锥的结构特征 ⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。 3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 图1-3 圆柱 )

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学立体几何专题

高中课程复习专题 ——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。 围成多面体的各个 多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭 几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1棱柱的结构特征 1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻 两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2棱柱的分类 瓦他棱柱… ②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底向 A-'K'tf'AlkJtt 囱向为和序 ------------------ ? ------------- - ----------------- ■ ------------------ A 长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 1.4长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么: 2 2 2 cos a + cos 3 + COS 丫= 1 sin 2 a + sin 3 + siny =2 ⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为 a 3 Y 则: .咬llLI 昭|1.呂出 *正棱柱 够一 ;I ;从 图1-2长方体 2 COs a 2 2 + cos 3 + COSY = 2 sin 2 a 2 2 + sin 3 + sinY =1 E' A 图图1棱柱棱柱

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学竞赛试题附详细答案

高中数学竞赛试题 一选择题(每题5分,满分60分) 1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2 +bx+c=0有一个正根和一个 负根的( ) (A )必要而不充分条件 (B )充要条件 (C )充分而不必要条件 (D )既不充分也不必要条件 2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。 (A ) 100 5 .03?克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示 大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。 (A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元 4. 已知函数 >0, 则 的值 A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项 6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数 列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n (B) 13-+n n (C) 13+-n n (D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π = x 处取得最小 值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果 A A tan 1tan 1+-= 4+5,那么cot (A +4 π )的值等于 ( ) A -4-5 B 4+5 C - 5 41+ D 5 41+ 9. 已知︱︱=1,︱︱=3,?=0,点C 在∠AOB 内,且∠AOC =30°,设 =m +n (m 、n ∈R ),则 n m 等于

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动获得各重点大学的保送资格。各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限! 课程招生简章:https://www.doczj.com/doc/df17513351.html,/webhtml/project/liansaigz.shtml 选课中心地址: https://www.doczj.com/doc/df17513351.html,/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_ 第二章组合专题 一、重要的概念与定理 1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为. 2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数), 记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度 为偶数的顶点称为偶顶点. 3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为. 4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即 并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作 . 2部图又叫做偶图,记为. 5、完全部图:在一个部图中, ,若对任意 均有边连接和,则称图为完全部图,记为. 6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹. 欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图. 哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图. 7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一

高中数学竞赛试题及答案

浙江省高中数学竞赛试题及答案 一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分) 1.集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ?=?,则实数a 取值范围为( ) A. 3a ≥ B. 1a ≤-. C. 1a ≤-或 3a ≥ D. 13a -≤≤ 2.若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 3.已知等比数列{a n }:,31=a 且第一项至第八项的几何平均数为9,则第三项是( ) A. D. 4. 已知复数(,,z x yi x y R i =+∈为虚数单位),且2 8z i =,则z =( ) A.22z i =+ B. 22z i =-- C. 22,z i =-+或22z i =- D. 22,z i =+或22z i =-- 5. 已知直线AB 与抛物线2 4y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上一个动点,若0C 满足 00min{}C A C B CA CB ?=?,则下列一定成立的是( ) 。 A. 0C M AB ⊥ B. 0,C M l ⊥其中l 是抛物线过0C 的切线 C. 00C A C B ⊥ D. 01 2 C M AB = 6. 某程序框图如下,当E =0.96时,则输出的K=( ) A. 20 B. 22 C. 24 D. 25 , 7. 若三位数abc 被7整除,且,,a b c 成公差非零的等差数列,则这样的整数共有( )个。 A.4 B. 6 C. 7 D 8 8. 已知一个立体图形的三视图如下,则该立体的体积为( )。 A.

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

相关主题
文本预览
相关文档 最新文档