当前位置:文档之家› 三极管混频电路设计

三极管混频电路设计

三极管混频电路设计
三极管混频电路设计

摘要 (3)

第一章系统分析 (7)

1.1设计课题任务 (7)

1.2课题基本原理 (7)

1.3混频电路的分类 (8)

1.4混频电路的实际应用 (9)

第二章电路图及原理分析 (10)

2.1 本地振荡电路 (10)

2.2 振荡器起振条件 (10)

第三章设计课题的参数选择及调试 (13)

3.1电路性能分析 (13)

3.2电路参数选择 (14)

3.3设计课题的调试 (15)

第四章结论 (17)

致谢 (18)

参考文献 (19)

附录 (20)

第一章系统分析

1.1设计课题任务

设计一个三极管混频器。要求中心频率为10MHz, 本振频率为16.455MHz 。

1.2基本原理

混频电路是一种频率变换电路,是时变参量线性电路的一种典型应用。如一个振幅较大的振荡电压(使器件跨导随此频率的电压作周期变化)与幅度较小的外来信号同时加到作为时变参量线性电路的器件上,则输出端可取得此二信号的差频或和频,完成变频作用。它的功能是将已调波好的载波频率变化换成固定的中频载频率。而保持其调制规律不变,也就是说它是一个线性频率谱搬电路,对于调幅波、调频波或调相波通过变频电路后仍然是调幅波,调频波或调相波。只是其载波频率变化了,其调制规律是不变的。

以下是调幅波频率形图和混频前后的频谱原理图:

图1.2调幅波变频波形图

调幅波的混频示意图中,混频器上加了俩个信号-载频为1.7~6MHZ 的调幅波Vs (输入信号)和频率为2..165~6.465MHZ 的等幅波Vo(本振信号),经过变

非线性器件 带通滤波器 本地振荡器

输入 输出

图1.1调幅波

频后,输出为465KHz的中频调波Vi。输出的中频调幅波与输入的高频调幅波调幅规律完全相同,即载没振幅的包络形状完全相同,唯一差别就是频率不同。

下面我们来研究变频是频谱的变化,从示意图我们可以看出经过混频,高频已调波变成中频已调波,只是把已调波的频谱从高频率位置到了中频率位置,输入信号中每个频率分量的位置及相对大小、相互间距不发生变化,当应注意高频率已调波的上、下边频搬到中频位置后,分别成了下、上边频。

图1.3变频前后的频谱图

1.3混频电路的分类

混频电路是基于某些器件的非线性远离工作的,其核心部件就是非线性元件。根据所用器件不同,混频器主要有:

1)晶体管混频器;

2)二极管混频器;

3)场效应管混频器;

4)差分对混频器。

根据电路结构分有:

1)单管混频器;

2)平衡混频器;

3)环形混频器。

1.4混频电路的实际应用

超处差式接收机的主要特点是,把被接收的已调波信号的载波的频率ωc 先变为频率较低的(或较高的)但是固定不变的中间频率ωi(称为中频),而其振幅的变化规律保持不变,即是由低频调制信号Ω来决定,然后利用中频放大器加以放大送至检波器进行检波。解调出与调制信号UΩ(t) 线性关系的输出电压。随后通过低频电压放大、功率放大、由扬声器还原为原来的声音,因为中频放大器的中心频率是固定不变的,中频放大器容易取得较大的增益和近似理想的选择性曲线。而接收器的主要放大倍数由中频放大承担所以整机增益在接收频率范围内,高端和底端的差别就会很小,即易于获得较高的灵敏度和临道选择性。对于调谐来说需要对混频器的选频输入回路和本机振荡器进行同步调谐,这是容易实现的。

第二章电路图及原理分析

1.1本地振荡电路

本地振荡器是本设计电路的重要部分,同时也是超外差式接收机的主要部

分。其主要作用是将直流信号变为高频正弦信号,将产生的正弦高频信号与输入的高频调幅信号相乘得到0f +1f 、0f -1f 的信号,其中0f 为正弦信号频率,1f 为调幅信号频率,通过中频滤波器得到中频信号0f -1f 。即本地振荡器主要是产生一个和调幅信号相乘的高频信号,通过信号相乘以得到新的频率,若振荡器不能够稳定工作,就会使产生的中频信号不稳,为此我们必须保证振荡器的稳定性,故这里采用高稳定度的石英晶体振荡器。

1.2振荡器起振条件

正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。反馈

式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。所谓振荡器是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。负阻式振荡器则是将一个呈现负阻性的有源器件直接与谐振电路相接,产生振荡。本设计中用的是反馈式振荡器,图1.1所示即为LC 三点式反馈式振荡器的原理图。通过我们对高频电路的学习知道,三点式振荡器的构成法则是:1X 与2X 的符号相同,与3X 的符号则相反。凡是违反这一准则的电路不能产生振荡。

图 1.1本振电路原理图

1.2石英晶振工作原理

我们知道由LC 构成的振荡器,它们的日频率稳定度大约为210-~310-的数量级。即使采用了一系列稳频措施,一般也难以获得比410-更高的频率稳定度。但是,实际情况往往需要更高的频率稳定度。例如本文的本振电路由于它的稳定性直接决定了输出中频信号的稳定度,因此其频率稳定度就要求810-~910-。显然,普通的LC 振荡器是不可能满足上述要求的。为此本设计电路采用了石英晶体振荡器。石英晶体的物理化学性能都十分稳定,因此它的等效谐振回路有很高

的标准性。其等效电路如图1.2所示,晶体的参数q L 很大、q C 很小、q r 也不大。因此,晶体的Q 値可高达数百万数量级。又由于o C ﹥﹥q C 所以石英晶体工作时,在串并联谐振频率之间很狭窄的工作频带内,具有极陡峭的电抗特性曲线,因而对频率变化具有极灵敏的补偿能力。 本课程设计---晶体三极管混频器实验电路如图

图 1.2晶体三极管混频器实验电路

本次课设所使用的石英晶体振荡电路,由图中可以看出是石英晶体并联型振荡电路,在电路中石英晶振显感性,晶体管发射极和电容C3、C4相连其阻抗性质相同,同为容性;集电极和C3、晶振相连,而晶振又显感性所以阻抗性质相反;基极和C4、晶振相连同理其阻抗性质也是相反的,故此振荡器满足振荡

条件,其类似于考毕兹振荡电路。振荡频率公式为:

34

34

t C C C C C ?=

+

L

C f t π21=

查阅石英晶体资料得11MHZ 振荡时其等效电感uH L 4.8≈,当电容选取为50pF

时其振荡频率为:

1

10.982t f MHZ C L

π=

=

电路中其它主要器件的参数如下1215, 1.8R K R K =Ω=Ω为基极偏置电阻,用来给给三极管确定一个合适的静态工作点,C 1=1uF 为基极耦合电容,L1=10mH 为扼流圈,防止突变对三极管造成损害,3100R =Ω用来限制射极电流,C 2=1uF 为旁路电容C 5=1uF 为电源和地的去耦电容。

由于石英晶体是本电路的核心部件,因此在选用晶振时要注意以下几点:

石英晶体的激励电平应在规定范围内。过高的激励功率会使石英晶体内部温度升高,损坏石英。

在并联晶体振荡器中,石英晶体起等效电感作用,若作为容抗,则在石英晶片失效时,石英振荡器的支架电容还存在,线路仍有可能满足振荡条件而振荡,石英晶体振荡器就失了作用。

第三章 设计课题的参数选择

3.1电路性能分析

由以上分析知在设计电路时须注意变频跨导与本振电压和偏置电压的关系线。只有把握好这一关系,设计出来的电路才能满足我们的设计要求。本文混频

电路所采用的晶体三极管是2N3904,根据其变频跨导与本振电压和偏置电压的关系曲线设计电路。

其中V2为11MHZ 的本振信号,V1为10.535MHZ 的调幅输入信号现对其参数做一简单推导,

设60.325cos(2210)l U t V π=? 650[10.8c o s (200)]c o s (21.

0710)

s U m V t t ππ=+? 则二式相乘得

668.12[10.8cos(200)][cos(0.9310)cos(43.0710)]o U mV t t t πππ=+?+? 经过中频滤波后为

68.12[10.8cos(200)]cos(0.9310)o U mV t t ππ=+?

此信号的载波频率为6

0.93100.45622f MHZ ωπππ?===,即我们所需要的中频信号,其实际输出波形的频率为465~470MHZ 的信号,振幅为0.835V 左右,与理论值8.12mV 不符,这主要是因为中频滤波网络的放大以及变压器的升压作用的结果。

电路中其它一些重要的参数如下:电路图中AM 用来代表接收到的调幅波,V2代表前面本振电路产生的振荡信号,C 8=10pF,C 9=2.2pF 为输入信号耦合电容,

610R K =Ω、7 2.7R K =Ω为基极偏置电阻,1360R K =Ω为射极限流电阻,C 5=1500pF 为旁路电容。

另外在实际应用中变频器是存在干扰的,如果没有采取有效地措施来抑制干

扰,它会给从电路带来大量谐波信号严重时会使整个电路无法工作,因此应注意以下几个问题:

正确选择中频数值。当输出频率确定后,在一个频段内的干扰点就确定了,合理的选择中频频率,可大大减少组合频率干扰的点数,并将阶数较低的干扰排除掉。

正确选择变频器的工作状态,减少组合频率分量。应使()m g t 的谐波分量尽可能的减少,使电路接近乘法器。

采用合理的电路形式。如平衡电路、环形电路、乘法器等,从电

路上抵消一些组合分量。

3.2电路参数选择

晶体管的原理电路如图所示,图中,本振电压0v 和信号电压s v 都加在 晶体管的基极与发射极之间,在混频过程中,跨导随本振电压做周期变换,混频管可看成线性参变组件。当高频信号通过线性参变组件时,便产生各种频率分量,达到变频目的。

图3.1 晶体管原理电路

晶体管混频器的电路有多种形式。一般按照晶体管组态和本地振荡电压注入点的不同有图4所示的四种基本电路。图中(a )和(b )为共发混频电路。图(a )信号电压由基极输入,本振电压也由基极注入。图(b )表示信号电压由基极输入,本振电压由发射极注入。图(c )和(d )为共基混频电路。图(c )和(d )为共基混频电路。图(c )表示信号电压由发射极输入,本振电压也由发射极注入。图(d )表示信号电压由发射极输入,本振电压由基极注入。这四种电路组态各有其优缺点。

图3.2晶体管混频器的电路4种形式

图(a)电路对振荡电压来说是共发电路,输入阻抗较大,因此用做混频时,本地振荡电路比较容易起振,需要的本振注入功率也较小。这是它的优点。但是因为信号输入电路与振荡电路相互影响较大(直接耦合),可能产生牵引现象。这是它的缺点。当ωs与ω0的相对频差不大时,牵引现象比较严重,不宜采用此种电路。

图(b)电路的输入信号与本振电压分别从基极输入和发射极注入,因此,相互干扰产生牵引现象的可能性小。同时,对于本振电压来说是共基电路,其输入阻抗较小,不易过激励,因此振荡波形好,失真小。这是它的优点。但需要较大的本振注入功率;不过通常所须功率也只有几十mW,本振电路是完全可以供给的。因此,这种电路应用较多。

图(c)和(d)两种电路都是共基混频电路。在较低的频率工作时,变频增益低,输入阻抗也较低,因此在频率较低时一般都不采用。但在较高的频率工

f比共发电路的βf要大很多,所以变频增作时(几十MHz),因为共基电路的

α

益较大。因此在较高频率工作时也有采用这种电路的。

3.3 设计课题的调试

混频器的各种非线性干扰是很重要的问题,并且在讨论各种混频器时,把非线性产物的多少,作为衡量混频器质量的标准之一非线性干扰中很重要的一类

就是组合频率干扰和副道波干扰。这类干扰是混频器特有的。还有一些其他的干扰,比如交调互调,阻塞干扰等。

干扰的解决办法:

1:选择合适的中频。如果将中频选在接收信号频段之外, 可以避免中频干扰和最强的干扰哨声

2:提高混频电路之前选频网络的选择性, 减少进入混频电路的外来干扰, 这样可减小交调干扰和互调干扰。对于镜频可采用陷波电路将它滤掉。

3:采用具有平方律特性的场效应管、 模拟乘法器或利用平衡抵消原理组成的平衡混频电路或环形混频电路, 可以大大减少无用组合频率分量的数目, 尤其是靠近有用频谱的无用组合频率分量, 从而降低了各种组合频率干扰产生的可能性。

在本课程设计中,高频干扰由LC 谐振网络及RC 有源滤波器共同完成,故效果较好。

滤波器由RC 网络和运放组成,具有高输入阻抗低输出阻抗的特点,具有缓冲作用。在设计过程中取f0为6.455MHz, 通带增益1,带宽500kHz. 根据公式:

F F F f C μμμ00000155.0)(6455000

10

)(100===

则:……………………………3.1

Ω=??-?-=-

=k CA Q R uo 469.2056455000

2)1(00000155.0500/645501πω ……………

…3.2

Ω

=-????=+=

256.618)

1)500/6455(2(6455000200000155.0500

/6455)2(2202πωuo A Q C Q R …………………………………

……3.3

032ωC Q

R =

Ω=???=k 938.4106455000

200000155.0500/64552π …………………………3.4

由于本实验的目的是演练二阶有源滤波器的设计,电路中采用理想元件。实际电路中可采用精密可调元件代替。

第四章结论

本次的课程设计让我知道了团队合作的总要性,我们在一起讨论,取长补短,学到了不少的知识。经过大家的共同努力把课程设计的实物给做出来,虽然做的不是很完美,但也是我们劳动的成果。可能会有很多的缺点,但是我们以后会改进的。从画图到焊接我都得到许多锻炼,一次次的焊接也逐渐熟练起来,自己也很开心,毕竟自己在进步。虽然比起焊的好的同学还有差距,但至少比前一次好的多。由于实践和经验的关系,不足之处望加以批评指正,以便提高和完善。

虽然这次程设计很快就过去啦,但这次对于我来说意义是不同的,真的让我学到了不少的东西,当然这次对于我来说也是非常痛苦的。因为如果一个事情没有完成的话,我会无法静下心来去做另一件事。但这次的课程设计却不是那么轻而易举可以完成的。所以我必须花全部的精力完成它。不过这也算是我的一个优点了,什么事情都是尽全力去完成。我想在以后的工作中它一定会对我有很大的帮助的。设计终于能上句号,首先要感谢谢我的指导老师张松华老师,她不仅在学术上予以指导,制定课程设计课题,并且给予我极大的鼓励和支持,使我能一直有坚定的信心和饱满的热情来完成我的设计。在设计过程中遇到很多问题贾老师总是引导我去寻找引发问题的的原因并提出解决的问题额方法。还要感谢所有帮助过的同学。因为有了他们的帮助,我才能更好的完成任务。

致谢

设计终于能上句号,首先要感谢谢我的指导老师***老师,她不仅在学术上予以指导,制定课程设计课题,并且给予我极大的鼓励和支持,使我能一直有坚定的信心和饱满的热情来完成我的设计。在设计过程中遇到很多问题贾老师总是引导我去寻找引发问题的的原因并提出解决的问题额方法。还要感谢所有帮助过的同学。因为有了他们的帮助,我才能更好的完成任务。在此,祝老师工作顺利,身体健康,家庭幸福。祝同学们学业有成,心想事成。

参考文献

[1]曹才开.《高频电子线路原理与实践》.2010年6月.第1版.中南大学出版社

[2]黄智伟.《基于Multisim 2001的电子电路计算机仿真设计与分析》.2004年7月,第1版.电子工业出版社

[3]曹才开.《高频电子线路原理与实践》.中南大学出版社.2010年

[4]阎石.《数字电子技术》.第四版.高等教育出版社.2009年

[5]谢自美.《电子线路设计与实验测试》.第二版.华中科技大学.2010年[6]康华光.《电子技术基础模拟部分》.第五版.华中科技大学出版社.2005.7 [7]曹才开.《电路分析基础》.第四版.北京.清华大学出版社.2009

附录元件清单

1 三极管BCV7

2 1个

2 滑动变阻器电阻10k 1个

3 电阻8k 1个

4 电阻2k 1个

5 电阻80K 1个

6 电容器33pF 3个

7 电容器10nF 4个

8 电容器1nF 2个

9 电容器10uf 2个

10 电感470uh 2个

11 电感100uh 2个

12 电感10uh 1个

电路设计图

三极管流水灯电路设计

三极管流水灯电路设计 王雅 20111041105;韦梦娜 20111041107 摘要:3组12只LED流水灯是特别针对电子装配与调试技能设计出来的,值得学习和电路分析。本文分析了该流水灯电路的特点及其电路工作原理的说明。 关键字:3组12只LED流水灯;电路设计;循环。 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切。各种小套件层出不穷,功能多样。本文所设计的电子制作可以说是电子初学者学习电子的最佳入门制作!其制作方式容易,趣味横生,更能提高初学者的动手能力!让初学者在制作学习中感受电子技术带来的乐趣! 2 系统的功能描述 这款3组12只LED流水灯具有制作容易、有趣易学的特点,电路焊接成功后,装入电池,即可正常工作,3组12只发光二极管便会被轮流点亮,不断的循环发光,达到流动的效果。 3 设计原理 3.1 电路工作原理说明: 本电路是由3只三极管组成的循环驱动电路。每当电源接通时,3只三极管会争先导通,但由于元器件存在差异,只会有1只三极管最先导通。这里假设V1最先导通,则V1集电极电压下降,使得电容C2的左端下降,接近0V。由于电容两端的电压不能突变,因此此时V2的基极也被拉到近似0V,V2截止,V2的集电极为高电压,故接在它上面的发光二极管LED5-LED8被点亮。此时V2的高电压通过电容C3使V3基极电压升高,V3也将迅速导通,因此在这段时间里,V1、V3的集电极均为低电压,因此只有LED5-LED8被点亮,LED1-LED4、LED9-LED12熄灭。但随着电源通过电阻R3对C2的充电,V2的基极电压逐渐升高,当超过0.7V时,V2由截止状态变为导通状态,集电极电压下降,LED5-LED8熄灭。与此同时,V2的集电极下降的电压通过电容C3使V3的基极电压也降低,V3由导通变为截止,V3的集电极电压升高,LED9-LED12被点亮。接下来,电路按照上面叙述的过程循环,3组12只发光二极管便会被轮流点亮,不断的循环发光,达到流动的效果。改变电容C1、C2、C3的容量可以改变循环速度,容量越小,循环速度越快。电源使用2节5号干电池即可。 3.2元件清单: 3.3 电路图

三极管混频器

通信电子线路课程设计说明书三极管混频器设计 系、部:电气与信息工程系 学生姓名: 指导教师:贾雅琼职称讲师 专业:电子信息工程 班级:电子0902 完成时间:2011年12月

设计任务书 一、设计目的 学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《通信电子线路》中所学的理论知识和实验技能,掌握通信电子系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、设计内容 设计一个三极管混频器。 要求输入信号的中心频率:f0=10MHz, 本振频率:fI=16.455MHz。 三、设计要求 1、打印《通信电子线路》课程设计说明书一份,给出课题的设计和制作、 调试过程; 2、根据技术指标要求,画出设计电路图,画出印制电路板图; 3、设计时间:一周; 4、制作PCB板; 5、人员分组:一人一组一实物,选择同一课题的电路不能相同。 四、参考资料 [1]赵淑范.通信电子线路实验与课程设计[M].北京:清华大学出版社, 2009.1; [2]杨翠娥.高频电子线路实验与课程设计[M].哈尔滨:哈尔滨工程大学出 版社,2001.9; [3]杨霓清.高频电子线路实验与综合设计[M].北京:机械工业出版社, 2009.4。 电子信息教研室 2011年9月16日

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

三极管在电路中的使用(超详细有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接 点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电 子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 Vcc 输入电压Vin则控制三极管开关的开启(open)与闭合(closed )动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由 于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off )区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON )。 1三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低 于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上, 则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。 欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的 集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: Vcc Ic(tfefi)二—— R LD 因此,基极电流最少应为: 丁Ic(sat) VCC T 二一二閒

流水灯电路的制作

流水灯电路的制作 一、概述: 随着电子技术的快速发展尤其是数字技术的突飞猛进,多功能流水灯凭着简易,高效,稳定等特点得到普遍的应用。在各种娱乐场所、店铺门面装饰、家居装潢、城市墙壁更是随处可见,与此同时,还有一些城市采用不同的流水灯打造属于自己的城市文明,塑造自己的城市魅力。目前,多功能流水灯的种类已有数十种,如家居装饰灯、店铺招牌灯等等。所以,多功能流水灯的设计具有相当的代表性。 多功能流水灯,就是要具有一定的变化各种图案的功能,主要考察了数字电路中一些编码译码、计数器原理,555定时器构成时基电路,给其他的电路提供时序脉冲,制作过程中需要了解相关芯片(NE555、CD4017)的具体功能,引脚图,真值表,认真布局,在连接过程中更要细致耐心。 二、电路原理图 三、电路工作原理 多功能流水灯原理电路图如上图所示。原理电路图由振荡电路、译码电路和光源电路三部分组成。本文选用的脉冲发生器是由NE555与R2、R3及C1组成的多谐振荡器组成。主要是为灯光流动控制器提供流动控制的脉冲,灯光的流动速度可以通过电位器R3进行调节。由于R3的阻值较大,所以有较大的速度调节范围。灯光流动控制器由一个十进制计数脉冲分配器CD4017和若干电阻组成。 CD4017的CP端受脉冲发生器输出脉冲的控制,其输出端(Q0~Q9)将输入脉冲按输入顺序依次分配。输出控制的脉冲,其输出控制脉冲的速度由脉冲发生器输出的脉冲频率决定。10

个电阻与CD4017的10个输出端Q0~Q9相连,当Q0~Q9依次输出控制脉冲时10个发光二极管按照接通回路的顺序依次发光,形成流动发光状态,即实现正向流水和逆向流水的功能。电源电路所采用的电源为。 四、板的设计 五、元器件清单 六、电路的组装与调试 1、电路的组装方法和步骤 (1)筛选元器件。对所有购置的元器件进行检测,注意它们的型号、规格、极性,应该保质量。 (2)按草图在PCB板上组装并焊接。 要求:①元器件布局整齐、美观,同类型元器件高度一致;

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

三极管简单用用

一、最简单的电路 二、第二简单的电路

这是第二个最简单的电路。已添加第二个晶体管将你的手指传递的电流进行放大。该晶体管的增益约200,你的手指只需轻轻触摸图中的两个点,LED就会被点亮。增添的三极管将通过你的手指的电流放大了约200倍再提供给原三极管,总放大倍数约40000倍。 三、放大八百万倍的高增益电路 该电路有极高的放大倍数,它可以非接触检测电源线是否通电。只需将它靠近墙壁,它会检测到电源线的位置。它有约200×200×200 = 8,000,000的增益,该电路的输入端阻抗非常高,能够检测周围是否存在电场。

这张照片显示了电路的连接,检测端接有一小块铜箔板,能增强检测电场的能力。 在上面的电路基础上,这个电路增加一个压电蜂鸣器,当检测到市电时,LED点亮同时蜂鸣器会发声。 三极管开关电路设计 下面主要通过使用NPN三极管进行开关电路设计,PNP三极管的开关电路与NPN的类似。 一、三极管开关电路设计的可行性及必要性 可行性:用过三极管的人都清楚,三极管有一个特性,就是有饱和状态与截止状态,正是因为有了这两种状态,使其应用于开关电路成为可能。 必要性:假设我们在设计一个系统电路中,有些电压、信号等等需要在系统运行过程中进行切断,但是又不能通过机械式的方式切断,此时就只能通过软件方式处理,这就需要有三极管开关电路作为基础了。 二、三极管基本开关电路概述 如下(图.1)就是一个最基本的三极管开关电路,NPN的基极需连接一个基极电阻(R2)、集电极上连接一个负载电阻(R1) 首先我们要清楚当三极管的基极没有电流时候集电极也没有电流,三极管处于截止状态,即断开;当基极有电流时候将会导致集电极流过更大的放大电流,即进入饱和状态,相当于关闭。当然基极要有一个符合要求的电压输入才能确保三极管进入截止区与饱和区。

光控流水灯设计

编号: 课程设计(论文)说明书 题目:光控流水灯设计 院(系):信息与通信学院 专业:电子信息工程 学生姓名:段超宁 学号: 0900220411 指导教师:蒋俊正 2012年12 月10 日

摘要:光控流水灯控制器是一个通过外界光线的强度来控制输出方波的频率,通过它可以自动实现一些控制,通过感光装置(光敏电阻),实现自动化开关有利于许多生产与生活,例如在车间里可以安装光控开关来控制车间里的照明灯,这样既利于车间的照明又有利于节约电,光足够亮时开关会自动关掉照明灯。在其他面也可以广泛应用。 光控流水灯在日常生活中的应用已经全面在市场上开始推广,但毫无疑问,这一设计的应用前景是很广阔的。本文概述了光敏电阻的基本原理和特点,并介绍了光敏电阻的基本结构和用于实现电路控制的功能;并介绍了其用于控制路灯的设计方案,并对程序进行调试及性能分析。 关键字:光敏电阻,光控流水灯

目录 1. 光敏电阻的结构与工作原理 (3) 2. 光敏电阻的主要参数 (5) 3.光敏电阻的特性 (5) 3.1 伏安特性 (5) 3.2 光谱特性 (6) 3.3 温度特性 (6) 3.4 频率特性 (6) 4 继电器的类型参数 (7) 5 稳压二极管参数 (7) 6. 三极管参数 (8) 7. 系统原理 (8) 8. 原理图 (9) 9. 工作原理及过程 (9) 10. 元件的选取列表及参数 (10) 11. 结束语 (10) 12. 附录:实物图参考 (11)

1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性, 纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。 一般希望暗电阻越大越好,亮电阻越小越好, 此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级, 亮电阻值在几千欧以下。 它是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器。它是在一块匀质的光电导体两端加上电极构成。两电极加上一定电压后,当光照射到光电导体上,由光照产生的光生载流子在外加电场作用下沿一定方向运动,在电路中产生电流,达到光电转换目的。它以其高度的稳定性而广泛地应用在自动化技术 (a) 光敏电阻结构; (b) 光敏电阻电极; (c) 光敏电阻接线图 光敏电阻结构图 金属电极 半导体 玻璃底板电源检流计R L E I (a ) (b )(c ) R a 0.050.100.150.200.25 0.300.350.40 00.20.40.60.81.01.21.4 I / m A / lm

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

三极管混频器

1.三极管混频器的设计内容及要求 1.1设计内容 在本次通信电子线路课程设计中我采用了Multisim仿真软件对三极管混频器进行设计及绘制,并模拟仿真,在仿真的基础上再做了实物。从理论上对电路进行了分析。选择合适的元器件,设计出满足要求的三极管混频器。 1.2设计要求 设计一个三极管混频器。要求中心频率为10MHz, 本振频率为16.455MHz。 1.3设计框图及原理说明 1.3.1混频原理框图 混频器是一种典型的线性时变参数电路,要完成频谱的线性搬移,关键是要获得两个输入信号的乘积,能找到这个乘积项,就可完成所需的线性搬移功能。如下图1.1为混频器的组成电路,它由非线性器件、本地振荡器和带通滤波器组成。 图1.1 混频工作原理 1.3.2混频原理说明 混频电路输入的是载频为f c 的高频已调波信号u i (t)和频率为f r的本地振 荡信号u r (t),经过非线性器件变频后输出端有两个信号的差频(f r-f c)、和频(f r+f c)及其他频率分量,再经滤波器滤掉不需要的频率分量,取差频(或和频) f I 作为中频已调波信号u I (t),即中频f I=(f r-f c),或f I=(f r+f c),从而实现变频作用。 通常从输出端取出差频的混频称为下混频,而取出和频的混频称为上混频。 本次课程设计我的电路是用10MHZ的交流信号电压源、本振电路(产生

16.455MHZ)、三极管混频器电路以及选频电路组成。信号源所产生的10MHZ 的正弦波与本振电路所产生的16.455MHZ正弦波通过三极管进行混频后产生和频、差频信号及其它频率信号,然后通过滤波网络滤掉不需要的频率分量,取出差频(6.455MHZ)的信号,即为所需的6.455MHZ信号。

三极管制作流水灯控制方法

通俗易懂的三极管工作原理 理解三极管的工作原理首先从以下两个方面来认识: 其一、制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高。 其二、三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压;(c) 如要取得输出必须加负载电阻。 当三极管满足必要的工作条件后,其工作原理如下: (1)基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压, 所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。参见晶体三极管特性曲线5.2图所示:晶体三极管共发射极放大原理如下图所示:A、vt是一个npn型三极管 画外音:我们可以用水龙头与闸门放水的关系,来想象或者说是理解三极管的放大原理。其示意图如下图2-20 所示

图2-20 三极管放大原理参考示意图 ①如图 2.20 (a)所示:当发射结无电压或施加电压在门限电压以下,相当于闸门关紧时,水未从水龙头底部通过水嘴流出来。此时,ec 之间电阻值无穷大,ec 之间的电流处于截止状态,或者说是开关的OFF 状态。

三极管开关电路

三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的 回路上。 Vcc 團1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off) 区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturati on) 。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838 电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为:

多变流水灯控制电路.doc

(1)电路结构与特点 多变流水灯控制电路如图2S所示。图中的多谐振荡器由非门U5;A、U5:B及R1、R2、C1组成,其振荡频率为2H2。三极管开关电路由R3、v1组成,它并联在R2(决定频率的元件之一)的两端。当v1饱和时,相当于R2两端并联一电阻,多谐振荡器的频率将 变为原来的3倍。多谐振荡器产生的方波由两路输出,其中b4日1u5:A输出的一路输入U4的12级串行二进制计数分频器。该计数分频器将输入端信号输出,分频作用于v1。在U4的13脚输出的一个方波的前半段,其输出电平为“o”,v1截止,振荡器频率保持2H2;在后半段v1饱和,使振荡频率变为6Hz。非门U5:B输出至U1的BCD可预置数同步可逆计数器。其4、12、13、3脚为BCD码数据预置端,6、11、14、2脚为BCD码数据输出端。9脚为清零端,当其为高电平时,输出的数据为咖零数。l脚为置数允许端,当其为 高电平而9脚为低电平时,输出的数据与4、12、13、3脚预置数相同。I o脚为加、减计数

控制端,高电平为加计数,低电乎为减计数。5脚为进位输入端,无进位时,固定为低电乎。15脚为时钟脉冲输入端,脉冲上升沿有效。U1输出直接至U2的咖十进制译码器,将BcD码数据译为十进制码,从相应的十进制码数输出端输出。电路中Ul的4、12脚接高电乎,13、3脚接低电乎,故预置数为o011,即十进制数的3。u1的10脚由U4的输出端提供控制信号,当U1的15脚连续不断地输入时钟脉冲时,如果u1的10脚为高电平,则U1输出的比D码数据经U2译码,U2的3、14、2、15脚依次输出高电平。当U2的1 脚输出高电平时,经R5、C2稍加延时输入非门U5:D、U5lc整形,将经RC延时使前 沿变得较平滑的波形重新整形为方波,以避免ul同步计数器产生信号丢失。整形后的高 电乎至U1的9脚时,U2的3脚迅速变为高电乎输出。于是开始了3、14、2、15脚依次输出高电乎的重复过程。当u1的10脚为低电平时,计数器按逆向过程15、2、14、3脚顺序输出高电乎,原理同前所述。由u2输出的信号分成两路,其中一路输入u3四双向开关,其任一组开头在控制端为高电平时呈低阻通态,而在控制端为低电平时为高阻断态。由 U4的12、14脚输出端经V3、V4、R15组成“或”门电路,同时控制U3四组开关的通、断。 当开关通时,u2的一个输出端的高电乎可以使两个三极管饱和,而开关为断态时,此高电乎只能使一个三极管饱和。三极管由集电极反相输出,控制双向可控硅vsl—vs4的通、断,从而实现对彩灯的控制。 (2)无路件选择 在图23中,U1选用CD45lo,U2选用凹4028,U3选用CD4066,U4选用CD4040,

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

花样流水灯设计

一、原理图设计的目的: 利用AT89C51,通过控制按键来实现六种流水灯花样的转换,实现花样流水灯的设计,同时通过外部中断0,来控制流水灯的速度。 二、各器件的功能作用: 1、AT89C51 AT89C51有40个引脚,每个引脚都有其功能。本次设计中,利用P0口当输出口,输出低电平来驱动发光二极管点亮。利用P1.0~P1.5六个引脚,通过按键接地,然后采用扫描的方式,判断哪个引脚所接按键按下,从而来控制六种流水灯的花样。利用P3.2引脚外接按键接地,通过控制按键来减慢流水灯的速度,利用P3.3引脚外接按键接地,通过控制按键来提高流水灯的速度。利用P3.7输出低电平,导通三极管Q1,从而给八个发光二极管的阳极加高电平,一旦P0口输出低电平就可以驱动发光二极管。 2、八个发光二极管: 通过八个发光二极管来实现流水灯的变化,用低电平驱动发光二级管亮,同时,用高电平使其熄灭 。 3、按键 通过P1.0-P1.5外接的按键来实现流水灯各种花样的变化,当按键按下时,驱动一种流水灯花样的闪烁。同时,利用按键来提供外部

中断,当按下按键时,产生一个外部中断,向CPU申请中断,CPU 响应其中断,因此可以用按键来实现提高流水灯闪烁的速度。 通过在RST口处加上一个按钮手动复位电路,利用复位按钮可以使运行中的流水灯复位到初始的状态。 4、排阻 因为P0口作为输出口时需要外接上拉电阻 三、设计原理图: 四、程序如下: #include //51系列单片机定义文件 #define uchar unsigned char //定义无符号字符 #define uint unsigned int //定义无符号整数

三极管混频器——高频课程设计

高频电子线路课程设计说明书 三极管混频器 系、部:电气与信息工程系 学生姓名:罗佳 指导教师:贾雅琼职称讲师 专业:电子信息工程 班级:电信0901班 学号:09400230123 完成时间:2011年6月7日

摘要 混频,又称变频,也是一种频谱的线性搬移过程,它是使信号自某一个频率变换成另一个频率。完成这种功能的电路称为混频器。混频技术的应用十分广泛。混频器是超外差式收音机中的关键部件。直放式接收机高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要在中放,可以用良好的滤波电路。采用超外差接收后,调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号的频率低,性能指标容易得到满足。混频器在一些发射设备中也是必不可少的。在频分多址信号的合成、微波接力通信、卫星通信等系统中也有其重要的地位。此外,混频器也是许多电子设备、测量仪器的重要组成部分。 关键字:信号;频率;混频器

ABSTRACT Frequency mixing, say again, is also a kind of variable frequency spectrum of linear moving process, it is to make the signal from a certain frequency conversion to another frequency. Complete the functions of the circuit is called the mixer. Mixing technique used widely. The mixer is the superheterodyne key component. Straight put type small signal detection, high-frequency receivers working frequency variation range, the working frequency of high-frequency channels of influence is bigger, a low sensitiity. Using specialized superheterodyne technology after receiving signal frequency mixing into a fixed frequency, put large basic from receive frequency influence, such, frequency signal within the amplification good consistency, sensitivity can do so tall that selective is better also. Because magnifier function mainly in putting, can use good filter circuits. Using specialized superheterodyne after receipt and easy to adjust, put large, selectivity consists mainly of intermediate frequency part decision, and intermediate frequency is of high frequency signals low frequency, performance index easily be satisfied. The mixer in some launch equipment is also essential. In frequency division multiple access signal synthesis, microwave relay communications, satellite communications, etc system also has its important position. In addition, the mixer is also many electronic equipment, measurement instrument important component. Key words signal;frequency;mixer

相关主题
文本预览
相关文档 最新文档