当前位置:文档之家› c++ 蛮力法 分治法求解最近对问题

c++ 蛮力法 分治法求解最近对问题

c++ 蛮力法 分治法求解最近对问题
c++ 蛮力法 分治法求解最近对问题

C++蛮力法求解最近对问题

1、蛮力法求解最近对

#include "iostream"

#include "math.h"

#include "time.h"

#include "stdlib.h"

using namespace std;

struct P

{

int x;

int y;

};

double ClosePoints(int n,P a[],int &index1,int &index2)

{

double d;

double Dist=10000;

for (int i=0;i

{

for (int j=i+1;j<=n-1;j++)

{

d=(a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y);

if(d<=Dist)

{

Dist=d;

index1=i;

index2=j;

}

}

}

return Dist;

}

void main (void)

{

clock_t start,end;

int g;

int s,e;

P a[10000];

for (int i=1;i<4;i++)

{

cout<<"输入坐标的个数(10000以内)";

cin>>g;

srand(time(NULL));

for (int r=0;r

{

a[r].x=rand()%(g-123);

a[r].y=rand()%(g-1234);

}

start=clock();

double w=ClosePoints(g,a,s,e);

end=clock();

cout<<"最近的两个点是:P1("<

cout<<"距离是:"<

cout<<"蛮力法求最近对用时:"<<(double)(end-start)/CLOCKS_PER_SEC<<"ms"<

cout<<"==================================================== ========="<

}

}

2、分治法求解最近对

#include "iostream"

#include "cstdio"

#include "cstring"

#include "math.h"

#include "time.h"

#include "stdlib.h"

#include "algorithm"

using namespace std;

#define eps 1e-8

#define N 10000

struct point //定义点的结构体

{

double x,y;

};

point node[N*2];

point d[N];

point c[N];

point b[N];

int cmp(point a,point b)

{

return a.y

}

int cmp1(point a,point b)

{

if(a.x!=b.x)

return a.x

return a.y

}

double min(double a,double b)

{

return a>b?b:a;

}

double dx(double x1,double x2)

{

if((x1-x2)>eps && x1-x2

return 0;

else if(x1>x2)

return x1-x2;

else if(x1

return x2-x1;

}

double dl(point a,point b) //求两点间的距离{

return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); }

double closepoint(point node[],int n)

{

int i,j;

int Dist=99999; //无穷大数

if(n<2)

return 0;

int m=(n-1)/2;

for(i=m+1;i

{

b[i].x=node[i].x;

b[i].y=node[i].y;

}

double d1=closepoint(node,m+1);

double d2=closepoint(b,n-m-1);

double dm=min(d1,d2);

int f,p;

p=0;

for(i=0;i<=m;i++)

{

if(dx(node[i].x,node[m].x)

{

c[p].x=node[i].x;

c[p].y=node[i].y;

p++;

}

}

f=0;

for(i=m+1;i

{

if(dx(node[i].x,node[m].x)

{

d[f].x=node[i].x;

d[f].y=node[i].y;

f++;

}

}

sort(c,c+p,cmp);

sort(d,d+f,cmp);

double ret=Dist;

for(i=0;i

{

for(j=0;j

{

double ans=dl(c[i],d[j]);

ret=min(ret,ans);

}

}

return min(ret,dm);

}

void main(void)

{

int n,i;

for(int w=0;w<6;w++)

{

cout<<"输入坐标的数目:"<

cin>>n;

srand((unsigned)time(NULL));

for(i=0;i

{

node[i].x=rand()/(double)(RAND_MAX/10000);

node[i].y=rand()/(double)(RAND_MAX/10000);

}

sort(node,node+n,cmp);

clock_t start,end;

start=clock();

closepoint(node,n); //系统调用十次分治法函数。

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

closepoint(node,n);

end=clock();

cout<<"分治法求最近对用时为"<

cout<<"========================================================== ="<

}

}

四、运行输出结果:

1、蛮力法求解最近对

2、分治法求解最近对

分析:从运算结果中明显看出。规模相同时,分治法求解最近对问题时效率更高。

0007算法笔记——【分治法】最接近点对问题

问题场景:在应用中,常用诸如点、圆等简单的几何对象代表现实世界中的实体。在涉及这些几何对象的问题中,常需要了解其邻域中其他几何对象的信息。例如,在空中交通控制问题中,若将飞机作为空间中移动的一个点来看待,则具有最大碰撞危险的2架飞机,就是这个空间中最接近的一对点。这类问题是计算几何学中研究的基本问题之一。 问题描述:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。严格地说,最接近点对可能多于1对。为了简单起见,这里只限于找其中的一对。 1、一维最接近点对问题 算法思路: 这个问题很容易理解,似乎也不难解决。我们只要将每一点与其他n-1个点的距离算出,找出达到最小距离的两个点即可。然而,这样做效率太低,需要O(n^2)的计算时间。在问题的计算复杂性中我们可以看到,该问题的计算时间下界为Ω(nlogn)。这个下界引导我们去找问题的一个θ(nlogn)算法。采用分治法思想,考虑将所给的n个点的集合S分成2个子集S1和S2,每个子集中约有n/2个点,然后在每个子集中递归地求其最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对,因为S1和S2的最接近点对未必就是S 的最接近点对。如果组成S的最接近点对的2个点都在S1中或都在S2中,则问题很容易解决。但是,如果这2个点分别在S1和S2中,则对于S1中任一点p,S2中最多只有n/2个点与它构成最接近点对的候选者,仍需做n^2/4次计算和比较才能确定S的最接近点对。因此,依此思路,合并步骤耗时为O(n^2)。整个算法所需计算时间T(n)应满足:T(n)=2T(n/2)+O(n^2)。它的解为T(n)=O(n^2),即与合并步骤的耗时同阶,这不比用穷举的方法好。从解递归方程的套用公式法,我们看到问题出在合并步骤耗时太多。这启发我们把注意力放在合并步骤上。 设S中的n个点为x轴上的n个实数x1,x2,..,xn。最接近点对即为这n个实数中相差最小的2个实数。我们显然可以先将x1,x2,..,xn排好序,然后,用一次线性扫描就可以找出最接近点对。这种方法主要计算时间花在排序上,在排序算法已经证明,时间复杂度为O(nlogn)。然而这种方法无法直接推广到二维的情形。因此,对这种一维的简单情形,我们还是尝试用分治法来求解,并希望能推广到二维的情形。假设我们用x轴上某个点m将S划分为2个子集S1和S2,使得S1={x∈S|x≤m};S2={x∈S|x>m}。这样一来,对于所有p∈S1和q∈S2有p

蛮力法求解背包问题

/*程序说明:此程序用来解决蛮力法求解背包问题,运行程序输入背包容量和物品数量,屏幕打印运算过程,最后运算时间输出到文件*/ 先看下运行图片

#include / #include #include #include #include #define MAXSIZE 20000 //#define BAGWEIGHT 200 int a[MAXSIZE] = {0}; int array[MAXSIZE] = {0}; int weightarray[MAXSIZE] = {0}; /*存放各物品重量*/ int valuearray[MAXSIZE] = {0}; /*存放各物品价值*/ int lastweight[MAXSIZE]={0}; int lastvalue[MAXSIZE]={0}; int qq=0; /*上面的数组,变量都是蛮力法所用到,下面的都是分支限界法所用到*/ int BAGWEIGHT; /*背包的载重*/ int n; /*物品的数量*/ int weightarrayb[MAXSIZE] = {0}; int valuearrayb[MAXSIZE] = {0}; float costarrayb[MAXSIZE] = {0}; int finalb[MAXSIZE] = {0}; int finalweightb[MAXSIZE] = {0}; /*蛮力法输出穷举的每一种可能,并求出下界*/ void print() { int i,xx,cc,weight,value,pp,aa; weight = 0; value = 0; cc = 1; xx = 1; aa = 1; for(i = 1;i <= n;i++) { if(a[i]) { printf("%3d",i); array[xx] = i; xx ++;

分支限界法求解背包问题

分支限界法求解背包问题 /*此程序实现,分支限界法求解背包问题,分支限界法是根据上界=当前背包的价值+背包 剩余载重* (剩余物品最大价值/质量)*/ 分支r 10 I 分S: 104 1.200060' 6 2.i/eeoe #i nclude #i nclude

#include #include #include #define MAXSIZE 20000 //#define BAGWEIGHT 200 int a[MAXSIZE] = {0}; int array[MAXSIZE] = {0}; int weightarray[MAXSIZE] = {0}; /* 存放各物品重量*/ int valuearray[MAXSIZE] = {0}; /* 存放各物品价值*/ int lastweight[MAXSIZE]={0}; int lastvalue[MAXSIZE]={0}; int qq=0; /* 上面的数组,变量都是蛮力法所用到,下面的都是分支限界法所用到*/ int BAGWEIGHT; /* 背包的载重*/ int n; /* 物品的数量*/int weightarrayb[MAXSIZE] = {0}; int valuearrayb[MAXSIZE] = {0}; float costarrayb[MAXSIZE] = {0}; int finalb[MAXSIZE] = {0}; int finalweightb[MAXSIZE] = {0}; /* 从文件读取数据*/ void readb() int nn = 1,ii = 1; int i = 1; FILE *fp; fp = fopen("in.dat","rb"); while(!feof(fp)) {

分治法实验报告一

宁波工程学院电信学院计算机系 实验报告 课程名称:算法设计与分析实验项目:用分治法算法解 最接近点对问题 指导教师:崔迪 实验位置:软件工程实验室姓名: 班级: 学号: 日期: 2016/10/12 一、实验目的 通过上机实验,要求掌握分治法算法的问题描述、算法设计思想、程序设 计和算法复杂性分析等。 二、实验环境: Eclipse 三、实验内容:用分治法解最接近点对问题 (1)问题描述 给定平面S上n个点,找其中的一对点,使得在n(n-1)/2 个点对中,该 点对的距离最小。 (2)算法设计思想 1. n较小时直接求 (n=2). 2.将S上的n个点分成大致相等的2个子集S1和S2 3.分别求S1和S2中的最接近点对 4.求一点在S1、另一点在S2中的最近点对 5.从上述三对点中找距离最近的一对.

(3)程序设计(程序清单及说明) package closestpair; import java.util.Arrays; import https://www.doczj.com/doc/d716999056.html,parator; import java.util.Random; import java.util.Scanner; //定义坐标点 class Point { double x; double y; public Point(double x, double y) { this.x = x; this.y = y; } } // 根据x坐标排序 class MyComparatorX implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.x < p2.x) { return -1; } else if (p1.x > p2.x) { return 1; } else { return 0; } } } // 根据Y坐标排序 class MyComparatorY implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.y < p2.y) { return -1; } else if (p1.y > p2.y) { return 1; } else {

最接近点对问题实验报告

最接近点对问题 一.实验目的: 1.理解算法设计的基本步骤及各步的主要内容、基本要求; 2.加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题; 3.通过本次实验初步掌握将算法转化为计算机上机程序的方法。 二.实验内容: 1.编写实现算法:给定n对点,在这n对点中找到距离最短的点对。 2.将输出数据存放到另一个文本文件中,包括结果和具体的运行时间。 3.对实验结果进行分析。 三.实验操作: 1.最接近点对查找的思想: 首先,将所有的点对按照x坐标排序,找到x坐标的中位数,将所有的点对分成三部分,横坐标小于x(S1)、等于x(S2)和大于x(S3)的点对,在求取每部分中的最短距离,利用分治法,一步步地分解为子问题,找到最短距离d。由于距离最近的两个点可能在不同的区域中,需要进一步判断。 选择S1中的一个点,由于与它相比较的点的距离不可能超过d,故其配对范围为d*2d的矩形,将这个矩形划分为6份2/d*3/d的小矩形,其对角线的长度为5/6d,小于d,故S1中的任意一个点只需和S2中的6个点比较即可,最终确定最短的距离。 2.取中位数: 为了减少算法的时间开销,需要将所有的点对进行分组,以中位数为基准,考虑到快速排序的不稳定性,本次排序使用了合并排序。 代码实现: template void Merge(Type c[],Type d[],int l,int m,int r){ int i = l,j = m + 1,k = l; while((i<=m)&&(j<=r)){ if(c[i]<=c[j]) d[k++] = c[i++]; else d[k++] = c[j++]; } if(i>m) { for(int q=j; q<=r; q++) d[k++] = c[q]; } else{ for(int q=i; q<=m; q++) d[k++] = c[q]; } } template void MergeSort(Type a[],Type b[],int left,int right){ if(left

算法实验四_空间最近点对算法

一、算法分析 该算法的问题描述为:给定二维平面上的点集,求解距离最近的两个点,并计算出两点间的距离。 解决问题最初的思路为穷举法。对所有两点间的组合计算其距离。然后对其进行比较,找出最小值即可。不过这样做的缺点是时间复杂度和空间复杂度十分庞大,消耗巨量资源。如有n个点的平面上,计算的复杂度能达到n*n。因此设计出一个高效的算法来代替穷举法是有现实意义的。 在思考问题的过程中,可以考虑使用分治法的思想,以x,y中x坐标作为划分区间的标准。将平面点集一分为二。求解其中的最小点对。由此产生的问题为划分点附近两个区间中两点的距离可能小于各自区间中的最小值,产生了纰漏。因此在在分治的过程中,加入分界线附近的点对最小值求解函数。分界线区域内区间的选取标准为d。其中d为左半区间和右半区间的最小值中的较小值。在具体实现中,首先建立一个空数组存放按y坐标排序的点集,判断两个相邻点之间的y坐标差值,若大于d,则两点间距离一定大于d,可以直接跳过,继续判断下一个点对。若小于d,则继续计算两点间的实际距离,若大于d,则跳过,小于d,将最小值更新为该点对距离。 二、算法实现 该算法的具体实现使用了两种求解方法,穷举法和分治法。其中,穷举法用于判断最近点对算法实现结果的正确性。 算法使用的数据结构为数组,其中为了简单起见,将x轴坐标与y轴坐标分别存入两个数组,并新建一个数组record[],记录数组y的元素下标,用于绑定x坐标对应的y坐标。 在设计过程中使用到了比较排序算法,用于对x及y坐标排序,这并不增加其时间复杂度。因此是可行的。 在分治算法中,设置划分区间的下限为3,即当区间内元素个数小于等于3时,不再使用分治。在该设定下分为三种情况,元素数为1时,Min设为无穷。元素数为2时,计算两点间距离并返回。元素数为3时,一共计算三次距离,并取其最小值。

蛮力法、动归、贪心、分支限界法解01背包问题剖析

算法综合实验报告 学号: 1004121206 姓名:林 一、实验内容: 分别用蛮力、动态规划、贪心及分支限界法实现对0-1背包问题的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。 二、程序设计的基本思想、原理和算法描述: 1、蛮力法 1.1数据结构 注:结构体obj用来存放单个物品的价值和重量 typedef struct obj { int w;//物品的重量 int v;//物品的价值 }; 1.2 函数组成 void subset(int s[][10],int n):用来生成子集的函数 void judge(int s[][10], obj obj[],int mark[],int n,int c):判断子集的可行性 int getmax(int mark[],int n,int &flag):求解问题的最优解 void outputObj(int flag,int s[][10],int n):输出选择物品的情况 1.3 输入/输出设计 本程序通过键盘进行输入、屏幕进行输出。 1.4 符号名说明

符号说明 S[][]存放子集 mark[]记录子集的可行性 n物品的个数 c物品的容量 max记录背包所能产生的最大价值 flag记录能产生最大价值的子集的编号 1.5 算法描述 算法的伪代码描述如下: 输入:背包的容量c,物品的个数n,n个物品的重量 w[n],价值v[n] 输出:装入背包的物品编号以及产生的最大价值 1.初始化最大价值 max=0,结果子集 s=φ; 2.对集合{1,2,......n}的每一个子集T,执行下述操作: 2.1初始化背包的价值 v=0,背包的重量 w=0; 2.2对子集t的每一个元素j 2.2.1 如果w+wj

最近点对分治法

假设在一片金属上钻n 个大小一样的洞,如果洞太近,金属可能会断。若知道任意两个洞的最小距离,可估计金属断裂的概率。这种最小距离问题实际上也就是距离最近的点对问题。 如果不用分治法,问题非常容易解决。也就是蛮力法。 代码如下: #include #include typedef struct TYPE { double x, y; } Point; float dist(Point a,Point b) { return (float)sqrt((float)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } float nearest(Point* points, int n) { float temp,near1=10000; int i,j; if(n==1) { printf("不可能"); return 0; } else{ for(i=0; itemp)?temp:near1; } } return near1; } } int main()

{ int n, i; double d; printf("输入点的个数:"); scanf("%d", &n); Point a[10000]; while (n) { for (i = 0; i < n; i++) scanf("%lf%lf", &(a[i].x), &(a[i].y)); d = nearest(a,n); printf("%.2lf\n", d); scanf("%d", &n); } return 0; } 但是本题是用分治法,我也参考了网上很多资料,他们要求对纵坐标进行排序,可能是为了对求右边的问题的点扫描用for 循环,但我发现那算法就不对,但愿是我的还没有完全明白按纵坐标排序的原因, 我参考的资料: https://www.doczj.com/doc/d716999056.html,/p-198711591.html?qq-pf-to=pcqq.c2c 代码如下: #include #include #include

最近点对问题

最近点对问题 I.一维问题: 一、问题描述和分析 最近点对问题的提法是:给定平面上n个点,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。 严格的讲,最接近点对可能多于1对,为简单起见,只找其中的1对作为问题的解。简单的说,只要将每一点与其它n-1个点的距离算出,找出达到最小距离的2点即可。但这样效率太低,故想到分治法来解决这个问题。也就是说,将所给的平面上n个点的集合S 分成2个子集S1和S2,每个子集中约有n/2个点。然后在每个子集中递归的求其最接近的点对。这里,关键问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对。如果组成S的最接近点对的2个点都在S1中或都在S2中,则问题很容易解决,但如果这2个点分别在S1和S2中,问题就不那么简单了。下面的基本算法中,将对其作具体分析。 二、基本算法 假设用x轴上某个点m将S划分为2个集合S1和S2,使得S1={x∈S|x<=m};S2={x ∈S|x>m}。因此,对于所有p∈S1和q∈S2有p

用分治法求解棋盘覆盖问题

棋盘覆盖问题 问题描述: 在一个2k ×2k (k ≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中出现的位置有4k 中情形,因而有4k 中不同的棋盘,图(a )所示是k=2时16种棋盘中的一个。棋盘覆盖问题要求用图(b )所示的4中不同形状的L 型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且热河亮哥L 型骨牌不得重复覆盖。 问题分析: K>0时,可将2k ×2k 的棋盘划分为4个2k-1×2k-1的子棋盘。这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有1个子棋盘中有特殊方格,其余3个子棋盘中没有特殊方格。为了将这3个没有特殊方格的子棋盘转化成为特殊棋盘,以便采用递归方法求解,可以用一个L 型骨牌覆盖这3个较小的棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。 问题求解: 下面介绍棋盘覆盖问题中数据结构的设计。 (1) 棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中size=2k 。为了 在递归处理的过程中使用同一个棋盘,将数组board 设为全局变量。 (2) 子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上 角的下标tr 、tc 和棋盘大小s 表示。 (3) 特殊方格:用board[dr][dc]表示特殊方格,dr 和dc 是该特殊方格在二维数组 board 中的下标。 (4) L 型骨牌:一个2k ×2k 的棋盘中有一个特殊方格,所以,用到L 型骨牌的个数 为(4k -1)/3,将所有L 型骨牌从1开始连续编号,用一个全局变量tile 表示。 图(b ) 图 (a )

背包问题求解方法综述

背包问题求解方法综述 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

算法分析与设计大作业 实验题目:0-1背包问题求解方法综述 组员: 班级: 指导老师: 0-1背包问题求解方法综述 【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活 中的很多问题都可以以它为模型。本文首先对背包问题做了阐述,然后 用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求 解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了 求最优值的递归关系式。最后对四种算法从不同角度进行了对比和总 结。 【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。 0.引言 0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n), 再给定一个背包,其容量为W。要求从n个物品中选出一部分物品装入背包,这部分物 品的重量之和不超过背包的容量,且价值之和最大。单个物品要么装入,要么不装入。 很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问 题具有较高的实际应用价值。目前,解决0-1背包问题的方法有很多,主要有动态规划 法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟 退火算法、蜂群算法、禁忌搜索算法等。其中动态规划、回溯法、分支限界法时间复

杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。 背包问题描述 0-1背包问题(KP01)是一个着名的组合优化问题。它应用在许多实际领域,如项目选择、资源分布、投资决策等。背包问题得名于如何选择最合适的物品放置于给定背包中。本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。 为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。 0-1背包问题一般描述为:给定n 种物品和一个背包。物品i 的重量是w(i),其价值为v(i),背包的容量为c 。问应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大? 在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。不能将物品i 装入背包多次,也不能只装入部分的物品i 。因此,该问题称为0-1背包问题。 此问题的形式化描述是,给定n i v w c i i ≤≤>>>1000,,,,要求找出一个n 元0-1向量n i x x x x i n ≤≤∈1}1,0{21,),,,,( ,使得c x w i i i ≤∑=n 1 ,而且i n i i x v ∑=1 达到最 大。 数学模型:∑=n i i i x v 1max

实验七 最近点对问题的设计与实现

实验七最近点对问题的设计与实现 一、实验目的 1.掌握分治算法的基本原理 2.利用分治策略编程解决最近点对问题 二、实验要求 1.设计算法 2.写出相应程序 3.保存和打印出程序的运行结果,并结合程序进行分析。 三、实验内容 算法思想:用分治法解决最近对问题,很自然的想法就是将集合S分成两个子集S1和S2,每个子集中有n/2个点。然后在每个子集中递归地求其最接近的点对,在求出每个子集的最接近点对后,在合并步中,如果集合S 中最接近的两个点都在子集S1或S2中,则问题很容易解决,如果这两个点分别在S1和S2中,则根据具体情况具体分析。 1、考虑一维情形下的最近点对问题: 设x1, x2, …, xn是x轴上有n个点构成的集合S,最近对问题就是找出集合S中距离最近的点对。 算法思想:用x轴上的某个点m将S划分为两个集合S1和S2,并且S1和S2含有点的个数近似相同。递归地在S1和S2上求出最接近点对 (p1, p2) 和(q1, q2),如果集合S 中的最接近点对都在子集S1或S2中,则d=min{(p1, p2), (q1, q2)}即为所求,如果集合S中的最接近点对分别在S1和S2中,则一定是(p3, q3),其中,p3是子集S1中的最大值,q3是子集S2中的最小值。 例如:(1)输入 -8,-5,-4,1,3,7,输出为1. (2)输入 -8,-5,-2,1,3,7,输出为2. (3)输入 -8,-4,-1,1,4,7,输出为2.

附加题:(有时间可继续完成下面内容) 2、考虑一维情形下的最近点对问题: 设p1=(x1, y1), p2=(x2, y2), …, p n=(x n, y n)是平面上n个点构成的集合S,最近对问题就是找出集合S中距离最近的点对。 算法:

0-1背包问题求解方法综述

算法分析与设计大作业 实验题目:0-1背包问题求解方法综述组员: 班级: 指导老师:

0-1背包问题求解方法综述 【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实 生活中的很多问题都可以以它为模型。本文首先对背包问题做了阐 述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问 题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构 特征,建立了求最优值的递归关系式。最后对四种算法从不同角度进 行了对比和总结。 【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。 0.引言 0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量 wi(i=1,2,…,n),再给定一个背包,其容量为W。要求从n个物品中选出一部分物 品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。单个物 品要么装入,要么不装入。很多问题都可以抽象成该问题模型,如配载问题、物资 调运[1]问题等,因此研究该问题具有较高的实际应用价值。目前,解决0-1背包 问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子 群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。 其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现 局部收敛,不一定能找出问题的最优解。文中在动态规划法的基础上进行了改进, 提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解, 是确定性算法,算法的时间复杂性最坏可能为O(2n)。 1.0-1背包问题描述 0-1背包问题(KP01)是一个著名的组合优化问题。它应用在许多实际领域, 如项目选择、资源分布、投资决策等。背包问题得名于如何选择最合适的物品放 置于给定背包中。本文主要研究背包问题中最基础的0/1背包问题的一些解决方 法。 为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。解决背 包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、 分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子 算法等一些智能算法。

蛮力法分治法求最近对

实验题目 设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。 实验目的 (1)进一步掌握递归算法的设计思想以及递归程序的调试技术;(2)理解这样一个观点:分治与递归经常同时应用在算法设计之中。 实验内容(包括代码和对应的执行结果截图) #include #include #include using namespace std; typedef struct Node {//定义一个点的结构,用于表示一个点 int x; int y; }Node; typedef struct NList {//定义一个表示点的集合的结构 Node* data; int count; }NList; typedef struct CloseNode {//用于保存最近两个点以及这两个点之间的距离 Node a; Node b; double space; }CloseNode; int max; void create(NList & L) { cout<<"请输入平面上点的数目:\n"; cin>>max;

L.count=max; L.data = new Node[L.count];//====================动态空间分配 cout<<"输入"<>L.data[i].x>>L.data[i].y; } //求距离平方的函数 double Distinguish2(Node a,Node b) { return ((a.x-b.x)*(a.x-b.x))+((a.y-b.y)*(a.y-b.y)); } //蛮力法求最近对 void BruteForce(const NList & L,CloseNode & cnode,int begin,int end) { for(int i=begin;i<=end;i++) for(int j=i+1;j<=end;j++) { double space = Distinguish2(L.data[i],L.data[j]); if(space

分治法实现快速排序

实验一 实验名称:利用分治法实现快速排序实验时间: 2012年12月成绩:一、实验目的 分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。 本实验的目的是利用分治策略实现快速排序算法。 二、实验内容 快速排序算法是基于分治策略的排序算法。其基本思想是,对于输入的子数组a[p:r],按以下三个步骤进行排序。 (1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于a[q]。下标q在划分过程中确定。 (2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。 (3)合并:由于对a[p:q-1]和a[q+1:r]的排序是就地进行的,所以在a[p:q-1]和a[q+1:r]都已排好的序后,不需要执行任何计算,a[p:r]就已排好序。基于这个思想,可实现的快速排序算法如下:void QuickSort(int a[],int p,int r)

{ if(px); if(i>=j) break;

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真 指导教师:郝晓丽 2018年05月04 日

实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011

010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

最近点对问题

算法分析与设计最近对问题

最近对问题 问题描述: 在二维平面上的n 个点中,如何快速的找出最近的一对点,就是最近点对问题。 程序设计思想: 1.蛮力法求最近对问题: 基本思想: 分别计算每一对点之间的距离,然后找出距离最小的那一对,为了避免对同一对点计 算两次距离,只考虑j i <的那些点对() j i P P ,。 复杂度分析: 对于此算法,主要就是算两个点的欧几里得距离。注意到在求欧几里得距离时,避免了求平方根操作,其原因是:如果被开方的数越小,则它的平方根也越小。所以复杂度就是求平方,求执行次数为: )()1()(2n O n n n T =-=;即时间复杂度为)(2n O 。 2.分治法求最近对问题: 基本思想: 用分治法解决最近点对问题,就是将一个问题分解两个子问题,然后递归处理子问题,然后合并。可能两个点在每个子问题中,也可能两个点分别在两个子问题中,就这两种情况。则基本过程为:找一条中垂线m (坐位S 集合x 坐标的中位数)把n 个元素分成左右两部分元素,然后分别求得两边的最短距离1d ,2d ,然后取两者中的最小者记为d ,在中线两边分别取d 的距离,记录该距离范围内点的个数,中线左边有L 个元素,右边有R 个元素,分别将两边的点按y 坐标升序排列,在左边集合中每一个点,找右边集合的点,找到与之距离小于d 的点,更新最短距离,直到循环结束,即可求出最短距离。 复杂度分析: 应用分治法求解含有n 个点的最近对问题,其时间复杂性可由递推式表示:)()2/(*2)(n f n T n T +=。 由以上分析:合并子问题的解的时间)1()(O n f =。进而可得分治法求最近对问题的时间复杂度为:)log ()(2n n O n T =。 程序代码: #include #include #include #define NUM 1000 typedef struct{ int x;

[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01背包问题

[汇总]蛮力法、动态规划法、回溯法和分支限界法求解01 背包问题 一、实验内容: 分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。 C注:0/1背包问题:给定种物品和一个容量为的背包,物品的重量ni 是,其价值为,背包问题是如何使选择装入背包内的物品,使得装入背wvii 包中的物品的总价值最大。其中,每种物品只有全部装入背包或不装入背包两种选择。 二、所用算法的基本思想及复杂度分析: 1.蛮力法求解0/1背包问题: 1)基本思想: 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。 2)代码: #include #include using namespace std; #define N 100 //最多可能物体数 struct goods //物品结构体 { int sign; //物品序号 int w; //物品重量 int p; //物品价值

}a[N]; bool m(goods a,goods b) { return (a.p/a.w)>(b.p/b.w); } int max(int a,int b) { return an-1){ if(bestP

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

相关主题
相关文档 最新文档