当前位置:文档之家› 高速数据采集系统设计

高速数据采集系统设计

高速数据采集系统设计
高速数据采集系统设计

目录

1高速数据采集的当前背景 (1)

1.1研究背景及其目的意义 (1)

1.2国内外研究现状 (2)

1.3课题及主要任务 (3)

2 高速数据采集的相关基础知识 (4)

2.1数据采集系统的基本组成 (4)

2.2模数转换的过程 (5)

2.3数据采样技术 (8)

2.3.1并行采样技术 (8)

2.3.2 时钟频率合成技术 (9)

2.4 高速数据采集 (10)

2.4.1 分时存储 (10)

2.4.2 数据降速存储 (11)

3高速数据采集系统的方案 (12)

3.1 单片机控制的高速数据采集系统 (12)

3.2 多路分时采集合成高速数据采集系统 (14)

3.3 基于MCU+FPGA组合的高速数据采集系统 (17)

3.4基于DSP和ADS8364的高速数据采集处理系统 (18)

4 高速数据采集系统的方案分析比较 (23)

5 心得体会 (25)

6 参考文献 (27)

1高速数据采集的当前背景

随着工业自动化的不断提高, 计算机业的发展也日益迅速,作为其中重要组成部分的单片机,以其独特的结构和优点,越来越深受各个领域的关注和重视,应用十分广泛,发展极快。

单片机也就是把组成计算机的五大部件集成在一块芯片上,即在一块芯片上集成了:CPU、振荡器电路、ROM和RAM存储器、定时/计数器和并行/串行I/O接口等,一块芯片就构成一台具有一定功能的计算机,称为单片微型计算机。

由于单片机就是一台计算机,因此它具有很多独特优点,即体积小、重量轻、单一电源、低功耗。功能强、价格廉,运算速度快、抗干扰能力强、可靠性高等。所以单片机特别适用于实时测控系统,应用领域越来越广,已成为传统工业技术改造,各类产品更新换代,实现自动化、智能化的理想机型。

在国内,尽管开发与应用单片微机的时间不长,但在MCS-48系列单片微机的基础上,很快就已开发和应用功能更强、更完善的8位高档MCS-51系列单片微机,且成效显著。目前已广泛而成功地应用于自动测控、智能仪表、各类设备、军事装置以及家用电器、社会用品等各个方面,大大促进了我国四个现代化的进程[1]。

1.1研究背景及其目的意义

近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。

数据采集系统起始于20世纪50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非成熟人员进行操作,并且测试任务是由测试设备高速自动控制完成的。由于该种数据采集测试系统具有高速性和一定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。大概在60年代后期,国内外就有成套的数据采集设备和系统多属于专用的系统。

20世纪70年代后期,随着微型机的发展,诞生了采集器、仪表同计算机溶为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因而获得了惊人的发展。从70年代起,数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,一类是工业现场数据采集系统。

20世纪80年代随着计算机的普及应用,数据采集系统得到了很大的发展,开始出现了通用的数据采集与自动测试系统。该阶段的数据采集系统主要有两类,一类以仪表仪器

和采集器、通用接口总线和计算机组成。这类系统主要应用于实验室,在工业生产现场也有一定的应用。第二类以数据采集卡、标准总线和计算机构成,这一类在工业现场应用较多。20世纪80年代后期,数据采集发生了很大的变化,工业计算机、单片机和大规模集成电路的组合,用软件管理,是系统的成本减低,体积变小,功能成倍增加,数据处理能力大大加强。

20世纪90年代至今,在国际上技术先进的国家,数据采集系统已成功的运用到军事、航空电子设备及宇航技术、工业等领域。由于集成电路制造技术的不断提高,出现了高性能、高可靠的单片机数据采集系统(DAS)。数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。该阶段的数据采集系统采用模块式结构,根据不同的应用要求,通过简单的增加和更改模块,并结合系统编程,就可扩展或修改系统,迅速组成一个新的系统。

尽管现在以微机为核心的可编程数据采集与处理采集技术的发展方向得到了迅速的发展,而且组成一个数据采集系统只需要一块数据采集卡,把它插在微机的扩展槽内并辅以应用软件,就能实现数据采集功能,但这并不会对基于单片机为核心的数据采集系统产生影响。相较于数据采集板卡成本和功能的限制,单片机具多功能、高效率、高性能、低电压、低功耗、低价格等优点,而双单片机又具有精度较高、转换速度快、能够对多点同时进行采集,因此能够开发出能满足实际应用要求的、电路结构简单的、可靠性高的数据采集系统。这就使得以单片机为核心的数据采集系统在许多领域得到了广泛的应用。

1.2国内外研究现状

数据采集系统是通过采集传感器输出的模拟信号并转换成数字信号,并进行分析、处理、传输、显示、存储和显示。它起始于20世纪中期,在过去的几十年里,随着信息领域各种技术的发展,在数据采集方面的技术也取得了长足的进步,采集数据的信息化是目前社会的发展主流方向。各种领域都用到了数据采集,在石油勘探、科学实验、飞机飞行、地震数据采集领域已经得到应用。

我国的数字地震观测系统主要采用TDE-124C型TDE-224C型地震数据采集系统。近年来,又成功研制了动态范围更大、线性度更高、兼容性更强、低功耗可靠性的TDE-324C 型地震数据采集系统。该数据采集对拾震计输出的电信号模拟放大后送至A/D数字化,A/D 采用同时采样,采样数据经DSP数字滤波处理后,变成数字地震信号。该数据采集系统具备24位A/D转化位数,采样率有50HZ、100HZ、200HZ。

由美国PASCO公司生产的“科学工作室”是将数据采集应用于物理实验的崭新系统,它由3部分组成:(1)传感器:利用先进的传感技术可实时采集技术可实时采集物理实验

中各物理量的数据;(2)计算机接口:将来自传感器的数据信号输入计算机,采样速率最高为25万次/S;(3)软件:中文及英文的应用软件。

受需求牵引,新一代机载数据采集系统为满足飞行实验应用也在快速地发展。如爱尔兰ACRA公司2000年研发推出的新一代KAM500机载数据采集系统到了2006年。本系统采用16位(A/D)模拟数字变换,总采样率达500K/S,同步时间为+/-250ns,可以利用方式组成高达1000通道的大容量的分布式采集系统。

1.3课题及主要任务

数据采集是数字信号处理的前提,研究和设计数据采集系统就显得尤为重要。本课程设计题要求学生在广泛查阅资料的基础上,对高速数据采集系统技术进行分类和比较,并作如下设计:

1)搜索出若干种高速数据采集系统方案并对它们进行分析和比较。

2)设计出一款高速数据采集系统。

3)对所设计的高速数据采集系统的性能指标进行分析。

4)给出系统(或部分)的仿真。

2 高速数据采集的相关基础知识

数据采集是指将模拟量(模拟信号)采集,转换成数字量(数字信号)后,再由计算机进行存储、处理、显示或输出过程。数据采集系统——DAs(Data Acquisition System)是模拟量与数字量之间的转换接口。它在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。而高速数据采集系统更是航天、雷达、制导、测控、动态检测等高技术领域的关键技术。高速数据采集系统中的采样频率一般在几十MHz到几百MHz。

2.1数据采集系统的基本组成

一个典型的数据采集系统由传感器、信号调理通道、采样保持器、A/D转换器、数据缓存电路、微处理器及外设构成。如图1所示。

图1 数据采集系统的组成

(1)传感器

传感器把待测的非电物理量转变成数据采集系统能够检测的电信号。理想的传感器能够将各种被测量转换为高输出电平的电量,提供零输出阻抗,具有良好的线性。

(2)信号调理通道

信号调理通道主要完成了模拟信号的放大和滤波等功能。理想的传感器能够将被测量转换成高输出电平的电量,但是实际情况下,数据采集时,来自传感器的模拟信号一般都是比较弱的低电平信号,因此需要对信号进行放大。而A/D转换器的分辨率以满量程电压为依据,因此为了充分利用A/D转换器的分辨率,需要把模拟输入信号放大到与其满量程电压相应的电平。而传感器和电路中器件不可避免的会产生噪声,周围各种各样的发射源也会使信号混合上噪声,因此需要利用滤波器衰减噪声以提高输入信号的信噪比。

(3)采样保持器

A/D转换器完成一次转换需要一定的时间,而在转换期间希望A/D转换器输入端的模拟信号电压保持不变,才能保证正确的转换。当输入信号的频率较高时,就会产生较大的误差,为了防止这种误差的产生,必须在A/D转换器开始转换之前将信号的电平保持,转

换之后又能跟踪输入信号的变化,保证较高的转换精度。为此,需要利用采样保持器来实现。

(4)A/D转换器

模拟信号转换成数字信号之后,才能利用微处理系统对其处理。因此A/D转换器是整个数据采集系统的核心,也是影响数据采集系统采样速率和精度的主要因素之一。对于高速模数转换器主要有逐次逼近型、并行比较型(闪烁型)等分级型(半闪烁型)等几种电路结构。高速的模数转换器内部一般都集成了采样保持器和多路数据分配器,以保证采样的精度和降低后续存储器的要求。

(5)数据缓存电路

对于高速数据采集系统,采集量化后的数据速率非常高而且数量大,微处理系统无法对数据进行实时处理,因此需要存储器对数据进行缓存。缓存区是以高速方式接收从A/D 转换数字化的数据,而又以相对低速的方式将数据送给计算机。用它的“快进慢出”来解决高速A/D转换与低速计算机数据传输之间的矛盾。

(6)微处理器和外设

微处理器负责数据采集系统的管理和控制工作,对采集到的数据进行运算和处理,然后送到外部设备。

2.2模数转换的过程

模拟量转换为数字量,通常分成三个步骤进行。这就是采样保持、量化与编码。连续的模拟信号x(t)按一定时间间隔采样-保持后得到台阶信号,在经过量化变为量化信号,最后编码转换为数字信号X(n)。在现代ADC器件中,这三个步骤一般合起来在一个器件中完成。转换过程可以用图2表示:

图2 模数转换过程

(1)采样保持

所谓采样就是不断地以固定的时间间隔采集模拟信号当时的瞬时值。由抽样定理可知,用数字方式处理模拟信号时,并不是用在整个作用期间的无穷多个点的值,而是只用取样点上的值就足够了。因此,在前后两次取样的空挡时间间隔内,可将取样所得模拟信号值

暂时存放在存储介质上,通常是电容器上,以便将它量化和编码。其过程如图3所示。

图3采样保持过程

模拟输入信号X(t)经取样一保持后的波形。图3中清楚的表明了取样保持的物理意义。て是取样过程的持续时间,称为孔径时间。在孔径时间内,以=X(t),在保持时间内保持不变,这段时间就用来作量化和编码。

2)量化与编码

量化就是把一个连续函数的无限个数值的集合映射为一个离散函数的有限个数值的集合。模拟信号X(t)经理想抽样后变成离散时间序列X(nTs),而X(nTs)的值是原模拟信号在各采样点的精确值,其取值是连续分布的,但是A/D变换中表示X(nTs)用的是有限字长的二进制数,所谓量化就是指用一些不连续的数来逼近精确采样值的过程。因此量化过程中必然存在误差,这种误差称为量化误差。

在数学上,量化过程可以表示为

,k=1,2,……L

其中,x为待量化输入数值,称为量化值(或量化电平),称为分层电平(或判决阀值),L称为量化级数(或分层数),称为量化间隔(或量化台阶)。

对于均匀量化,量化间隔为常量,即=q(k=1,2,...L)。则有

其中,为满量程电压(Full Scale Range),n为量化后数字信号的二进制位数。编码

就是用一定位数的二进制码(称为一个码字)来表示某一量化值。

2.3数据采样技术

按照奈奎斯特采样定理,任意一个最高频率为fm的模拟信号,只有满足条件采样周期T<1/2fm,才能够用间隔时间为T的一系列离散取样值来代替它,而不会丢失该信号的任何信息,理论上可以精确地重建原信号。需要指出的是,如果用2倍奈奎斯特频率采样2fm,则必须使用截止频率为fm的理想低通滤波器才能恢复原来的模拟信号,如果采样频率大于2倍奈氏频率,那么就可以放宽对低通滤波器截至频率的要求。

数字化采样方式主要有实时采样和等效采样两种,而等效采样又分为顺序采样和随机采样两种。

实时取样的原则是从数字化一开始,就按照一个固定的次序来采集的,一直将整个波形采样完毕后存入波形存储器中。实时采样的优点在于信号波形一到就采样,因此适合任何形式的信号波形,周期的或者非周期的,单次的或者是连续信号。又由于所有的采样点是以信号出现的时间为顺序的,因此利于波形的显示处理。

顺序取样是指在被测信号的周期内取样一次,取样信号每次延迟△t时间,如此下去,就是说第N次采样发生在第一次采样后的(△t一l)N后,取样后的离散数字信号构成的包络反映原信号的波形,但包络的周期比原信号的周期长的多,相当于把被测信号在时间轴拉长了。顺序采样不能采样非周期信号。

随机取样不是在信号的一个周期内完成全部取样过程,而是取样点分别取自若干个信号波形的不同位置,经过多个采集周期的样品积累,最终恢复出被测波形。但是随机取样也存在着弊端,不能观测非周期信号。

2.3.1并行采样技术

系统的采样率为高速数据采集系统中最关心的指标,其实现依赖于核心芯片A/D的工作频率,对于高采样率数据采集系统的实现,利用单片高速A/D转换芯片是最为常见的方式,其实现也较为简单,但是由于高速A/D的价格昂贵,而且由于高采样率的A/D的分辨率往往不高,因此对于高采样率和高分辨率数据采集系统的实现,基于并行采样利用多片低采样率A/D实现高采样率是可以降低高速数据采集系统的成本,对高速数据采集系统的实现有着重要的意义。

利用多片低采样率的A/D转换器并行工作实现高采样率有两种方式。一种是采用延迟线的方式,另一种是采用时间并行交替采样的方式。所谓延迟线的方式,是指将输入信号直接送入系统的一个通道,同时,输入信号经延迟线后依次送入另外的N一1通道,信号进入每个通道的延迟时间为A/D转换器采样周期的T的1/N,各通道A/D的采样时钟相同,将得到的数据进行重组,这样就提高了系统的采样率。但是对输入信号做精确延时比较困难,特别在通道非常多的情况下,因此,目前主要采用并行时间交替采样的方式。

并行时间交替采样,是指将输入信号同时送到多个通道,A/D转换器按照各自的采样时钟工作,整个系统的采样率为多片A/D采样率的总和。N片A/D并行时间交替采样构成的数据采集系统,输入信号同时到达每片A/D的输入端。每片A/D的采样率为fs,采样周期为T=1/sf,每片A/D采样时间间隔为采样时钟周期T的1/N。整个系统的采样率为N片A/D的采样率的总和,等于Nfs,实现了多片低速A/D并行工作实现高采样率。

图4 多通道并行时间交替采样系统结构图

2.3.2 时钟频率合成技术

对于高速数据采集系统,采样时钟的相位抖动以及分辨率是非常重要的指标。采样时钟的相位抖动将会造成采样的非均匀,而时钟分辨率过低将无法满足系统的要求。因此,如何得到高质量的采样时钟是高速数据采集系统非常关心的问题。

目前高性能的频率信号均通过频率合成技术来实现。频率合成的实现方法主要三种方式:直接模拟频率合成法、间接频率合成和直接数字频率合成。直接模拟频率合成法是一种早期的频率合成方式,是指利用混频器、倍频器和分频器等对一个或几个频率进行算术运算产生所需频率。直接模拟频率合成法的优点是频率转换速度快,相位噪声低,缺点是

需要很多中心频率不同的窄带滤波器来滤除杂波,结构复杂,杂散多。间接频率合成技术又称锁相式频率合成,它是利用锁相技术实现频率的加、减、乘、除。其优点是由于锁相环路相当于一窄带跟踪滤波器。因此能很好地选择所需频率的信号,抑制杂散分量,避免了大量使用滤波器,十分有利于集成化和小型化。直接数字合成技术具有相位变换连续、频率转换速度快、频率分辨率高、相位噪声低、频率稳定度高、集成度高、易于控制等多种优点,但是DDS(直接数字式频率合成器)自身特点所造成的杂散以及频率较低成为限制DDS应用的主要因素。

目前,DDS+PLL的技术受到广泛的重视,PLL技术具有高频率、宽频、频谱质量好等优点,但其频率转换速度低。DDS技术则具有高速频率转换能力、高度的频率和相位分辨能力,但目前尚不能做到宽带,频谱纯度也不如PLL。混合式频率合成技术利用这两种技术各自的优点,将两者结合起来,其基本思想是利用DDS的高分辨率来解决PLL中频率分辨率和频率转换时间的矛盾。

2.4 高速数据采集

2.4.1 分时存储

分时存储技术利用一个高速锁存器将采集的高速数据锁存,而后利用多个相对慢速的存储器对数据进行存储以保证数据存储的可靠性。由于多个静态存储器分时参与了数据存储的过程,使得多个慢速静态存储器分时存储操作过程进行了叠加,其效果等效于一个高速静态存储器的操作。其原理图如下图4所示。

图5 分时存储原理图

2.4.2 数据降速存储

所谓数据降速存储技术,就是对在数据存储之前将高速数据的速度降低到低速存储器可以及时存储的程度。该方法避免了多个存储器的使用,只需利用一个大容量的存储器就可以实现数据的存储,实现起来相对分时存储简单。设计中可以利用串并转换电路对数据进行降速处理以满足后续的存储器速度较低的要求。串并转换电路的基本原理为数据的串并转换,将数据依次存入串行移位寄存器中,然后并行输出,降低了传输数据的速度,以满足存储器工作速度的要求。这里以一个4位的移位寄存器对其进行说明,如图5。

图6串井转换电路

串并转换电路由一个串行的移位寄存器和两个并行的移位寄存器构成,其高速时钟由可以通过锁相环PLL提供,PLL产生的高速时钟在通过分频电路得到4分频的低速时钟。串行移位寄存器在PLL产生的时钟的控制下,依次将接收到的数据依次存放在串行移位寄存器中,然后在计数电路产生的控制信号的作用下,将数据存入并行寄存器,而后在低速时钟的控制下将数据送入下一个并行寄存器,最后送入后面的逻辑电路。这样就实现了高速数据的正确存储,设计中根据数据的频率选择合适移位寄存器,以满足设计的要求。

3高速数据采集系统的方案

3.1 单片机控制的高速数据采集系统

本系统主要由三部分组成:单片机8751控制部分、计算器和存储器部分、A/D转换模块。其硬件框图如图7所示。

图7 系统硬件框图

单片机控制部分包括地址和数据选择器,本系统采用内置4KB EPROM的8751单片机。其作用有:

(1)负责 A/D转换过程的启动及完成控制;

(2)对自动存储于存储器内的采集数据进行处理,也可通过串行口或并行接口传给主机(如PC机)作进一步处理。

地址选择器和数据选择器的功能是在单片机P1.0口线的控制下决定数据存储器的地址线和数据线连向何处。当 P1.0= 1时,存储器的地址信号来自计数器输出, 数据信号来自A/D 转换器;当 P1.0= 0时,存储器则成为8751的外部数据存储器, 此时单片机可读取其中的数据。

计数器的作用是自动产生16位存储器地址信号以实现将A/D的转换结果自动按顺序快速存放存储单元中。该计数器为16位二进制计数器,由四片 74LS161 四位二进制同步计数器级联构成[4],各片的异步清除端连在一起并由单片机P1.2脚控制。计数脉冲CP来自

A/D 转换模块。当计数器计满时,由其进位信号向单片机INT0申请中断。该存储器对A/D 转换器而言是只有写入操作,用于存储 A/D转换器的转换数据,而对单片机而言只有读操作,即单片机只能读取其中的数据而不能改写其中的数据。

A/D 转换模块是本系统的核心部分。其原理框图如图8所示。

图8 A/ D转换模块原理框图

图中A/D 板是以高速 D/A 转换器 DAC0800为核心,加上其他电路,采用逐次逼近法构成的 8 位A/D 转换器,其构成框图如图9所示。

图9 A/D 转换时序图

在启动信号START的下降沿,A/D转换开始,同时使BUSY信号为低电平,表明正在进行转换。如在A/D 转换过程中又按收到新的启动信号,则重新开始转换。转换完成时,BUSY 变为高电平; OE是三态锁存器的输出允许控制线,当其为低电平时,允许转换数据输出。该A/D 转换器要求输入的模拟信号电压范围为0~5V,完成一次A/D 转换时间为1.2 s。为了

保证在A/D 转换进行被转换信号幅度保持稳定,将被转换信号经采样保持器 SHC5320处理后再送到A/D 转换器的模拟信号转入端。SHC5320是高速采样/保持器,其采样时间小于1.5 s,基本能满足A/D 转换速度的要求。由于其采样/保持控制端是高电平保持、低电平采样,故使用中将A/D板的BUSY信号反相后接到该控制端,以保证在A/D为了能将每一次A/D 转换的结果快速存于存储器并同时启动下一次 A/D 转换,特利用BUSY信号的上升沿(表示一次A/D 转换已结束)去触发单稳态触发器 1,该触发器的反相输出端Q1接至 A/D 板的OE 端以将转换数据送至存储器的数据线上,同时作为存储器的写控制信号WR,将转换数据写入当前的存储单元中。再用Q1的后沿(上升沿) 触发单稳触发器 2,其反相输出Q2一方面接到START以启动下次转换,另一方面接计数器的计数输入端 CP,使计数器输出加 1 以指向下一存储单元,为存放下一转换数据做准备。图中 P1.1是来自单片机的控制线,用于控制启动第一次A/D 转换和停止转换。上述的工作时序关系如图4所示。从时序图可见,本系统在单片机控制启动第一次转换后即可自动完成启动- 转换- 存储- 启动的循环执行过程,直到完成 64 KB的数据采集后向单片机申请中断要求停止。

3.2 多路分时采集合成高速数据采集系统

本系统采用多路合成方案实现多路低速A/D合成一路高速A/D,减小了电路实现难度, 提高了系统工作的可靠性。采用内存直接映射的接口方案, 实现采集扩展存储器在高速数据采集卡和计算机间的共享;完成高速采样数据向计算机的传输。

本系统主要由三部分组成: 多路分时采集控制电路、高速A/D数据采集及存储电路、计算机接口电路。其原理如图10所示。

图10 高速数据采集系统原理图

如图所示,本系统采用4 路62.5M SPS A/D采样存储电路合成一路250M SPS A/D 采样存储电路。由一个 4 路分时采集控制器控制上述 4 路A/D电路的采样时序。该 4 路62.5MHz采样时钟信号是由250MHz时钟4分频后得到。

单路A/D采集存储电路工作原理见图11。

图11 单路A/D采集存储电路工作原理

A/D数据采集系统要解决的一个关键问题就是存储器共享。高速数据采集卡需要配置数据存储器或扩展存储器。本系统采取直接内存映射的存储器接口方式。即将扩展存储器的地址映射到系统的存储地址空间中,作为系统存储器的一部分直接使用。这样就实现了扩展存储器在高速数据采集卡和计算机间的共享。

高速ADC在采样脉冲En的控制下,对输入模拟信号Vin进行采样, 并转换为8bit数字信号输出到数据锁存器; 同时地址计数器对采样脉冲En计数, 并将计数值作为存储器地址信号输出至地址锁存器; 锁存器将数据和地址信号同步后分别输出到高速存储器的数据端口和地址端口。存储器的写控制信号/E由时钟信号En延时得到。双向总线驱动器245 在切换控制信号T的控制下实现扩展存储器在高速数据采集卡和计算机间的共享。切换控制脉冲T由地址计数器计满后置低, 由计算机将RAM 数据取走后置高。

本系统采用PC兼容机,内存16M,内存地址从000000h—FFFFFFh。其中从0D0000h—0DFFFFh之间的64k内存空间供用户作映射内存用。本系统将A/D采集卡的4 路采样数据存储器共64k作为计算机的映射内存, 以实现计算机对A/D采集卡RAM存储器的读写操作。计算机接口电路如下图12所示。

图12 计算机接口电路

通过对PC机总线接口中的数据线、地址线、读写控制线、I/O控制线进行适当的电路组合,构成与A/D采集卡的接口电路。电路结构如图3 所示。虚线内A/D采集卡电路中只画出1路存储器进行说明。当切换控制脉冲T为高电平时, 双向驱动器245关闭, 采样存储器切换到A/D采集卡控制。当切换控制脉冲T为低电平时, 双向驱动器245打开, 存储器切换到由计算机总线控制。PC机总线接口中的低14位地址线(A0-A 13)实现对单片存储器的16k寻址;A14、A15地址线通过2- 4译码器对4路存储器进行片选;高8位地址线(A16- A23) 通过组合逻辑输出控制2- 4译码器的开断,从而将采样存储器(1- 4)映射到PC机内存的指定空间(0D0000h—0DFFFFh)。同时PC机总线的8位数据线和读写信号线/MR、/MW 分别与存储器的8位数据线和读写信号线/R和/W接通。此时存储器完全由计算机控制读写。计算机对采样存储器数据的读取通过I/O查询方式实现。切换控制脉冲T作为查询信号,

与PC机低位数据线D0相连。PC机低10位地址线通过组合逻辑指向某一选定的I/O地址, 当软件程序查询该I/O口地址时, 切换控制信号T 的数据被读入计算机。读入数据的D0 位为高时, 继续查询。D0位为低时, 计算机开始对采样存储器数据进行读取、存储等处理。

3.3 基于MCU+FPGA组合的高速数据采集系统

本数据采集系统硬件总体框图如图13所示。

图13 数据采集系统硬件总体框图

如图所示,该数据采集系统工作原理如下:

系统上电完成初始化后,进入待触发状态,直至MCU接收到启动信号后,向A/D转换器输出工作时钟,同时向6路高速采集模块的FPGA控制器发送采集允许指令,启动内部计时器,高速采集模块将处于等待触发信号的工作状态。当高速采集模块收到比较触发模块发出触发信号后,相应的FPGA控制器将打开数据写入通道,向FIFO缓冲区中连续写入规定个数的AD采样结果后自动停止写入,同时FPGA控制器将记录每次触发时定时器的值。之后FPGA控制器将进入下一个等待触发状态中,直至收到下一个触发信号后再次循环以上操作。其间MCU不断检查FIFO缓冲区的数据并通过FPGA控制器将采样结果和脉冲产生的时间写入存储器中。

该数据采集系统的主要模块功能说明:

(1)前端调理模块

对输入信号进行信号缓冲、放大,使信号不丢失。

(2)AYD转化模块

实现模拟量到数字量的转换。

(3)FPGA模块

对数字量进行缓冲,同时对写入缓冲模块的数据进行编码,即要求对每一次触发,写入规定个数的AD采样结果,并将每次的触发时刻追加到AD数据的尾部,第二次及以后的触发,存储方式与第一次相同。由于MCU(因为本系统采用C8051F单片机)对外部存储器写地址速度比较慢,同时FPGA的缓冲模块对读数据的速度又有一定的要求,所以不能采用MCU内部的时钟频率来写地址,在本设计方案中,由FPGA分频出一个10MI-Iz的频率,送给MCU,这样可以快速对外部存储器写地址。

(4)MCU控制模块

本设计采用C8051F120单片机作为系统的主控制芯片,控制整个系统的启动、停止,数据采集允许,数据传输等功能。

(5)存储器模块

存储数据,包含AD采样结果和触发时刻。

(6)电源模块

DC-DC模块实现电压的转化,给各芯片提供合适的工作电压。

(7)时钟模块

时钟模块给系统提供时钟源,通过锁相环可以分频或倍频出所需要的时钟频率。(8)指示模块

指示模块主要实现系统工作状态的指示,如电源指示等,读数指示等等。

(9)启动模块

启动模块实现系统的启动,当按钮按下时,启动电路工作,系统得到电平触发,将立刻启动。

3.4基于DSP和ADS8364的高速数据采集处理系统

该系统主要由信号调理模块、A/D转换模块、DSP处理器模块、CPLD逻辑控制模块和USB2.0通信模块组成。它能够在板卡上实现信号的采集及前端处理,并能通过USB总线与上位机通信,实现数据的存储、后端处理及显示。采用CPLD控制ADS8364完成数据的A/D 转换,转换后的数据预先存储到FIFO中,再经DSP进行前端的数字信号处理后,通过USB 总线传给上位机,并在上位机上进行存储、显示和分析等。该系统完全可以满足信号采集

处理对高精度及实时性的要求。

本数据采集处理系统主要由前端信号调理电路、ADC芯片ADS8364、CPLD芯片EPM3128A、DSP芯片TMS320F2812、USB芯片CY7C68013及其外围电路组成。系统原理框图如图14所示。

图14 系统原理框图

系统主要完成的任务为:DSP接收上位机通过USB总线发送的命令,完成系统工作参数的设置,并通过模拟地址/数据总线与CPLD进行通信,向CPLD发送控制命令;对外部的多路模拟量输入进行信号调理,在CPLD控制下进行单通道或多通道A/D转换,将采集到的数据存储在一片FIFO芯片中;当FIFO中存储的数据半满时,对DSP产生一个中断信号,DSP收到此中断信号后,取出FIFO中的部分数据,进行前端数字信号处理,将处理完毕的数据通过USB总线传给上位机;上位机实现各种图形界面操作和后端信号处理,对所采集的信号进行分析。系统可对输入的多路模拟信号进行同步采样,这就使得采集到的数据不仅含有模拟信号的幅度特性,同时还保持不同模拟信号之间的相位差异;采样频率可以预置,以适应不同速率的采样要求。

系统硬件包括信号调理模块、A/D转换模块、DSP处理器模块、CPLD逻辑控制模块以

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

基于TLC549的数据采集系统设计

基于TLC549的数据采集系统设计 Time:2009-09-22 11:14:00 Author: Source:电子元器件应用 杨来侠,万建军 (西安科技大学,陕西西安710054) 0 引言 现代自动控制系统中需要测量和控制的参数往往都是连续变化的模拟信号,如温度,压力,流量,速度等。这些物理量和控制参数往往都是连续变化的电压和电流,因此,必须将其变换成数字量(即需经模,数转换),才能被数字计算机所识别。这些数字量在计算机内经过运算处理,可以得到一个数字形式的控制量,将这些控制量经过数/模转换器,变成模拟电压或电流信号,再送到执行机构去驱动相应的设备动作,即可实现对生产过程的自动控制。 1 TLC549的主要特点和工作原理 l.l TLC549的主要特点 TLC549是采用IinCMOSTM技术并以开关电容逐次逼近原理工作的8位串行A/D7芯片,可与通用微处理器、控制器通过I/O CLOCK、CS、DATA OUT三条口线进行串行接口。TLC549具有4MHz的片内系统时钟和软、硬件控制电路,转换时间最长为17μs,允许的最高转换速率为40000次/s。总失调误差最大为±0.5LSB,典型功耗值为6 mW。TLC549采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,由于其VREF-接地时,(VREF+)-(VREF-)≥1 V,故可用于较小信号的采样,此外,该芯片还单电源3~6v的供电范围。总之,TLC549具有控制口线少,时序简单,转换速度快,功耗低,价格便宜等特 点,适用于低功耗袖珍仪器上的单路A/D采样,也可将多个器件并联使用。TLC549的内部结构框图和管脚名称如图1所示。 1.2 TLC549的极限参数,

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

单路数据采集系统设计

1 引言 1.1 数据采集系统的意义 数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。本设计采用A/D转换器和51单片机组成数据采集系统,该设计具有结构简单、操作方便、高性价比、具有显示、记录存储功能,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、回放过程的信号可以直观的观察。它与有线数传相比主要有布线成本低、安装简便、便于移动等性能。 经调查,目前数据采集器的市场需求量大,以数据采集器为核心构成的小系统应用广泛,因此开发高性能的数据采集器具有良好的市场前景。随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一时间段内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,提高产品的合格率,产生良好的经济效益。随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。单片机构成的数据采集处理系统适用于各种现场自动化监测及控制,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、等优点。1.2 数据采集系统的主要功能 数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。比如条码机、扫描仪等都是数据采集工具。 数据处理系统是指运用计算机处理信息而构成的系统。其主要功能是将输入的数据信息进行加工、整理,计算各种分析指标,变为易于被人们所接受的信息形式,并将处理后的信息进行有序贮存,随时通过外部设备输给信息使用者。

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

高速数据采集系统

目录 1系统摘要 (2) 2系统设计理论 (2) 3系统设计方案 (4) 3.1AD7891高速数据采集系统 (4) 3.1.1 AD7891结构及功能 (4) 3.1.2工作时序和极限参数 (5) 3.1.3 AD7891的应用 (6) 3.1.4 AD7891与微处理器的接口 (8) 3.2PCI-1714高速数据采集系统……………………………….…,,,.9 3.2.1 PCI- 1714 功能结构和特点 (9) 3.2.2 PCI- 1714的系统构成..............................,.. (10) 3.3基于AT89C51的数据采集通信系统设计 (12) 3.3.1系统硬件设计 (12) 3.3.2系统软件设计 (14) 4各种方案的比较 (16) 5心得体会 (17) 6参考文献 (18)

1.系统简介 随着数字技术的飞速发展,高速数据采集系统也迅速地得到了广泛的应用。在生产过程中,应用这一系统可以对生产现场的工艺参数进行采集、监视和记录,为提高生产质量,降低成本提供了信息和手段。在科学研究中,应用数据采集系统可以获取大量的动态数据,是研究瞬间物理过程的有力工具,为科学活动提供了重要的手段。而当前我国对高速数据采集系统的研究开发都处于起步阶段,因此,开发出高速数据采集系统就显得尤为重要了。 所谓高速数据采集系统,是用计算机控制的多路数据自动检测或巡回检测(其对象包括数字和模拟信号),并且能够对数据实行某些处理(包括存储、处理、分析计算以及从检测的数据中提取可用的信息),以供显示、记录、打印或描绘的系统。 在数字技术日新月异的今天,数据采集技术的重要性是十分显著的。它是数字世界和外部物理世界连接的桥梁。而随着现代工业和科学技术的发展,对数据采集技术的要求日益提高,在雷达、声纳、图像处理、语音识别、通信、信号测试等科研实践领域中,都需要高精度,高数据率的数据采集系统。它的关键技术为高速高精度的ADC 技术,高数据率的存储和缓存技术以及系统高可靠性保证等。通过数据采集技术,科研人员在实验现场可以根据需要实时记录原始数据,用于实验室后期的分析和处理,对工程实践和理论分析探索具有重大意义。 2.系统设计理论 整个高速数据系统主要分为四个部分:数据采集部分、数据控制部分、数据处理部分、数据传输部分。 在数据采集部分,主要应用的就是采样定理、模数转换器ADC 及A/D 转换技术。采用定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。具体内容是,频带为F 的连续信号f(t)可用一系列离散的采样值)1(t f ,)1(t t f ?±,)1(t t f ?±,……来表示,只要这些采样点的时间间隔F t 21≤?,便可根据各采样值完全恢复原来的信号)(t f 。模数转换器ADC 用来把连续变化的模拟信号转换为一定格式的数字量。ADC 转换器实际上就是一个编码器,输

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

一种新的基于ARM的数据采集系统设计

?应用技术研究? 一种新的基于AR M 的数据采集系统设计 罗 浩 1a,2 ,谢华成 1b (1.信阳师范学院a .物理电子工程学院; b.网络信息与计算中心,河南信阳464000; 2.华中科技大学电子系,湖北武汉430074) 摘 要:给出了一种新的基于AR M 的数据采集系统硬件和软件设计方案1硬件主要由微处理器芯片 S3C44BOX 、US B 接口芯片I SP1362、AD 转换芯片AD7829等构成1系统能实现8路同时采集,单路采集速率100ks p s,且通过设置Device 和Host 两种模式,可在无PC 机的情况下进行数据采样与存储,从而实现了脱机式 应用1 关键词:数据采集;US B;S3C44B0X;AD7829;I SP1362 中图分类号:TP273 文献标识码:A 文章编号:100320972(2006)022******* 0 引言 数据采集是测控系统中的核心单元之一,目前常用的 数据采集方式是A /D 卡和422、485等总线板卡[1],这类方 式的数据采集过程必须依赖PC 机完成,不便野外应用;故研制能够实现脱离PC 机进行数据采集的数据采集卡具有实际意义1 本文提出的基于AR M 的数据采集系统设计方案,以 S3C44B0X 为主控制器,控制AD7829进行数据采集,并控 制US B 接口芯片(I SP1362)进行数据传输1本设计综合利用了S3C44B0X 的高性能、低成本和能耗省的特点,设计了 US B 数据通信的Device 模式和Host 模式,在没有PC 机的 情况下,工作在Host 模式,可以直接与外存储器相连进行脱机式数据采集,实现了脱机式应用1 1 硬件设计 1.1 方案选择 目前,对于US B Host 的开发方式主要有两种选择:一种是选用集成了US B 接口的单片机,比如Cyp ress 公司生产的EZ -US B 系列,I ntel 的8X930AX 系列等1此种开发工具虽然编程简单,但需要购置专门的开发系统,投资较大;另一种是选择普通的单片机或嵌入式微处理器,加专用的US B 接口芯片进行开发1后者不需要购买新的开发系统,节省投资1因此我们采用了第二种方案进行开发1 为了便于开发和扩展Device 、Host 模式,选择了较新且易于开发的US B 接口芯片I SP1362;且为了满足8路采集, AD 转换芯片选择了AD7829;适于I SP1362的开发,其主控 器芯片选择了高性能、低功耗的AR M 芯片S3C44BOX 1三星的S3C44B0X 是为手持设备和通用设备而设计的一款16/32位R I SC 结构的低成本高性能的单片机1为了降低产品的总体成本,S3C44B0X 还提供了如下的配置: 8K B 高速缓存(cache )、可配置的片内SRAM 、LC D 控制器、 两路带握手功能的UART (通用串行口)、4路DMA 控制器、系统管理功能(片选逻辑,FP /E DO /S DRAM 控制器)、5路带P WM 的定时计数器、I/O 接口,RTC (时钟)、8路10位ADC 、II C 总线、II S 总线、同步SI O 接口和为系统提供时钟而设的P LL 倍频电路[2]1 系统分为四大部分:8路AD 转换,US B 接口,AR M 主控器以及S DRAM (2M )、Flash (2M )1AD7829构成的模数转换(8路模拟输入、8位数字输出),在S3C44B0X 控制下完成数据采集,再通过US B 接口传输到外存储器1如图11 图1 系统结构框图 F i g .1The syste m structure d i a gram S3C44B0X 自身虽集成有8路10位ADC,但没有采样 保持电路,其内部集成的A /D 转换只能输入0~100Hz 的模拟信号,因此我们需要对其进行扩展1AD7829作为A /D 转换,S3C44B0X 作为控制器,利用S3C44B0X 的P D 口为双向口来进行扩展,以S3C44B0X 的P D 口发出脉冲作为 AD7829的CONVEST 的负脉冲,进行模数转换,同时能够  收稿日期:2005211230  基金项目:湖北省重大科技攻关项目(2002AA101C39 )  作者简介:罗 浩(19702),男,河南信阳人,讲师,在读硕士研究生,主要从事电子技术方向研究1 3 02信阳师范学院学报(自然科学版)Journal of Xinyang Nor mal University 第19卷 第2期 2006年4月 (Natural Science Editi on )Vol .19No .2Ap r .2006

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

基于8051单片机的数据采集系统设计

基于8051单片机的数据采集系统设计 一.设计任务 设计一个数据采集系统,要求: 1.有一组开关量和1路模拟量,采样开关量控制一组发光二极管,定时采样模拟量并显示出来。 2.定时采样ADC0809某通道模拟信号,每隔2秒在显示器或数码管上显示出来。 3.定时的实现。 二.设计思路 数据采集是指从传感器和其他待测设备中自动采集模拟或数字信号电量或非电量信号送入控制器中进行分析和数据处理。 本设计采用单路模拟信号的数据采集。设计思路为:通过传感器采集待测的信号,将其转换为相应的电压信号,经运算放大器放大后送入模数转换器ADC0809在单片机的控制下进行模数转换。每次转换结束后,单片机在控制电路的作用下将数据读走存入片内存储器。而单片机则需要将收到的数据送入PC机中进行相应处理。单片机与PC 间的数据通信方式为串口通信协议RS 232,通过芯片MAX232进行电气匹配。 目录

一.系统总统设计方案 二.系统的硬件设计 2.1信号调理电路 2.2数据采集电路 2.3 80C51芯片内部功能与引脚介绍 三.系统的软件设计 3.1主程序 3.2 A/D转换 3.3数据采集中断程序 四.设计总结 五.参考文献 六.附录—数据采集系统原理图一.系统总统设计方案

根据系统基本要求,将本设计系统划分为信号调理电路、8路模拟信号的产生与A/D 转换器、发送端的数据采集与传输控制器、人机通道的接口电路、数据传输接口电路几个部分。 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。系统框图如下图1所示。 图1 一般系统框图 二.系统的硬件设计 2.1信号调理电路 信号调理能够将被测对象的输出信号变换成计算机要求的输入信号。如图2所示,为 避免小信号通过模拟开关造成较大的附加误差,在传感器输出信号过小时,每个通道应 设前置放大环节。 图2 信号调理过程 2.2 数据采集电路 把连续变化量变成离散量的过程称为量化,也可理解为信号的采样。 把以一定时间间隔T逐点采集连续的模拟信号,并保持一个时间t,使被采集的信号变成时间上离散、幅值等于采样时刻该信号瞬时值的一组方波序列信号,即采样信号。

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

数据采集系统设计

目录 摘要 (1) 1 引言 (2) 1.1 数据采集系统的简介. (2) 1.2 课程设计内容和要求 (3) 1.3 设计工作任务及工作量的要求 (3) 2 内容提要 (3) 3 系统总体方案 (3) 3.1 系统设计思路 (3) 3.2 系统总体框图 (4) 4 硬件电路设计及描述 (4) 4.1 8253芯片及工作原理 (4) 4.1.1 基本组成及工作原理 (4) 4.1.2 8253与系统连接 (5) 4.2 ADC0809内部功能与引脚介绍 (5) 4.2.1 引脚排列及各引脚的功能 (6) 4.2.2 ADC0809工作方式 (7) 4.2.3 ADC0809与系统连接 (8) 4.3 单片机89C51的引脚与功能介绍 (8) 4.4 8255并行口芯片基本组成及工作原理 (10) 4.4.1 8255的内部结构 (11) 4.4.2 8255的工作方式 (12) 4.2.3 8255与系统连接 (12) 4.5 LED显示部分接线及工作原理 (13) 4.5.1 LED显示工作原理 (13) 4.5.2 LED显示部分接线 (14) 4.6 总体电路图 (14) 5 软件设计流程及描述 (15) 5.1 主程序设计思路 (15)

5.2 部分程序设计流程图 (16) 5.2.1 8253程序流程图 (16) 5.2.2 8255程序流程图 (17) 5.2.3 数据处理流程图 (17) 5.2.4 LED显示流程图 (17) 5.3 汇编语言程序清单 (18) 5.4 仿真结果 (21) 6 课程设计体会 (21) 参考文献 (23)

摘要 数据采集是从一个或多个信号获取对象信息的过程。随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。 本课程设计采用89C51系列单片机,89C51系列单片机基于简化的嵌入式控制系统结构,具有体积小、重量轻,具有很强的灵活性。设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。完成采样的数据后输入单片机内部进行处理,并送到LED显示。软件部分用Keil软件编程,操作简单,具有良好的人机交互界面。程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。 随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着重要的意义。

相关主题
文本预览
相关文档 最新文档