当前位置:文档之家› (文章)攻克“抽象函数与分段函数”的常规题型

(文章)攻克“抽象函数与分段函数”的常规题型

(文章)攻克“抽象函数与分段函数”的常规题型
(文章)攻克“抽象函数与分段函数”的常规题型

攻克“抽象函数与分段函数”的常规题型抽象函数是没有给出函数的具体解析式,只给出函数的抽象表达关系式,利用这些关系式解题;分段函数是将函数的定义域分成若干个子区间,不同的子区间有不同的表达式.由于这两类函数表达形式比较特殊,使得这类问题成为函数内容的难点,而这两类函数在函数内容又占重要位置,本文就这两类函数对其常见的题型归纳评析如下:

一、确定解析式问题

例1 已知y=f(x)满足

1

()()

af x bf cx

x

+=,其中a、b、c都是非零的常数,a

≠〒b,求函数的解析式.

【分析】y=f(x)没有具体结构,条件中的a、b、c a、b、c都是已知的常数,

不可用待定系数法去求解.本题可用

1

()()

af x bf cx

x

+=,转化出另一个式子,采

用解方程组的办法求解.

【解析】≧

1

()()

af x bf cx

x

+=,以

1

x

代换x得:

11

()()

af bf x c

x x

+=,联立两

式消去f(1

x

)得:22

()()()

b

a b f x c ax

x

-=-.≧22

a b

≠,?

22

()()

c b

f x ax

a b x

=-

-

【点评】从所给式子出发,看成一个变式,把x换成1

x

以后得到方程组,故

视f(x)为一个未知量,解之得f(x),称此法为“函数方程法”.求抽象函数解析式这是常用的方法.

例2 设f(x)是定义域为R的函数,且满足f(-x)=-f(x ),当x∈[0,+≦)时,3

()(1)

f x x x

=+,求f(x)的解析式.

【分析】利用f(-x)=-f(x)求(-≦,0)上的表达式即可.

【解析】≧f(-x)=-f(x),又当x<0时,-x>0,由已知3

()(1)

f x x x

-=-+-,?3

()(1)

f x x x

-=-+-,则3

()(1)

f x x x

=-(x<0),

?

3

3

(1)[0,) ()

(1)(,0)

x x x

f x

x x x

?+∈+∞

?

=?

-∈-∞

??

【点评】给出某区间上的表达式,求对称区间上的表达式时,常常应用f(-x)=-f(x)或f(-x)= f(x)进行转化.

二、求函数值问题

例3(2002,上海市高中数学竞赛)函数f(x)定义在正整数集上,且满足:f(1)=2002和f(1)+f(2)+……+f(n)=2n f(n),则f(2002)的值为__________.【分析】首先根据所给的条件求出f(n)的表达式,在求值.

【解析】由f(1)+f(2)+…+f(n)=2n f(n),得:f(1)+f(2)+…+f (n-1)=2

(1)

n-f(n-1),两式相减得:f(n)=2n f(n)-2

(1)

n-f(n-1)

(n≥3),变形得:

()1

(1)1

f n n

f n n -

=

-+(n≥3),由2

(1)(2)2(2)

f f f

+=得:3(2)(1)

f f

=,

又f(1)=2002,于是有

1

(2)2002

3

f=?,?

22002

()

(1)

f n

n n

?

=

+

,故f(2002)=

2

2003

【点评】由f(n)=2n f(n)-2

(1)

n-f(n-1)(n≥3)推出f(n)的表达式,整个运算过程,都需要有一定的观察分析能力,善于从式子结构出发,向下进行,进而求出f(2002).

例4已知函数

1(0)

()

2(0

x x

f x

x x

?+≤

=?

->

?

2

)

,若f(x)=10,求x=_________.

【分析】首先确定用那一部分的函数表达式求解x,从f(x)=10可以看出,要求函数的值是正数,故不用f(x)=-2x(x>0).

【解析】由于f(x)=10>0,而当f(x)=-2x(x>0)时,f(x)<0,于是应用2

()1(0)

f x x x

=+≤,令21

x+=10,x=〒3,由于x<0,故x=-3.

三、定义域与值域问题

例5 已知函数y=f(2x+1)的定义域是[0,1],求y=f(x)的定义域.

【分析】函数y=f(2x+1)的定义域是[0,1],是指解析式中x的取值范围,2x+1不是自变量,而是中间变量,f(2x+1)中的中间变量相当于f(x)中的x,所以此题是已知x∈[0,1],求2x+1的取值范围.

【解析】≧函数y=f(2x+1)的定义域是[0,1],?0≤x≤1,?1≤2x≤3,?函数y=f(x)的定义域是[1,3].

【点评】若已知函数y=f(x)的定义域为[a,b],求y=f(g(x))的定义域,只需将g(x)代换为x,解不等式a≤g(x)≤b,,求出x的集合即为y=f(g(x))的定义域;若

已知y =f (g(x ))的定义域为[a ,b ],求函数y =f (x )的定义域,只要求出y = g(x ) ,x ∈[a ,b ],的值域即为y =f (x )的定义域.

例6 已知函数2(11)()2(11)

x x f x x x ?-≤≤=?><-?或,求其定义域和值域.

【分析】求分段函数的定义域只要将各段的子区间取并集;求分段函数的值域需要分段求出值域,在取并集.

【解析】,由于[-1,1]∪(1,+≦)∪(-≦,

-1)=R ,可知,定义域为R . 当x ∈[-1,1]时,2()f x x =,f (x ) ∈[0,1];而当x ∈(1,+≦)∪(-≦,

-1)时,f (x )=2,因此函数2(11)()2(11)

x x f x x x ?-≤≤=?><-?或的值域为:[0,1] ∪{2}.

四、函数性质问题

1、单调性

例7 已知函数y =f (x )的定义域为R ,对任意x ∈R ,均有f (x +x )=f (x )+f (x ),且对任意x >0,都有f (x )<0,f (3)=-3.

(1)证明函数y =f (x )是R 上的单调减函数;

(2)试求函数y =f (x )在[m ,n ](m ,n ∈Z 且mn <0=上的值域.

【分析】利用函数的单调性的定义证明;由(1)的结论可知f (m )、f (n )分别是函数y =f (x )在[m ,n ]上的最大值与最小值,故求出f (m )与f (n )即可得所求函数的值域.

【证明】(1)任取1x 、2x R ∈,且1x <2x ,2121()[()]f x f x x x =+-,由题设f (x +x )=f (x )+f (x ),可知2121()()()f x f x f x x =+-,≧1x <2x ,?2x -1x >0,?f (2x -1x )<0, ?2121()()()f x f x f x x =+-<1()f x ,故y =f (x )是R 上的单调减函数.

(2)由于y =f (x )是R 上的单调减函数,?y =f (x )在[m ,n ]上也是单调递减函数,?y =f (x )的最大值为f (m ),最小值为f (n ),≧f (n )=f [1+(n -1)]=f (1)+f (n -1)=2f (1)+f (n -2)=……=nf (1),同理f (m )= m f (1).

≧f (3)=-3,?f (3)=3 f (1) =-3,?f (1)=-1,f (m )=-m

,f (n )=-n ,故函数1

-1

y=f(x)在[m,n]上的值域为[-n,-m].

【点评】:对于抽象函数,往往通过研究函数的单调性确定其最值和值域;对抽象函数关系式中的变元取适当的值,求所需关系式或值,是解决抽象函数问题的常用技巧.

例8 若函数f(x)=|x-a|在(-≦,1)内是减函

数,求实数a的取值范围.

【分析】本题采用数形结合的方法形象直观

容易求a的取值范围.

【解析】f(x)=|x-a|=

()

()

x a x a

a x x a

-≥

?

?

-<

?

,作出函数

的图象,由于(-≦,a)内是减函数,而在(-≦,1)内也是减函数,故(-≦,1)是(-≦,a)的子区间.

因此a≥1.

2、奇偶性

例9 设f(x)是定义在R上的函数,满足f(x+2)=-f(x),且x∈[0,2]时,2

()2

f x x x

=-.

(1)求x∈[-2,0]时,f(x)的表达式;

(2)求f(9)和f(-9)的值;

(3)证明f(x)是奇函数.

【分析】这是一个分段函数问题,首先求出函数的表达式,然后在利用定义证明函数是奇函数.

【解析】(1)≧x∈[-2,0]时,x+2∈[0,2],?f(x)=-f(x+2)=-[2(x+2)-(x+2)2],即x∈[-2,0]时,2

()2

f x x x

=+.

(2)≧f(x+2)=-f(x),?f(x+4)=-f(x+2)= f(x),?f(x)是以4为周期的周期函数.?f(9)=f(1)=1,f(-9)= f(-1)=-1,.

(3)≧

2

2

2([0,2]) ()

2([2,0])

x x x

f x

x x x

?-∈

?

=?

+∈-

??

又≧f(x)+f(-x)=

22

22

2[()2()],[0,2]

2[2()()],[2,0]

x x x x x

x x x x x

?-+-+-∈

?

?

++---∈-

??

,?f(x)+f(-x)=0,(x∈[-

1 a x

y

O

2,2]),?f (x )在[-2,2]上为奇函数.若x ∈[4k -2,4k+2],k ∈Z ,则-x ∈[-4k -2, -4k +2],,?f (x )= f (x -4k),f (-x )= f (-x +4k),且x -4k 与-x +4k ∈[-2,2]又≧-x +4k=-(x -4k ),?f (-x +4k )=-f (x -4k), ?f (-x )=-f (x ),?f (x )为奇函数.

3、周期性

例10设f (x ) 定义在R 上的偶函数,其图象关于直线x =1对称,对任意1x 、

2x 1[0,]2

∈都有1212()()()f x x f x f x +=?,且f (1)=a >0. (1)求1()2f 、1()4

f ; (2)证明f (x )是周期函数.

【分析】偶函数的图象关于y 轴对称,由函数图象关于直线x =1对称,可以判定函数f (x )是周期函数.

【解析】(1)由1212()()()f x x f x f x +=?,1x 、2x 1[0,]2

∈,知()()()022x x f x f f =?≥,x ∈[0,1],≧2111(1)()()[()]222

f f f f =?=,21111()()()[()]02444f f f f =?=>,又f (1)=a >0,?121()2f a =,141()4

f a =. (2)依题意设y =f (x )关于直线x =1对称,?f (x )= f (1+1-x ),f (x )= f (2-x ),又≧f (-x ) =f (x ),?f (x )= f (x +2),?函数f (x )是R 上的周期函数,且2是它的一个周期.

五、反函数问题

例11 已知定义域为*R 的函数f (x ),对任意x 、y ∈*R 恒有f (xy )=f (x )+f (y ).

(1)求证:当x ∈*R 时,1()()f f x x

=-; (2)若x >1时,恒有()0f x <,求证:f (x )必有反函数;

(3)设1()f x -是f (x )的反函数,求证:1()f x -在其定义域内恒有

1111212()()()f x x f x f x ---+=?.

证明:(1)≧11(1)()()()f f x f x f x x

=?=+,则有f (1)= f (1)+f (1) ,?有f (1)=0,

?1()()f f x x

=-. (2)12,x x R ∈,且12x x <时,21

1x x >,?21()0x f x <. 由()()()()x x f x f y f f y y y =?=+,得()()()x f f x f y y

=-, ?2211

()()(

)0x f x f x f x -=<,知f (x )在*R 上为单调递减函数.?f (x )必有反函数. (3)设111122(),()f x n f x n --==,?1122(),()f n x f n x ==,

121212()()()f n n f n f n x x ?=+=+,即1111212()()()f x x f x f x ---+=?.

例12 已知函数2()21f x x tx =-+,其定义域为{}|0178x x x ≤≤≤≤或.

(1)若f (x )在其定义域内有反函数,求t 的取值范围;

(2)在(1)的条件下,求反函数1()f x -.

解:(1)≧f (x )在x R ∈时其对称轴为x =t .

当0t ≤时,f (x )在其定义域内为增函数,所以此时f (x )有反函数;

同理,当8t ≥时,f (x )在其定义域内也有反函数;

当14t ≤≤时,f (x )图象在[0,1]x ∈的一段比在[7,8]x ∈的一段更靠近对称轴.那么要使得f (x )在定义域内有反函数,应有(0)(7)f f <.

则得15014t <-,解得712

t ≤<; 当47t ≤≤时,同理应有(8)(1)f f <,解得

972t <≤; 当01,78t t <<<<或时f (x )显然不存在反函数.

有以上讨论可知,f (x )在其定义域内有反函数的t 的范围为:

79017822

t t t t ≤≤<<≤≥或或或. (2)由221y x tx =-+,得22()1x t y t -=+-.

当0t ≤时知,0x t -≥,?21x t y t -=+-.

?此时反函数为12()1f x t x t -=++-,其中[][]6516,501422,1x t t t ∈--?- 当8t ≥时,21x t y t -=-+-.

?此时反函数为12()1f x t x t -=-+-,其中[][]6516,501422,1x t t t ∈--?-

当791722

t t ≤<<≤或时,反函数为[][]2121(22,1)()1(5014,6516)

t x t x t f x t x t x t t -?-+-∈-?=?++-∈--??.

六、相关不等式问题

例12 设函数是定义在R 上的增函数,且f (x )≠0,对于任意1x 、2x R ∈都有1212()()()f x x f x f x +=?.

(1) 求证:f (x )>0;

(2) 求证:1122()()()

f x f x x f x -=; (3)若f (1)=2,解不等式f (3x ) >4f (x ).

【分析】由于函数x y a =具有本例中f (x )的条件与结构,因而在求解过程中应以指数函数x y a =(a >0且a ≠1)为模型类比求解.

【解析】(1)令122t x x ==,则2()()()()222

t t t f t f f f =?=,≧f (t) ≠0, ?f (t) >0,即f (x ) >0,.

(2)≧1122122()()()()f x f x x x f x x f x =-+=-?,又f (x ) ≠0,

?1122()()()

f x f x x f x -=. (3)≧f (1)=2,?2f (x )= f (1) ·f (x )= f (1+x ),4 f (x )=2·2 f (x )= f (1)·f (1+x )= f (2+x ),?f (3x ) >4f (x ),即f (3x ) >f (2+x ).又f (x )是定义域R 上的增函数,?3x >2+x ,?x >1,故不等式f (3x ) >4f (x )的解集为{x |x >1}.

【点评】在解有关抽象函数问题时,可以根据题中的抽象函数关系式的特例,即具体函数,类比求解,这样可以使解题方向明确.

例13 已知函数f (x )的定义域为(0,+≦)且在其上为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )+f (x -2)<3.

【分析】解此题的关键是求函数值3所对应的自变量值,即求f (a )=3中a 的值.

【解析】≧f (4)=f (2)+f (2)=2,又3=2+1= f (4)+f (2)= f (4〓2)= f (8),即f (8)=3,根据题中关系式,有f (x )+ f (x -2)=2(2)f x x -,所以,原不等式化成2(2)f x x -<

f (8),有200202

242428x x x x x x x x ?>>???->?>?<??

,?不等式的解集为{x |2≤x ≤4}.

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

高一数学抽象函数常见题型

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。 解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4] 例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 2 1x f -的定义域。 解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得 4111)21(3)21(2)3(log 1122 1≤≤?≤-≤?≤-≤--x x x 所以函数)]3([log 2 1x f -的定义域是]4111[, 二、求值问题 例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①5 1)6(1)2(==f f ,;②)()()(y f x f y x f +=?,求f (3),f (9)的值。 解:取32==y x ,,得)3()2()6(f f f +=

因为5 1)6(1)2(= =f f ,,所以54)3(-=f 又取3==y x 得5 8)3()3()9(-=+=f f f 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 0)]2 ([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 四、解析式问题 例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1( )(,

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法 1.求分段函数的定义域和值域 例1.求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-?? =-∈??∈+∞? 的定义域、值域. 【解析】 作图, 利用“数形结合”易知()f x 的定义域为 [1,)-+∞, 值域为(1,3]-. 2.求分段函数的函数值 例2.(05年浙江理)已知函数2 |1|2,(||1) ()1,(||1)1x x f x x x --≤?? =?>?+?求12[()] f f . 【解析】 因为311222()|1|2f =--=-, 所以31 222 3214 [()]()1()13 f f f =-= =+-. 3.求分段函数的最值 例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对

称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? 【解析】 当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移 1 个单位, 得解析式为11 22(2)111 y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2 个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以 1 ()2([0,2]) f x x x =+∈, 综上可得2 22(10) ()2(02)x x x f x x +-≤≤?=?+<≤?, 故选A . 5.作分段函数的图像 例5.函数|ln ||1|x y e x =--的图像大致是( ) A y x

【智博教育原创专题】抽象函数常见题型解法

冷世平之高考复习专题资料 第 1 页 共 7 页 抽象函数解题策略 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性 【题型1】定义域问题 --------多为简单函数与复合函数的定义域互求。 【例1】⑴若函数(21)f x -的定义域为{}|13x x ≤<,则函数()f x 的定义域为 ⑵若函数()f x 的定义域为{}|13x x ≤<,则函数(21)f x -的定义域为 【题型2】求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验。紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。 【例2】已知()f x 的定义域为R +,且()()()f x y f x f y +=+对一切正实数,x y 都成立,若(8)4f =,则(2)_____f = 【分析】在条件()()()f x y f x f y +=+中,令4x y ==,得(8)(4)(4)2(4)4f f f f =+==,(4)2f ∴=,又令2x y ==,得(4)(2)(2)2,(2)1f f f f =+=∴=。 1.()f x 的定义域为(0,)+∞,对任意正实数,x y 都有()()()f xy f x f y =+且(4)2f =,则 _____ f =12 2.若()()()f x y f x f y +=且(1)2f =,则 (2)(4)(6)(2000) ______(1)(3)(5)(1999) f f f f f f f f ++++= 20002222(1)(2)(2)(4)(3)(6)(4)(8) ______(1)(3)(5)(7) f f f f f f f f f f f f +++++++=16【提示】()2n f n =

分段函数的几种常见题型和解法

函数的概念和性质 考点 分段函数 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下: 1.求分段函数的定义域和值域 例1.求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-?? =-∈??∈+∞? 的定义域、值域. 2.求分段函数的函数值 例2.已知函数2 |1|2,(||1)()1,(||1)1x x f x x x --≤?? =?>?+?求12[()]f f .

例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? y x

抽象函数题型Word版

高考数学总复习:抽象函数题型 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求 f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x ()() ()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->,

由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。 例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足 f a f a ()()---<2402,试确定a 的取值范围。 解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数, 由-<-<-<-

2020高考数学 抽象函数常见题型解法综述

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数的定义域是[1,2],求f(x)的定义域。 解:的定义域是[1,2],是指,所以中的满足 从而函数f(x)的定义域是[1,4] 评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。 例2. 已知函数的定义域是,求函数的定义域。 解:的定义域是,意思是凡被f作用的对象都在中,由此可得 所以函数的定义域是 评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题 实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。 二、求值问题 例3. 已知定义域为的函数f(x),同时满足下列条件:①; ②,求f(3),f(9)的值。 解:取,得 因为,所以 又取 得

评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已 知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。 三、值域问题 例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。 解:令,得,即有或。 若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。 由于对任意均成立,因此,对任意,有 下面来证明,对任意 设存在,使得,则 这与上面已证的矛盾,因此,对任意 所以 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题 例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。 解:在中以代换其中x,得: 再在(1)中以代换x,得 化简得:

1.2.2(2)分段函数知识点及例题解析

分段函数常见题型例析 所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下: 1.求分段函数的定义域、值域 例1.求函数)(x f =?????->-≤+)2(,2 )2(,42x x x x x 的值域. 解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4. 当x >-2时,y =2x , ∴y >2 2-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集. 2.作分段函数的图象 例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-??=+∈-??∈+∞? ,,,, ,,,画函数( f 解:函数图象如图1所示. 评注:分段函数有几段,其图象就由几条曲线组成, 作图的关键是根据定义域的不同,分别由表达式做出 其图象.作图时,一要注意每段自变量的取值范围; 二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值 例3.已知)(x f =?? ???<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值. 解:∵ -3<0 ∴ f (-3)=0, ∴ f (f (-3))=f (0)=π 又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值. x 图1

有关抽象函数的题型

抽象函数的单调性 线性函数型抽象函数是由线性函数(即一次函数)抽象而得的函数 例:已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y),且当x> 0时,有f(x)> 0, f(- 1)= –2 , 求函数f(x)在区间[-2 , 1] 上的值域. 训练:已知函数f(x)对任意的实数x、y,满足条件f(x)+f(y)= 2 + f(x+y),且当x> 0时,有f(x)> 2, f(3)= 5 , 求使f(a2–2a –2) < 3 成立的实数a的取值范围. 3.已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y) ,且当x> 0时,有f(x)< 0 , f(3)= –3, ①证明函数f(x)的单调性 ②求函数f(x)的奇偶性 ③试求f(x)在区间[ m , n ] 上的值域。 4. 已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y) ,且当x> 0时,有f(x)< 0 , f(1)=–2 ①求证f(x)的奇偶性 ②求函数f(x)的单调性 ③求f(x)在区间[ -3 ,3 ]的最值。

对数函数型抽象函数 对数函数型抽象函数,即由对数函数抽象而得到的函数 例1.设f (x )是定义在(0,+∞)上的单调增函数,且满足f(xy)=f(x)+f(y),f(3)=1 (1)求f(1)的值 (2)f(x)+f(x –8)≤2,求X 的取值范围 训练: 2. . f (x )是定义在(0,+∞)上的减函数,对于任意的 x , y > 0 ,恒有f(xy)=f(x)+f(y),且f(3 1) = 1, ①求f(1)的值 ②若存在m,使得f(m)=2,求m 的值 ③解不等式f(x)+f(2 – x ) < 2 .幂函数型抽象函数 幂函数型抽象函数,即由幂函数抽象而得的函数 例1已知函数f(x)对任意实数x ,y 都有f(xy)=f(x)*f(y),且f(–1)=1,f(27)=9,当0≤x<1时, f(x)∈[0, 1 ) ① 判断f(x)的奇偶性 ②判断f(x)在(0 ,+∞)在上的单调性,并给出证明 ③ 若a ≥0,且f(a+1)≤39 , 求a 的取值范围

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x () ()()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0

时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->, 由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

高中常见分段函数题型归纳

分段函数常见题型及解法 分段函数是指自变量在两个或两个以上不同的围,有不同的对应法则的函数,它是一个函数,非几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集. 与分段函数有关的类型题的求解,在教材中只出现了由分段函数作出其图象的题型,并未作深入说明,因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方法. 1.求分段函数的定义域和值域 例1.求函数 1 2 22[1,0]; ()(0,2); 3[2,); x x f x x x x +∈- ? ? =-∈ ? ?∈+∞ ?的定义域、值域. 解析:作图, 利用“数形结合”易知 () f x 的定义域为 [1,) -+∞ , 值 域为(-1,2]U{3}. 例2.求函数的值域. 解析:因为当x≥0时,x2+1≥1;当x<0时,-x2<0.所以,原函数的值域是[1,+∞)∪(-∞,0). 2.求分段函数的函数值 例1.已知函数 2 |1|2,(||1) ()1 ,(||1) 1 x x f x x x --≤ ? ? =? > ?+ ?求12 [()] f f . 解析:因为 3 11 222 ()|1|2 f=--=- , 所以 3 1 222 3 2 14 [()]() 1()13 f f f =-== +- . 例2.已知函数,求f{f[f(a)]} (a<0)的值. 分析: 求此函数值关键是由到外逐一求值,即由 a<0, f(a)=2a,又0<2a<1, , ,所以,. 注:求分段函数值的关键是根据自变量的取值代入相应的函数段. 练1.设 ,0. () ,0. x e x g x lnx x ?≤ =? > ?则 1 (()) 2 g g= __________ 练2.设 1 2 3 2(2), () (1)(2). log x x f x x e x - ?< ? =? -≥ ?? 则 [(2)] f f= __________ 1 1 o 3 2 2 -1 y x -1

抽象函数常见题型解法

抽象函数常见题型解法 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类 函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的 目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题 七、周期性与对称性问题 八、综合问题 一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[]11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求函数()x ?的值域。

二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验; 练习: 1. f(x)的定义域为(0,)+∞,对任意正实数x,y 都有f(xy)=f(x)+f(y) 且f(4)=2 ,则f = ( 1 2 ) 2.的值是则 且如果) 2001(f ) 2000(f )5(f )6(f )3(f )4(f )1(f )2(f ,2)1(f ),y (f )x (f )y x (f ++++==+Λ 。2000 3、对任意整数y x ,函数)(x f y =满足:1)()()(+++=+xy y f x f y x f ,若1)1(=f ,则=-)8(f C A.-1 B.1 C. 19 D. 43 4、函数f(x)为R 上的偶函数,对x R ∈都有(6)()(3)f x f x f +=+成立,若(1)2f =,则(2005)f =( B ) A . 2005 B. 2 C.1 D.0 解析:先令3-=x 三、值域问题(单调性,奇偶性,周期性) 例1.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。 由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0)2()(2 ≥?? ? ??=x f x f ,又因为若f(x)=0, 则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 例2、定义在R +上的函数f(x)满足: ①对任意实数m,f(x m )=mf(x); ②f(2)=1. (1)求证:f(xy)=f(x)+f(y)对任意正数x,y 都成立; (2)证明f(x)是R +上的单调增函数; (3)若f(x)+f(x-3)≤2,求x 的取值围. 解:(1)令x=2m ,y=2n ,其中m,n 为实数,则f(xy)=f(2m+n )=(m+n)f(2)=m+n. 又f(x)+f(y)=f(2m )+f(2n )=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y) , 2x ,2x n m ,x x 0:)2(n 2m 121==<<<且使可令设证明0n m )2(f )n m ()2(f )x x ( f )x (f )x (f )1(n m 2 1 21<-=-===--得由 故f(x 1)

抽象函数常见题型及解法综述.doc

抽象函数常见题型及解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模型 1.指数函数模型 2.对数函数模型 3.幂函数模型三、研究函数的性质 1.抽象函数的单调性问题2.抽象函数的奇偶性问题 3.抽象函数的周期性问题 4.抽象函数的对称性问题四、抽象函数的综合(祥见《高中生》杂志05年10期上半月刊学习辅导版) 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.

抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模型 1.指数函数模型 2.对数函数模型 3.幂函数模型三、研究函数的性质 1.抽象函数的单调性问题2.抽象函数的奇偶性问题 3.抽象函数的周期性问题 4.抽象函数的对称性问题四、抽象函数的综合(祥见《高中生》杂志05年10期上半月刊学习辅导版) 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模

SX2020A093高考数学必修_抽象函数常见题型例析

抽象函数常见题型例析 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,对函数性质通过代数表述给出.抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,特就抽象函数常见题型及解法评析如下. 一、函数的基本概念问题 1.抽象函数的定义域问题 例1 已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域. 解:由)(2x f 的定义域是[1,2],是指1≤x ≤2,所以1≤x 2≤4, 即函数)(x f 的定义域是[1,4]. 评析:一般地,已知函数))((x f ?的定义域是A ,求)(x f 的定义域问题,相当于已知))((x f ?中x 的取值范围为A ,据此求)(x ?的值域问题. 评析:这类问题的一般形式是:已知函数)(x f 的定义域是A ,求函数))((x f ?的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键.一般地,若函数)(x f 的定义域是A ,则x 必须是A 中的元素,而不能是A 以外的元素,否则,)(x f 无意义.因此,如果)(0x f 有意义,则必有x 0∈A .所以,这类问题实质上相当于已知)(x ?的值域是A ,据此求x 的取值范围,即由)(x ?∈A 建立不等式,解出x 的范围.例2和例1形式上正相反. 2.抽象函数的求值问题 例2 已知定义域为R +的函数)(x f ,同时满足下列条件:①)2(f = 1,)6(f =5 1 ;②)(y x f ?=) (x f +)(y f ,求)3(f 、)9(f 的值.

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结 由于函数概念比较抽象,学生对解有关函数记号f(x)的问题感到困难,学好这部分知识,能加深学 生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1. 换元法:即用中间变量匚!表示原自变量x的代数式,从而求出f(x),这也是证某些公式或等式常用的方法,此 法解培养学生的灵活性及变形能力。 x 例 1 :已知f ( ) =2x ? 1,求f (x). x 1 解:设—u,贝V x — f (u) = 2 —■ 1 = --------------- 二f (x)= -------- x+1 1-^ 1-u 1-u 1-x 2. 凑合法:在已知f(g(x)) =h(x)的条件下,把h(x)并凑成以g(u)表示的代数式,再利用代换即可求 f (x).此解法简洁,还能进一步复习代换法。 1 3 1 例2:已知f (x ) = x 3 ,求f (x) x x 1 1 1 11 1 1 解:??? f (x ) =(x )(x2-1 2)= (x )((x )2-3)又??? |x —|=|x| —- 1 x x x x x x | x| 2 3 f(x) =x(x -3) =x -3x, (| x | > 1) 3. 待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3.已知f (x)二次实函数,且f(x ?1) ? f(x-1) =X2+2X+4,求f(x). 解:设f (x) = ax2 bx c,则f (x 1) f (x「1) = a(x 1)2 b(x 1) c a(x「1)2 b(x「1) c l2(a c) =4 2 2 1 3 = 2ax 2bx 2(a c) =x 2x 4 比较系数得2a =1 =a ,b=1,c 2 2 2b =2 1 2 丄3 f (x) = 一X x - 2 2 4. 利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式? 例4.已知y = f (x)为奇函数,当x>0时,f (x) = lg(x ? 1),求f (x) 解:??? f (x)为奇函数,??? f (x)的定义域关于原点对称,故先求x<0时的表达式。??? - x>0, ??? f (-x) =lg( -X 1) =lg(1 _x),

分段函数的常见题型及解法(广东用)

分段函数的常见题型及解法 分段函数; 定义域; 值域或最值; 函数值; 解析式; 图像; 奇偶性; 方程; 不等式. 1.求分段函数的定义域和值域 2.求分段函数的函数值 3.求分段函数的最值 4.求分段函数的解析式 5.作分段函数的图像 7.判断分段函数的奇偶性 8.判断分段函数的单调性 9.解分段函数的方程 10.解分段函数的不等式 1.求分段函数的定义域和值域 例1.求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-?? =-∈??∈+∞? 的定义域、值域. 【解析】 作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.

练习.已知f (x ) 是定义在[)2,0-∪(]0,2上的奇函数,当0>x 时, f (x ) 的图象如右图所示,那么f (x ) 的值域是 . 2.求分段函数的函数值 1、设()1 2 32,2()log 1,2 x e x f x x x -?? 的最大值 方法1 先求每个分段区间上的最值,后比较求值。 当x ≤0时,y =()f x =2x +3,此时显然有y maX = (0)f =3; 当01时,y =()f x =-x +5,此时y 无最大值.比较可得当x =1时,y max =4. 方法2 利用函数的单调性 由函数解析式可知,()f x 在x ∈(∞,0)上是单调递增的,在x ∈(0,1)上也是递增的,而在x ∈(1,+∞)上是递减的,

高中数学抽象函数题型汇编及答案

抽象函数常见题型汇编及答案 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 (一)已知的定义域,求的定义域, 解法:若的定义域为,则中,从中解得的取值范围即为的定义域。 例题1:设函数的定义域为,则 (1)函数的定义域为______;(2)函数的定义域为_______ 解析:(1)由已知有,解得,故的定义域为 (2)由已知,得,解得,故的定义域为 (二)已知的定义域,求的定义域。 解法:若的定义域为,则由确定的范围即为的定义域。 例题2:函数的定义域为,则的定义域为_____。解析:由,得,所以,故填

(三)已知的定义域,求的定义域。 解法:先由定义域求定义域,再由定义域求得定义域。例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是, ,即的定义域是 再求的定义域,, 的定义域是 (四)运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集。 例题4:函数的定义域是,求的定义域。 解析:由已知,有,即 函数的定义域由确定 函数的定义域是 【巩固1】已知函数的定义域是[1,2],求f(x)的定义域。 解析:的定义域是[1,2],是指, 所以中的满足 从而函数f(x)的定义域是[1,4]

【巩固2】 已知函数的定义域是,求函数的定义域。 解析:的定义域是,意思是凡被f 作用的对象都在 中,由此可得 所以函数 的定义域是 【巩固3】 f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)1 2 定义域是__。 解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-

相关主题
文本预览
相关文档 最新文档