当前位置:文档之家› (强烈推荐)2013高考数学专项突破:圆锥曲线专题[1]

(强烈推荐)2013高考数学专项突破:圆锥曲线专题[1]

(强烈推荐)2013高考数学专项突破:圆锥曲线专题[1]
(强烈推荐)2013高考数学专项突破:圆锥曲线专题[1]

2013高考数学专项突破:圆锥曲线专题由@学科资料库整理,更多资料登录官网微博

目录

一、知识考点讲解 (2)

第一部分了解基本题型 (3)

第二部分掌握基本知识 (5)

第三部分掌握基本方法 (7)

二、知识考点深入透析 (13)

三、圆锥曲线之高考链接 (15)

四、基础知识专项训练 (18)

五、解答题专项训练 (27)

附录:圆锥曲线之高考链接参考答案 (33)

附录:基础知识专项训练参考答案 (38)

附录:解答题专项训练参考答案 (40)

一、知识考点讲解

一、圆锥曲线的考查重点:

高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线与曲线、曲线与曲线的关系;或考查圆锥曲线与其它知识的综合(如与函数、数列、不等式、向量、导数等)等。

二、圆锥曲线试题的特点:

1、突出重点知识的考查。直线与圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线与圆锥曲线的位置关系仍然是重点。

2、注重数学思想与方法的考查。

3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线与平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。

三、命题重点趋势:直线与圆锥曲线或圆与圆锥曲线

1、高考圆锥曲线内容重点仍然是直线与圆锥曲线或圆与圆锥曲线,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。

2、热点主要体现在:直线与圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围与位置问题;最值问题;存在性问题;弦长问题;对称问题;与平面向量或导数相结合的问题。

3、直线与圆锥曲线的题型涉及函数的与方程,数形结合,分类讨论,化归

与转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容

第一部分了解基本题型

一、高考中常见的圆锥曲线题型

1、直线与圆锥曲线结合的题型

(1)求圆锥曲线的轨迹方程:(★广东卷常在第一问考查)

这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。

(2)求直线方程、斜率、线段长度相关问题:

此类题目一般比较困难,不仅考查学生对圆锥曲线相关知识的掌握,而且还考查学生的综合处理问题的能力,还要求学生有较强的推算能力。这类题目容易与向量、数列、三角函数等知识相结合,学生在解题时,可能会因为抓不住解题要领而放弃。

(3)判断直线与圆锥曲线的位置关系:

直线与圆锥曲线的位置关系是解析几何的重点内容之一。可从代数与几何两个角度考虑,①从代数角度看,可通过将表示直线的方程,代入圆锥曲线的方程消元后所得的情况来判断,但要注意的是:对于椭圆方程来讲,所得一元方程必

是一元二次方程,而对双曲线方程来讲未必。例如:将y kx m

=+代入

22

22

1 x y

a b

-=

中消y后整理得:

222222222

()20

b a k x a kmx a m a b

----=,当

b

k

a

=±时,该方程为一次方程,

此时直线y kx m

=+与双曲线的渐近线平行,当

b

k

a

=±时,该方程为二次方程,

这时可以用判别式来判断直线与双曲线的位置关系。

②从几何角度看,可分为三类:无公共点,仅有一个公共点及两个相异的公共点,具体如下:

①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决。

②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行。

③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦。

2、圆与圆锥曲线结合的题型

这类题目要求学生对圆锥曲线、圆以及直线的知识非常熟悉,并有较强的综合能力。

3、圆锥曲线与圆锥曲线结合的题型

这类题目在高考中并不是常考题型,但也是一个命题热点。题目中经常涉及两种圆锥曲线,对这部份知识要求较高,必须熟练掌握才能进行解题,还有这类题目看起来比较复杂,容易使人产生退却之心,所以面对这种题型,我们要克服心理的恐惧,认真分析题意,结合学过的知识来解题。

4、圆锥曲线与向量知识结合的题型

在解决解析几何问题时,平面向量的出现不仅可以很明确地反映几何特征,而且又方便计算,把解析几何与平面向量综合在一起进行测试,可以有效地考查考生的数形结合思想.因此许多解析几何问题均可与向量知识进行综合。高考对解析几何与向量综合考查,采取了新旧结合,以旧带新,使新的内容和旧的内容有机地结合在一起设问,就形成了新的高考命题的热点。

二、常见的一些题型:

题型一:数形结合确定直线和圆锥曲线的位置关系;

题型二:弦的垂直平分线问题;

题型三:动弦过定点的问题;

题型四:过已知曲线上定点的弦的问题;

题型五:共线向量问题;

题型六:面积问题;

题型七:弦或弦长为定值问题;

题型八:角度问题;

问题九:四点共线问题;

问题十:范围问题(本质是函数问题);

问题十一、存在性问题:(存在点,存在直线y kx m =+,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)。

三、热点问题:

1、定义与轨迹方程问题;(★广东卷常在第一问考查)

2、交点与中点弦问题;

3、弦长及面积问题;

4、对称问题;

5、最值问题;

6、范围问题;

7、存在性问题;

8、定值、定点、定直线问题。

第二部分 掌握基本知识

1、与一元二次方程20(0)ax bx c a ++=≠相关的知识:(三个“二次”问题) (1)判别式:24b ac ?=- 。

(2)韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,

则 1212,b c

x x x x a a

+=-= 。

(3)求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,

1/2

x =

。 2、与直线相关的知识:

(1)直线方程的五种形式:点斜式、斜截式、两点式、截距式、一般式。 (2)与直线相关的重要内容:① 倾斜角与斜率:tan ,[0,)k ααπ=∈;

点到直线的距离公式:d =

(3)弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:

12AB x =

-=

(或12AB y =-,

较少用)。

(4)两条直线111222:,:l y k x b l y k x b =+=+的位置关系:

① 12121l l k k ⊥?=-; ② 212121//b b k k l l ≠=?且。

(5)中点坐标公式:已知两点1122(,)(,)A x y B x y ,,若点(,)M x y 是线段AB 的中点,

则 1212

,y 22

x x y y x ++=

=。 3、圆锥曲线的重要知识:

考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理科要求有所不同。

文科:掌握椭圆,了解双曲线及抛物线;理科:掌握椭圆及抛物线,

了解双曲线。

(1)、圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何图形。

(2)、圆锥曲线的标准方程:

①椭圆的标准方程:

22222

221(0)x y a b a b c a b

+=>>=+且 或

22

1(0,0)x y m n m n m n

+=>>≠且;

2a =)

②双曲线的标准方程:22

222221(0,0)x y a b c a b a b

-=>>=+且 或

22

1(0)x y m n m n

+=?<;

(距离式方程:|2a =) ③抛物线的标准方程:22(0)y px p =>,还有三类。

(3)、圆锥曲线的基本性质:必须要熟透,特别是离心率,参数,,a b c 三者的关

系,p 的几何意义等。

(4)、圆锥曲线的其它知识:(了解一下,能运用解题更好)

①通径:22

222b b p a a

椭圆:;双曲线:;抛物线:

②焦点三角形面积公式:122tan 2F PF P b θ

?=在椭圆上时,S , 12

2

1

tan 2

F PF P b θ?=在双曲线上时,S ; (

22

1212121212||||4,cos ,||||cos ||||

PF PF c

F PF PF PF PF PF PF PF θθθ+-∠==?=?)

③焦半径公式:00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,

(简记为“左加右减,上加下减”);

0||x e x a ±双曲线焦点在轴上时为;

11||,||22

p p

x x y +

+抛物线焦点在轴上时为焦点在y 轴上时为。

4、常结合其它知识进行综合考查:

(1)圆的相关知识:两种方程,特别是直线与圆、两圆的位置关系。

(2)导数的相关知识:求导公式及运算法则,特别是与切线方程相关的知识。

(3)向量的相关知识:向量数量积的定义及坐标运算,两向量的平行与垂直的

判断条件等。

(4)三角函数的相关知识:各类公式及图象与性质等。

(5)不等式的相关知识:不等式的基本性质,不等式的证明方法,均值定理等。

第三部分 掌握基本方法

一、圆锥曲线题型的解题方法分析

高考圆锥曲线试题常用的数学方法有:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等。 1、解题的通法分析:

高考数学试题特别注重对中学数学通性通法的考查,这符合高考命题原则:考查基础知识,注重数学思想,培养实践能力。中学数学的通性通法是指数学教材中蕴涵的基本数学思想(化归思想、转化思想、分类思想、函数方程的思想、

数形结合的思想)和常用的数学方法(数形结合,配方法,换元法,消元法,待定系数法等)。

解决圆锥曲线这部分知识有关的习题时,我们最常用的数学方法有数形结合,待定系数法,化归转化等。在求解直线与圆锥曲线的问题时我们一般都可以将直线方程与圆锥曲线方程联立,得到一个方程组,通过消元得到一个一元二次方程再来求解。就是要利用已知条件找到参数与参数之间或是与已知量之间的关系,这时一般会用到韦达定理进行转化。例如要判断直线与圆锥曲线的位置关系,我们就可以联立直线方程与圆锥曲线方程,消y 得到一个关于x 的一个一元二次

方程,然后我们就可以根据一个一元二次方程的△=2

4b ac -的值来判断。

直线与圆锥曲线的位置关系的判断:(直线与圆锥曲线的位置关系有相交、相切、相离)

设直线L 的方程是:0Ax By c ++=,圆锥曲线的C 方程是:(,)0f x y =,则由

(,)0

Ax By c f x y ++=??

=?消去y 得:20(0)ax bx c a ++=≠ (*) 设方程(*)的判别式是△=24b ac -,则 (1)若圆锥曲线(,)0f x y =是椭圆

若△=24b ac ->0?方程(*)有两个不等实根?直线L 与椭圆C 相交?直线与椭圆C 有两个不同的公共点。

若△=24b ac -=0?方程(*)有两个相等的实根?直线L 与椭圆C 相切?直线与椭圆C 只有一个公共点。

若方程△=24b ac -<0?方程(*)无实根?直线L 与椭圆C 相离?直线与椭圆无公共点。

(2)若圆锥曲线(,)0f x y =是双曲线

若△=24b ac ->0?方程(*)有两个不等实根?直线L 与双曲线C 相交?直线与双曲线C 有两个不同的公共点。

若△=24b ac -=0?方程(*)有两个相等的实根?直线L 与双曲线C 相切?直线与双曲线C 只有一个公共点。

若△=24b ac -<0?方程(*)无实根?直线L 与双曲线C 相离?直线与双曲线

C无公共点。

注意当直线L与渐近线平行,直线L也与双曲线是相交的,此时直线L与双曲线只有一个公共点.故直线L与双曲线C只有一个公共点时,直线L与双曲线可能相交也可能相切。

(3)若圆锥曲线(,)0

f x y=是抛物线

若△=24

->0?方程(*)有两个不等实根?直线L与抛物线C相交?直线

b ac

与抛物线C有两个不同的公共点。

若△=24

-=0?方程(*)有两个相等的实根?直线L与抛物线C相切?直

b ac

线与抛物线C只有一个公共点。

若△=24

-<0?方程(*)无实根?直线L与抛物线C相离?直线与抛物线

b ac

C无公共点。

注意当直线L与抛物线的对称轴平行时,直线L与抛物线C只有一个公共点,此时直线L与抛物线C相交,故直线L与抛物线C只有一个公共点时可能相交也可能相切。

系统掌握求曲线(轨迹)方程的常用方法(直译法、定义法、待定系数法、动点转移法、参数法等);掌握综合运用直线的基础知识和圆的性质,解答直线与圆的位置关系的思想方法;熟练掌握圆锥曲线的标准方程、几何性质及其应用;掌握与圆锥曲线有关的参数讨论问题的解法;掌握解答解析几何综合问题的思想方法,提高分析问题和解决问题的能力。

2、合理选择适当方法优化解题过程:

数学的解题过程一般是由理解问题开始,经过探讨思路,转化问题直至解决问题题目的意思至为重要,然后我们才能分解问题,把一个复杂的问题转化成几个简单的熟悉的问题,通过逐步分解,进而解决问题。所以在解题前,首先我们应该从全方位、多角度的分析问题,根据自己的知识经验,适时的调整分析问题的角度,再充分回忆与之相关的知识点把陌生的问题转化为一些熟悉的题型,找到一个正确的简便的解题方法。

合理选择方法,提高运算能力。解析几何问题的一般思路易于寻找,但运算量大,所以合理选择运算方法可以优化解题过程、减少运算量.通常减少运算量的方法有合理建立坐标系;充分利用定义;充分利用平面几何知识;整体消元法

等。

对圆锥曲线的基础知识首先要扎实,关于解题技巧可以考虑下面几点: ①某些问题要注意运用圆锥曲线定义来解题; ②与弦有关问题多数要用韦达定理; ③与中点有关问题多数要用“点差法”; ④计算能力一定要过硬,要有“不怕麻烦的劲头”; ⑤与角度,垂直有关问题,要恰当运用“向量”的知识。

直线和圆锥曲线的问题是解析几何中的典型问题,也是考试中容易出大题的考点。解决这类问题的关键就是要明白直线和圆锥曲线问题的本质。直线截圆锥曲线就会在曲线内形成弦,这是一个最大的出题点,根据弦就可以涉及到弦长;另外直线和圆锥曲线有交点,涉及到交点就会涉及到坐标的一些问题,若是再和交点、原点等一些特殊点构成一些关系还会涉及到角度问题。解析几何就是利用代数方法解决几何问题,因此这些几何上的角度,弦长等一些关系都要转化成坐标,以及方程的形式。但是问题的本质还是几何问题,因此更多的利用圆锥曲线的几何性质可以化简计算。比如,在坐标法中向量是和几何问题结合最紧密的方法,因此涉及到角度等一些问题可以用向量去做,这样会比直接利用直线的夹角公式计算要稍简单一些。

这类题的计算量一般会比较大,在解题时可以使用一些小技巧简化计算。比如涉及到焦点的问题看看可不可以用圆锥曲线的第二定义转化。利用第二定义就可以将点到点之间的距离转化为点到直线之间的距离,而且一般情况下直线还是垂直于x 轴或y 轴的,这样直接就和坐标联系上了,这种方法在圆锥曲线中含有参数的时候还是挺好使的,一般在答题中应用不多,小题中会有不少应用,因此还是要掌握好第二定义。 3、解题中应避免的误区:

在“圆锥曲线”内容中,为了研究曲线与方程之间之间的各种关系,引进了一些基本概念和数学方法,例如“圆锥曲线”,“曲线的方程”等概念,函数与方程的数学思想、数形结合思想、回归定义等方法,对于这类特定的概念理解不准确,对这些方法的掌握存在某些缺陷,解题时就容易进入误区。

对圆锥曲线的两个定义在第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点12,F F 的距离的和等于常数2a ,且此常数一定要大于2a ,当常数等于12||F F 时,轨迹是线段12||F F ,当常数小于12||F F 时,无轨迹;双曲线中,

与两定点12,F F 的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于

12||F F ,定义中的“绝对值”与2a <12||F F 不可忽视,若2a =12||F F ,则轨迹是以12,F F 为端点的两条射线,若2a >12||F F ,则轨迹不存在,若去掉定义中的绝对值则轨迹仅示双曲线的一支。

第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点12,F F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数a 、b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向。

判断直线与圆锥曲线的位置关系时应该注意:直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点。 二、圆锥曲线题型的常用解法: 1、定义法:

(1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将半径与“点到准线的距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法:

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用

韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法:

解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法。

点差法(中点弦问题):设()11,y x A 、()22,y x B ,()b a M ,为椭圆13

42

2=+y x 的弦AB 中点,

则有 13

42

12

1=+y x ,1342

22

2=+y x ,两式相减得 (

)()03

42

2

2

1

2

2

21

=-+-y y

x x ,

?

()()

()()

3

4

21212121y y y y x x x x +--

=+-?AB k =b

a 43-

。 (1))0(122

22>>=+b a b

y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0),则

02

020=+k b y a x ; (2))0,0(122

22>>=-b a b

y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则

02

020=-k b y a x ; (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,

即y 0k=p 。

4、数形结合法:

解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。

如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,

令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“

23+-x y ”,令2

3

+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率……

5、参数法:

(1)点参数:利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1)

(2)斜率为参数:当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。

(3)角参数:当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。

6、代入法:

这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。

二、知识考点深入透析

一、近几年文科圆锥曲线试题“知识点及问题”分析:

二、圆锥曲线试题研究:

1、曲线类型:以椭圆、抛物线为主,结合圆、直线或其它曲线进行综合考查。

2、试题特点:(1)综合性;(2)抽象性;(3)动态性;

(4)新颖性;(5)问题的连惯性;(6)含参数。

3、试题中的问题类型:

(1)求方程或轨迹类型:常在第一问中设置,以圆及圆锥曲线的方程为主;(2)与最值相关的类型:按题意要求,满足最大或最小值时,求某点或某知识;(3)存在性类型:据题意,判断是否存在点或图形满足题意,要说明理由;(4)探究性类型:根据题意,探究问题的多样性;

(5)证明类型:根据给定条件,证明不等式或等式成立;

(6)取值范围类型:设置参数,根据题意,求参数的取值范围或求其它的取值范围。

4、解题常用的知识要点:

(1)各圆锥曲线的知识,特别是椭圆、抛物线的定义;

(2)圆、直线的相关知识,特别是直线的斜率知识;

(3)求曲线轨迹的方法;

(4)与最值相关的两种距离:点到直线的距离及两点间的距离;

(5)一元二次方程(组)及不等式的相关知识:判别式,韦达定理,解方程组,均值定理等;

(6)与导数相关的知识,特别是求切线方程的知识。

5、常用的数学思想: (1)数形结合; (2)分类讨论。

三、圆锥曲线之高考链接

2012文20、(本小题满分14分)

在平面直角坐标系xOy 中,已知椭圆1C :22

221x y a b

+=(0a b >>)的左焦点

为1(1,0)F -,且点(0,1)P 在1C 上. (1)求椭圆1C 的方程;

(2)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.

2011文21、(本小题满分14分)

在平面直角坐标系xOy 中,直线:2l x =-交x 轴于点A ,设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠. (1)当点P 在l 上运动时,求点M 的轨迹E 的方程;

(2)已知(1,1)T -.设H 是E 上动点,求||||HO HT +的最小值,并给出此时点H 的坐标;

(3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.

2010文21、(本小题满分14分)

已知曲线2n C y nx =:,点(,)(0,0

)n n n n n P x y x y >>

是曲线n C 上的点(1,2n =…).

(1)试写出曲线n C 在点n P 处的切线n l 的方程,并求出n l 与y 轴的交点n Q 的坐标; (2)若原点(0,0)O 到n l 的距离与线段n n P Q 的长度之比取得最大值,试求试点n P 的坐标(,n n x y );

(3)设m 与k 为两个给定的不同的正整数,n x 与n y 是满足(2)中条件的点n P 的坐标,

证明:1

s

n =<(1,2,)s =…

2009文19、(本小题满分14分)

已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为

2

3

,两个焦点分别为1F 和2F ,椭圆

G

上一点到1F 和2F 的距离之和为

12.圆

k C :0214222=--++y kx y x )(R k ∈的圆心为点k A . (1)求椭圆G 的方程; (2)求21F F A k ?的面积; (3)问是否存在圆k C 包围椭圆G?请说明理由。

2008文20、(本小题满分14分)

设0b >,椭圆方程为22

2212x y b b

+=,抛物线方程为28()x y b =-.如图6所

示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

2007文19、(本小题满分14分)

在平面直角坐标系xOy

中,已知圆心在第二象限、半径为C 与直线

y x =相切于坐标原点0.椭圆22

219

x y a +=与圆C 的一个交点到椭圆两焦点的距离

之和为10.

(1)求圆C 的方程;

(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.

四、基础知识专项训练

1、圆锥曲线的定义:

图6

(1)8=表示的曲线是 。

(2)已知点)0,22(Q 及抛物线4

2

x y =上一动点(,)p x y ,则y+|PQ|的最小值

是 。

2、圆锥曲线的标准方程:

(1)方程22Ax By C +=表示椭圆的充要条件是什么?

(2)已知方程1232

2=-++k

y k x 表示椭圆,则k 的取值范围为 。

(3)若R y x ∈,,且62322=+y x ,则y x +的最大值是_ ,22y x +的最小值是 。

提示:应用线性规划方法解。

(4)方程22Ax By C +=表示双曲线的充要条件是什么?

(5)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 。

(6)定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

3、圆锥曲线焦点位置的判断:(首先化成标准方程,然后再判断)

已知方程1212

2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围

是 。

4、圆锥曲线的几何性质:

(1)若椭圆1522=+m y x 的离心率5

10

=

e ,则m 的值是 。

(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆

长轴的最小值为 。

(3)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于 。

(4)双曲线221ax by -=:a b = 。

提示:应用离心率的第二道公式。

(5)设双曲线122

22=-b

y a x (a>0,b>0)中,离心率e ∈[2,2],则两条渐近线夹

角(锐角或直角)θ的取值范围是 。

(6)设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为 。

5、直线与圆锥曲线的位置关系:

(1)若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是 。

(2)直线y ―kx ―1=0与椭圆

22

15x y m

+=恒有公共点,则m 的取值范围是 。

(3)过双曲线12

12

2=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有 条。

(4)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有 条。

(5)过点(0,2)与双曲线116

92

2=-y x 有且仅有一个公共点的直线的斜率的取值范

围为 。

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关主题
文本预览
相关文档 最新文档