当前位置:文档之家› 光电跟踪仪伺服控制系统原理及发展现状1

光电跟踪仪伺服控制系统原理及发展现状1

光电跟踪仪伺服控制系统原理及发展现状1
光电跟踪仪伺服控制系统原理及发展现状1

光电跟踪仪伺服控制系统原理及发展现状

2012年6月

目录

摘要 (1)

第1章引言 (2)

第2章光电跟踪仪伺服控制系统的基本原理 (3)

2.1计算机控制单元 (3)

2.2环路控制单元 (3)

第3章光电跟踪仪伺服控制系统的关键技术 (5)

3.1瞄准线稳定技术 (5)

3.2复合控制技术 (5)

3.3等效复合控制与预测滤波技术 (6)

3.4共轴跟踪技术 (6)

3.5复合轴控制技术 (7)

3.6其它高精度控制技术 (8)

第4章光电跟踪仪伺服控制系统的国内外发展现状及趋势 (9)

4.1国内外发展现状 (9)

4.2发展趋势 (9)

摘要

光电跟踪仪中的伺服控制系统是光电跟踪设备的重要组成部分,其跟踪精度是衡量光电跟踪设备的主要指标,实现高精度跟踪控制,成为许多高精度光电跟踪设备必须解决的难题之一。因此要获得高精度的光电跟踪仪,必须深入了解其伺服控制系统。

本文从光电跟踪仪伺服控制系统的基本原理、关键技术及其国内外发展现状与发展趋势三方面对其进行了介绍,为伺服控制系统的设计及研究提供了参考。

关键词:光电跟踪,伺服控制系统,跟踪精度

第1章引言

光电跟踪伺服控制系统是一个包括光电探测、信号处理、控制系统及精密机械等几部分组成的复杂设备。它的主要功能是根据光电传感器送来的目标位置偏差信号的大小及方向控制伺服电机驱动跟踪轴,减小偏差,实现对目标的光电闭环自动跟踪,其具有实时性、精度高的特点,在靶场测量、武器控制、航空等各种军用与民用领域有着广泛的应用。

随着现代技术的发展、目标机动性能的增强,对光电跟踪仪的伺服控制系统要求越来越高,要求其响应更快、稳定和跟踪精度更高。某些系统甚至要求跟踪精度达到1μrad。多年来,国内外的科技工作者在提高光电跟踪仪伺服控制系统跟踪精度方面进行了深入的伺服控制策略方面的研究。

为此,深入了解光电跟踪仪伺服控制系统的工作原理、关键技术的应用与研究及国内外发展现状,对于探讨进一步提高其性能指标的方法具有重要的意义。

第2章光电跟踪仪伺服控制系统的基本原理

该系统一般由计算机控制单元、环路控制单元、电源及控保单元、功率驱动单元及转台、驱动电机组成。其基本原理是:计算机控制单元接受光电传感器送来的目标位置偏差信号(引导信号),并采集各端口的控制状态,根据当前的工作模式,经过一定的算法运算对信号进行处理后,送至环路控制单元,环路控制单元通过控制伺服转台电机驱动转台带动光电传感器,使光电传感器的光轴指向目标,达到自动跟踪的目的。

2.1计算机控制单元

计算机控制单元主要完成接收转台测角数据、接收激光距离数据、接收电视差值数据、完成系统自检、采集各种工作状态和通道切换等功能。系统具有手动、自动和引导等工作模式。程序控制流程如图2-1所示。

图2-1 程序控制流程

2.2环路控制单元

为保证系统具有良好的控制特性,环路控制模块通常采用位置环、速度环、电流环三环控制技术。其结构如图2-2所示。

图2-2 系统环路结构

其中,电流环是系统内环,可以看作速度环的一个环节,具有控制电机电流、防止电机电流超过额定值、拓宽系统带宽、抵抗负载力矩扰动和改善电机动态性能等功能。为使电机电流超调量小,电流环设计成典型Ⅰ型系统,其结构如图2-3所示。速度环设计成Ⅱ型系统,其结构如图2-4所示。位置环保证系统按一定的精度完成自动跟踪,为保证系统跟踪精度,位置环设计成Ⅱ型结构,其结构如图2-5所示。Ⅱ型结构与Ⅰ型结构相比,具有抗干扰能力强,速度响应无静差的优点,缺点是超调量大。

图2-3 电流环环路结构

图2-4 速度环环路结构

图2-5 位置环环路结构

第3章光电跟踪仪伺服控制系统的关键技术

3.1瞄准线稳定技术

在光电跟踪伺服系统中,由于载体的姿态变化,扰动力矩都会使瞄准线指向发生变化,为了能对被观测目标进行跟踪观测,要求光电平台指向能按照给定指令按一定规律运动。跟踪伺服系统会受到周期性的扰动,造成跟踪精度下降,甚至丢失目标。为准确跟踪目标,减小载体运动给跟踪瞄准带来的扰动误差,须建立稳定分系统将天线视轴与基座扰动隔离,达到输出视轴“稳定”在惯性空间方向。

目前,工程上常用的两轴稳定一般有两种方法:一种是解算稳定技术,另一种是陀螺稳定技术。解算稳定技术是利用载体上的导航系统提供的偏航、横摇、纵摇等姿态信息,通过计算机进行实时坐标变换,将载体的姿态运动信息转换到瞄准线的方位角和俯仰角的等效运动,利用天线伺服系统控制天线向相反方向运动,实现瞄准线的稳定。其缺点稳定精度与载体提供的姿态信息精度和实时性关系密切。

陀螺稳定技术主要原理是在天线方位和俯仰轴上安装两个敏感轴相互垂直的速率陀螺,分别敏感出天线在方位和俯仰上相对于稳定坐标系的运动,并将此信号作为速度反馈,以此实现回路稳定。由于稳定是二维的,而扰动时三维的,载体绕第三轴的运动无法被陀螺所敏感而造成牵连运动。它造成了无线电轴随载体的摆动,使其偏离了跟踪目标,稳定系统无法消除这种扰动。为此,载体摆动引起的电轴偏离跟踪目标所产生的误差,由计算机补偿来完成。

采用速度陀螺的自稳回路是目前通用的一种自稳定技术。其充分将载体本身提供的姿态数据引入到系统中,增加一个控制环路可以很好地提高系统对载体摇摆和低频振动基座的隔离度。

3.2复合控制技术

在一般的闭环控制中,通过提高开环增益或者增加积分环节以提高无差度来提高跟踪精度,但同时给系统的稳定性造成了影响。复合控制就是在闭环控制系统中再增加一开环控制支路,用以提供输人信号的一次微分或二次微分。该系统被称为复合控制或前馈控制系统。利用复合控制可以较好地解决一般闭环伺服系统普遍存在的跟踪精度与稳定性之间的矛盾,很容易将跟踪精度提高几倍乃至几十倍,但又不影响原闭环系统的稳定性。

3.3等效复合控制与预测滤波技术

在激光、红外和电视等光电跟踪系统中,传感器只能提供目标与传感器视轴之间的偏差,即跟踪误差,无法给定目标的空间坐标位置,因此也无法给出目标的速度与加速度,所以直接应用复合控制是无法实现的。

解决的办法一种是等效复合控制,即采用速度滞后补偿的办法。因目标位置为瞄准线位置和传感器的跟踪误差之和,即

0i θθθ=+?

0i d d d dt dt dt

θθθ?=+ 通过上述运算就可近似得到目标速度,进而构成复合控制。显然传感器系统测得的跟踪误差具有滞后性,所以可以通过滞后补偿技术或者预测滤波技术进一步提高跟踪精度。也就是第二种方法即采用滤波预测技术,用滤波预测技术可在跟踪中预测目标位置和速度等运动参数。常用的预测滤波有几种。即有限记忆最小平方滤波、常增益最优递推滤波、自适应滤波和卡尔曼滤波。

3.4共轴跟踪技术

为了抑制目标回波起伏和接收机噪声必须把伺服系统的带宽限制在很窄的范围内,在现代雷达伺服控制系统中,更多的是采用数据处理技术对数据加以滤波修正,从而达到减小系统总误差的目的。共轴跟踪技术就是把滤波与伺服两者分离即把目标数据输出与天线指向分离开来,采用数字处理技术提供精确的雷达数据输出,而伺服系统只保证天线的跟踪指向,从而解决了雷达输出数据的精度受伺服系统质量束缚的限制。

采用共轴跟踪技术构成的光电跟踪仪伺服控制系统有两部分组成,一是目标位置合成、滤波、预测;二是后面的数字随动系统,这两部分基本是相互独立的。第一部分可以采用滤波预测技术,对数据进行最佳滤波,滤波器频带与后面伺服系统关系不大,主要与目标特性及探测器有关。这样滤波器可以按尽量滤除探测器噪声设计,而数字随动系统部分可以按照尽量减小动态滞后误差设计,还可以用目标运动参数引导数字随动系统,构成典型的复合控制,可以按减小动态滞后误差作最佳设计。

由于采用的是复合控制,滤波器还可以对其它的系统误差作补偿校正,系统跟踪精度可以很高。这样就可以像引导工作一样,构成复合控制。速度前馈信号通过对合成目标位置、速度预测滤波得到。由得到的合成目标位置数据对设备进行引导,引导期间不再使用电视脱靶量、红外脱靶量,而只用编码器位置数据与目标位置数据之差调节跟踪系统,同时将合成目标的速度信息送入控制系统。对

控制系统而言,就相当于一个随动系统了,可以与引导工作方式一样,采用前馈技术来提高系统跟踪精度。

3.5复合轴控制技术

对于大加速度目标,实现高精度跟踪,按经典控制理论采用单轴的伺服控制系统是困难的,它不仅受到宽视场高分辨率,快速响应的探测器的限制,同时也受到光机跟踪架的机械结构谐振频率的限制。理论和实践表明,复合轴伺服控制技术是解决上述矛盾,实现武器精密跟瞄的一种行之有效的途径,目前已取得角秒级或更高的跟踪精度。

复合轴控制系统有两个嵌套型的伺服控制回路组成,如图3-1所示:一个主伺服回路和一个子伺服回路。主伺服控制回路起粗跟踪瞄准作用,其跟踪的视场大,频带较窄,跟踪精度差,但动态范围宽,可完成目标的捕获与粗跟踪。子伺服控制回路以主伺服控制回路的误差信号作输人信号,对该误差信号通过反馈进一步实现校正,其跟踪的视场小、频带宽、响应快和跟踪精度高,能在主伺服粗跟踪的基础上完成精跟踪。因此,子伺服回路起精密校准作用,进一步减小了主回路的跟踪瞄准误差,其特点为:

(1)复合轴系统的快速性与子轴的一致,由于复合轴系统的无差度等于主、子系统无差度之和。因此,系统具有很高的跟踪精度。

(2)子、主系统稳定是复合轴系统稳定的前提,在实际系统中,要达到一定的稳定裕度,还必须提高子、主系统的带宽比。

(3)子轴克服主轴误差高频分量的能力反映了其克服主轴误差的能力。这种能力越强,系统动态跟踪的均方误差越小。提高这种能力的关键在于提高子、主系统的带宽比。

当前复合轴跟踪控制技术已广泛应用于光电跟踪系统上,获得了角秒级或更高的跟踪精度。

图3-1 复合轴控制原理框图

3.6其它高精度控制技术

时间最优控制要求跟踪系统在跟踪过程中,快速过渡无超调,即系统从一个状态转移到另一个状态,目标函数0T

J dt T ==?为最小。最优控制几乎都是用计算机实现。

工程上通常采用“双模控制”方式,即调节对象按线性和开关2种控制方式工作。当误差超出一定区域时系统以开关方式工作,以便迅速减小误差;当系统进入转换区域后转入线性控制,使误差迅速接近0。

具有自适应光学的高精度跟踪瞄准系统可以克服大气扰动影响。其波前探测器可检测出波前失真,然后由控制系统产生信号驱动变形反射镜以补偿波前失真。校正后的波束入射到跟踪探测器上可获得高分辨率的目标像,提高了探测精度,亦即可以提高跟踪精度。

柔性控制可以保持原结构的柔性,用一个多输人多输出的数字控制系统来控制视轴而不是机架,美国已在某大型跟踪系统上作了尝试。柔性控制要求在结构分析和控制系统分析之间建立一套严格的数学关系,显然应用此项技术难度很大。如果能成功地应用柔性控制,就可以建立一个小而轻的跟踪架结构。

计算机控制和信息处理是跟踪系统的关键技术之一。由于高精度跟踪瞄准系统要处理的信息量大、采样频率又高,所以提高运算速度至关重要。除采用尽可能高速度的计算机外,主要应将功能分散,采用多机并行系统,提高软件功能,软件硬化及研制专用机等。由于超大规模集成电路的发展,集成度越来越高,速度也越来越快,这些都为计算机在高精度跟踪瞄准系统中的应用带来了充分的条件,也使计算机控制性能越来越好。

第4章光电跟踪仪伺服控制系统的国内外发展现状及趋势

4.1国内外发展现状

在电视跟踪领域,目前国内外主要的控制方法是以经典控制方法为主,各种改进方法都是在此基础上针对系统中影响较大的因素加以补偿。国内的大型光测仪器,也是多采用速度滞后补偿、加速度滞后补偿等控制方法构成近似复合控制。国外许多光测设备也采用了经典的PID控制技术。

在“双模控制”技术方面,美国多反射镜望远镜MMT设计了一个准最优控制定值时积分器不工作,而是用位置误差平方根控制速度回路的系统,它将产生一个具有恒定加速度的抛物线轨迹,使位置误差和速度误差同时到达0。MMT的过渡过程十分平稳,跟踪精度达到1.5'',为地面设备最高水平。

在自适应光学性能方面,目前国内外已经开展自适应光学与精密跟踪系统相结合的研究,虽然很多理论与技术问题需要解决,但采用自适应光学的跟踪系统仍是极有前途的跟踪系统。

在高精度轴角测量技术方面,美国法兰德感应同步器分辨率为47nrad,相当于26位。据报道,美国分辨率最高的编码器为27位,但测角精度约仅达到1''(5μrad)。

4.2发展趋势

光电跟踪系统结构复杂,许多参数难以精确确定,在建立系统的数学模型时,具有严重的非线性;由于经典控制方法多用于线性定常系统,主要研究单输入单输出问题,它不适合控制对象参数变化、非线性程度大等场合。

而机动目标跟踪的基本问题是目标模型的动力学方程与目标的实际运动存在着不匹配。跟踪过程就是估计目标当前时刻(滤波)和未来时刻(预测)的状态,包括各种运动参数。通常,估计是在两种不确定性情况下进行的,即由于目标的高度机动所产生的目标模型的不确定性,以及由于干扰、噪声导致的量测的不确定性,这就导致量测与现有航迹互联时产生误差。正因为如此,数十年来,机动目标跟踪已成为估计领域很重要的研究方向。

正是由于目标机动时经典控制方法不能很好的反映系统的实际,近些年来一些新型的控制方法不断应用到跟踪伺服控制系统中来,提高了目标跟踪的稳定性。这些新型的控制方法包括多模控制、自适应控制、变结构控制、模糊控制、鲁棒控制、神经网络控制以及它们之间相互渗透形成的混合控制。美国的MMT多反射镜系统和JCMT系统均采用了双模控制技术,大大提高了系统的响应速度,增强了捕获能力。

总而言之,随着自动控制理论的不断发展,光电跟踪中伺服控制系统新的控

制方法也随之涌现,特别是自适应滤波和预测方法、数据融合技术的逐渐引入,提高了目标发生机动时的跟踪的稳定性。而且计算机的离线应用,实现了对控制系统的分析、设计和建模等的数字仿真,缩短了设计周期,提高了设计质量。

光电跟踪仪伺服控制系统原理及发展现状

光电跟踪仪伺服控制系统原理及发展现状 2012年 6 月

目录 摘要 (1) 第1章引言 (2) 第2章光电跟踪仪伺服控制系统的基本原理 (3) 2.1计算机控制单元 (3) 2.2环路控制单元 (3) 第3章光电跟踪仪伺服控制系统的关键技术 (5) 3.1瞄准线稳定技术 (5) 3.2复合控制技术 (5) 3.3等效复合控制与预测滤波技术 (6) 3.4共轴跟踪技术 (6) 3.5复合轴控制技术 (7) 3.6其它高精度控制技术 (8) 第4章光电跟踪仪伺服控制系统的国内外发展现状及趋势 (9) 4.1国内外发展现状 (9) 4.2发展趋势 (9)

摘要 光电跟踪仪中的伺服控制系统是光电跟踪设备的重要组成部分,其跟踪精度是衡量光电跟踪设备的主要指标,实现高精度跟踪控制,成为许多高精度光电跟踪设备必须解决的难题之一。因此要获得高精度的光电跟踪仪,必须深入了解其伺服控制系统。 本文从光电跟踪仪伺服控制系统的基本原理、关键技术及其国内外发展现状与发展趋势三方面对其进行了介绍,为伺服控制系统的设计及研究提供了参考。 关键词:光电跟踪,伺服控制系统,跟踪精度

第1章引言 光电跟踪伺服控制系统是一个包括光电探测、信号处理、控制系统及精密机械等几部分组成的复杂设备。它的主要功能是根据光电传感器送来的目标位置偏差信号的大小及方向控制伺服电机驱动跟踪轴,减小偏差,实现对目标的光电闭环自动跟踪,其具有实时性、精度高的特点,在靶场测量、武器控制、航空等各种军用与民用领域有着广泛的应用。 随着现代技术的发展、目标机动性能的增强,对光电跟踪仪的伺服控制系统要求越来越高,要求其响应更快、稳定和跟踪精度更高。某些系统甚至要求跟踪精度达到1μrad。多年来,国内外的科技工作者在提高光电跟踪仪伺服控制系统跟踪精度方面进行了深入的伺服控制策略方面的研究。 为此,深入了解光电跟踪仪伺服控制系统的工作原理、关键技术的应用与研究及国内外发展现状,对于探讨进一步提高其性能指标的方法具有重要的意义。

交流伺服电动机的原理及三种转速控制方式

交流伺服电动机的原理及三种转速控制方式 交流伺服电机的定子装有三相对称的绕组,而转子是永久磁极。当定子的绕组中通过三相电源后,定子与转子之间必然产生一个旋转场。这个旋转磁场的转速称为同步转速。电机的转速也就是磁场的转速。由于转子有磁极,所以在极低频率下也能旋转运行。所以它比异步电机的调速范围更宽。而与直流伺服电机相比,它没有机械换向器,特别是它没有了碳刷,完全排除了换向时产生火花对机槭造成的磨损,另外交流伺服电机自带一个编码器。可以随时将电机运行的情况“报告”给驱动器,驱动器又根据得到的11报告"更精确的控制电机的运行。 由此可见交流伺服电机优点确实很多。可是技术含量也高了,价格也高了。最重要是对交流伺服电机的调试技术提高了。也就是电机虽好,如果调试不好一样是问题多多。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与H标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。其作用为把接受的电信号转换为电动机转轴的角位移或角速度,按电流种类的不同,伺服电动机可分为直流和交流两大类。下面简单介绍交流伺服电动机有以下三种转速控制方式: (1)幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。 (2)相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。 (3)幅值一相位控制同时改变控制电压幅值和相位.交流伺服电动机转轴的转向随控制电压相位的反相而改变。

伺服驱动器的工作原理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度

方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V 对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

光电跟踪测量系统多传感器融合跟踪设计与实现

光电跟踪测量系统多传感器融合跟踪设计与实现 【摘要】本文从多传感器结构设计、融合跟踪算法两方面,进行了光电跟踪测量系统多传感器融合跟踪的设计与实现方法研究。设计了一套集可见光测量、红外测量和激光测量为一体的光电跟踪测量系统,实现了适应不同环境背景下的单站定位测量功能。 【关键词】光电跟踪测量系统;传感器;融合跟踪 The Design and Realization of multiple sensors Fusion Tracking for the photoelectrical theodolite (Troops 91351,Qiao Tie-ying,Yang Hai-qing) Abstract:Though design the multiple sensor frame and fusion tracking arithmetic,This paper designed and realization of multiple sensors fusion tracking for the photoelectrical theodolite.A photoelectrical theodolite is designed which is be maked up of the visible light measurement,the infrared measurement and the laser measurement,the single station location measurement function is realized for the different environmental contexts. Key words:photoelectrical theodolite;sensor;Fusion Tracking 1.引言 目前,光电测量技术得到了极大的发展,其中可见光测量技术、红外测量技术和激光测距技术日益成熟,多种型号多种功能的光电跟踪测量系统在不同的军用民用领域得到了广泛应用。如果在一套光电测量系统中,做到取长补短,综合可见光、红外光等多种测量技术融合跟踪,并形成单站定位能力,将大大提高光电跟踪测量系统的功能,在各种应用领域发挥更大作用。 2.多传感器结构设计 2.1 传感器的特点与功能 为实现近、远程目标的捕获跟踪和单站定位能力,选择测量电视系统、变焦距捕获电视系统、中波红外测量系统、长波红外测量系统和激光测距系统,集成安装在同一套光电跟踪测量系统上。 测量电视焦距较长,主要完成对目标的高精度测量,兼顾对目标的捕获和跟踪;变焦距捕获电视焦距变化范围大,可实现对近距离目标的捕获、跟踪,采用广播级的3CCD彩色相机,图像具有良好的质量;中波红外系统主要实现低能见度时对目标的捕获、跟踪和测量;长波红外系统可在夜间实现对目标的捕获、跟踪和测量,同时也可分辨目标的轮廓;激光测距系统实现对目标距离的测定,实现光电跟踪测量系统单站定位的功能。 2.2 总体布局与结构 光电跟踪测量系统中的经纬仪配备的传感器较多,总体布局与设计的原则是最大限度的集中于主视轴周围,以减少各传感器间轴系误差对总测角精度的影响。图中测量电视系统位于中心主视轴,捕获电视和激光测距系统在测量电视上方,中波红外系统和长波红外系统位于测量电视下方。结构如图所示。 2.3 垂直轴系结构设计 2.3.1 功能和组成 由于垂直轴系形成跟踪架的方位轴线,实现方位角测量、跟踪驱动、角速度反馈功能,所以,垂直轴系精度将直接影响水平轴系和跟踪架精度,对经纬仪总

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机の区别 2010-03-30 17:14 伺服电机内部の转子是永磁铁,驱动器控制のU/V/W三相电形成电磁场,转子在此磁场の作用下转动,同时电机自带の编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动の角度。伺服电机の精度决定于编码器の精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到の电信号转换成电动机轴上の角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩の增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术の发展,永磁交流伺服驱动技术有了突出の发展,各国著名电气厂商相继推出各自の交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统の主要发展方向,使原来の直流伺服面临被淘汰の危机。90年代以后,世界各国已经商品化了の交流伺服系统是采用全数字控制の正弦波电动机伺服驱动。交流伺服驱动装置在传动领域の发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统の快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小の体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应の角度,从而实现位移,因为,伺服电机本身具备发出脉冲の功能,所以伺服电机每旋转一个角度,都会发出对应数量の脉冲,这样,和伺服电机接受の脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确の控制电机の转动,从而实现精确の定位,可以达到0.001mm。 步进电机是一种离散运动の装置,它和现代数字控制技术有着本质の联系。在目前国内の数字控制系统中,步进电机の应用十分广泛。随着全数字式交流伺服系统の出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制の发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大の差异。现就二者の使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、 1.8°,五相混合式步进电机步距角一般为

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

“夜通航”船用光电取证跟踪系统解决方案2020.9.28

“夜通航”船用光电取证跟踪系统解决方案 我国的海域辽阔,海上执法部门有海监、海事、渔政、海关、公安边防海警部队等执法力量,呈现出多头管理、职能交叉的特点。其中,海监部门的主要职能是对国家管辖海域(包括海岸带)实施巡航监视,查处侵犯海洋权益、违法使用海域、损害海洋环境与资源、破坏海上设施、扰乱海上秩序等违法违规行为,并依照有关法律和规定,根据委托或授权进行其他海上执法工作;海事部门主要负责国家水上安全监督和防止船舶污染、船舶及海上设施检验、海上安全救生等工作;渔政部门的任务是渔业保护和渔业执法;海关部门的职责以缉私;公安边防海警部队的主要任务是维护中国管辖海域的治安秩序。 然而海上执法是—项复杂的工作,夜晚、雾霾天气执法时能见度不良,不仅给船舶航行安全带来很大影响,调查、取证难度大且十分费时。雷达画面显示不够直观,不能直接对周边环境进行判断,或寒潮天气,受风浪影响,船只摇晃,普通监控设备难以在恶劣环境中对重点目标进行跟踪和抓拍取证。因为画面抖动,拉近后目标可能会丢失;夜间使用普通摄像机无法远距离监控,海上执法对产品要求很是严格,需要做到不管白天,晚上,雾天,都要能及时发现目标, 看清对方船名船号以及对方情况。系统要求简单、易于操作。 广州恒威电子科技有限公司成立于2005年,是国家级高新技术企业,专业研发、生产、销售“夜通航”船用光电跟踪取证系统、船用夜视仪、船用微光摄像机、船用雾航仪、船用视频监控系统、船舶防碰撞系统、水上水下搜救系统、海水养殖、海域远程监控系统、智慧边海防监控系统、红外热成像等特种安防产品。积累了陀螺稳定、自动跟踪、AI算法等技术开发,以及船舶、岸基、海基光电系统集成经验,在全国海洋执法船用光电跟踪取证系统领域有一定的影响力。 “夜通航”船用光电跟踪取证系统包括一个带陀螺稳定功能的指向器,以及驾驶室内的显控、录像设备。指向器安装在船上视野开阔的位置。指向器集红外热像仪、激光红外照明器、AI算法、跟踪模块、超低照度摄像机及高性能转台于一体,内置的非制冷氧化钒焦平面红外热像仪,即使在黑夜或雾天航行也能提供清晰的红外热图像。并且内置低照度摄像机,在光线较暗时也能提供高清晰的彩色图像,光线不足时可通过激光红外照明器以及红外热像仪对水面的目标进行搜索、监控。

伺服控制器的原理和维修

伺服控制器的原理和维修 近来有同行朋友探讨伺服器的维修,而大多维修界的前辈们,总把维修伺服器看得很神秘,很高深的样子,对技术是守口如瓶。我想在这里抛砖引玉,探讨伺服器的原理和维修。 我是一个搞工业控制设备维修的,专长是硬件维修。工业设备最初源起欧美,发扬于日本,所以无论理论也好,设计也罢,都绕不开国外这个词。在如今网络,软件,物联网,虚拟现实的今天,很多人对硬件维修人员,大多嗤之以鼻。以为就是个玩玩烙铁的体力活,没多少技术含量,其实硬件维修道路艰险且漫长,需要了解的实在很多。 硬件是工业控制设备中重中之重的课题,是虚实交互的桥梁,没这座桥一切都是空谈,是绕不开的执行工具,硬件质量的好坏,直接关系到处理结果。现在世界上顶级的工控设备生产商,都在向模块化生产靠拢。 什么是模块化呢?简单点说就是:把一个设备分拆为几个部分,每个部份,集成起来生产组合起来。这样的好处是,可尽量控制设备的故障范围,节省维护成本,同时拓展了用途。这点在需要联控的领域优势非常的明显。 很多人进入工业设备维修的领域,都是从修变频器开始的,也有人认为会修变频器就会修所有的工业控制设备,其实,这仅仅是一个开始。

当然,入门级变频器包括了强电/微电电路/反馈取样/本地远程控制等基本功能。通常用在要求运转精度不高的场合,比如供水,调速等场合。但一些精确控制场合就不同了,要知道工业控制的精髓就是,精确控制。没有精确度,纵使外观漂亮大气,吹得如何天花乱坠,你的产品还是低级产品。有精度要求的场合,比如我们常常乘坐的电梯,起重,造纸,冶金,纺织等有严格要求的场合,普通变频器就往往不能胜任了。这时,就要求伺服控制器登场了。 伺服控制器有那么神乎其神吗?也别把那东西想得那么复杂,伺服的基本条件是闭环控制。什么是闭环控制?无非就是和输出马达组合成一个环路,有反馈而已。变频器也有反馈,比如电流传感器就是。伺服的反馈要求更苛刻一些,要求电机每转动一下的位置信息主控制板都要知道。通俗点说就是:快了就慢下来,慢了就加快一点。这个说起来容易做起来难,要知道动态,惯性,负载变化都在瞬息万变,马达那边出了什么幺蛾子,控制器马上就知道,而且要做出对应的处理措施,这并不是一件容易的事。 于是第二个问题就出来了,那就是响应问题。所谓的响应,就如人与人之间的对话,一问一答。马达运行起来那是每分钟几千转的问题,这就是所谓的高速响应。马达的编码器担负起和主控板之间的对话。编码器制造商按要求将编码器演算成脉冲,马达转一圈,很可能编码器就输出了几千个脉冲,这个脉冲以原始位置为起点,每一个脉冲代表一个位置。你也可以这样理解,编码器每圈输出的脉冲越多,定位越准确,误差越小。当然以上说的指示一个概念,实际的软件算法,

HEOS-300型船载光电跟踪取证系统

HEOS-300型船载光电跟踪取证系统

HEOS-300型船载光电跟踪取证设备 产品介绍 中船重工第七一七研究所 武汉华之洋光电系统有限责任公司 二〇一三年一月

HEOS-300型船载光电跟踪取证设备 1产品概述及主要技术特点 HEOS-300型船载光电跟踪取证设备是进行海上搜索跟踪、执法取证的重要设备。具有全天候、速度快、覆盖面广、视距范围大、图像稳定清晰的特点。设备主要提供执法调查所需的最直接和直观的证据,即照片和录像资料,它包括了时间,地理位置,范围和事件过程等内容。调查人员通过已经掌握的证据材料,有针对性地调查相关的船舶、人员和部门,进一步取得有价值的证据,从而确认嫌疑船舶的违法行为成立,以达到惩罚犯罪分子,进行公正执法的目的。 HEOS-300型船载光电跟踪取证设备安装在舰船的顶甲板上,在白天通过彩色CCD电视摄像系统,在夜间通过高性能制冷型红外热成像系统发现、识别和确认目标,对海洋环境、海洋资源和海空目标等进行监视、跟踪和记录取证,达到维护海洋权益,保护海洋环境和资源的目的,并作为海洋执法监察调查取证的依据。该系统可以根据用户的要求,灵活选配多种规格的光学镜头、CCD摄像机、制冷型红外热像仪和红外镜头,HEOS-300采用了计算机自动控制技术、图像信息处理技术、图像稳定技术、自动跟踪等现代高科技,产品主要技术特点: ●采用高端图像传感器和处理模块,提高产品性能; ●采用标准化、模块化设计技术,扩展性好,维修方便; ●采用“三防”、密封设计技术,利于海上恶劣环境长期使用; ●采用先进的图像处理技术、目标跟踪技术,图像稳定清晰; ●采用了先进的陀螺伺服稳定技术,有效隔离船摇; ●采用彩色、黑白和红外热成像系统,即使在完全漆黑的夜晚,也能发 现和识别目标; ●提供RS-485、以太网和多路标准视频接口; ●中国船级社(CCS)认证。 HEOS-300型船载光电跟踪取证设备于2006年获得中国船级社型式认可,装船产品均提供CCS产品证书。HEOS系列船载光电取证设备已

伺服驱动器的工作原理

伺服驱动器的工作原理 。速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是:

1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为 2、5Nm:如果电机轴负载低于 2、5Nm时电机正转,外部负载等于 2、5Nm时电机不转,大于 2、5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位回馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由

伺服电机的工作原理图

伺服电机的工作原理图? 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服驱动器的工作原理复习过程

伺服驱动器的工作原 理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以

用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。

伺服电机工作原理

伺服电机的工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 1、永磁交流伺服系统具有以下等优点: (1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服电机的工作原理

伺服电机的工作原理 着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V 时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化 而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,

CCD成像原理简介21光电跟踪技术简介光电跟踪系统的组成

第二章CCD成像原理简介 2.1 光电跟踪技术简介 光电跟踪系统的组成框图如图3-1所示,从独立功能单体上分主要由激光测距仪、电视跟踪仪、红外跟踪仪组成;从功能模块分主要有传感器模块、转台及测角和信息处理单元组成。其中电视摄像仪、红外热像仪和激光测距主机为传感器模块,激光信息处理机、图像跟踪处理器、伺服控制和信息管理机为信息处理单元。 图2-1 光电跟踪系统组成框图 光电跟踪系统信息处理采用融合技术。在光电跟踪系统中,信息管理机、电视/红外图像跟踪处理器、激光信息处理机和伺服控制为信息处理单元。信息管理机既负责光电跟踪系统和火控台之间信息的交换,又负责光电跟踪系统内部各信息处理单元之间的信息融合和数据交流;图像跟踪处理器进行电视/红外跟踪仪的图像跟踪信息处理;激光信息处理机是激光测距仪的指控中心和数据处理中心;伺服控制系统实现伺服机动系统的调度。 2.2 CCD成像原理简介 CCD全称为电藕合器件,是英文Charge Couple Device的缩写。它是70年代发展起来的一种以电藕合包形式存储和传输信息的新型半导体器件,是目前应用较多的图像采集装置。用CCD摄像机采集可以采集灰度图,当光源的光照射到场景中的物体上后,物体所反射的光先由CCD接受并进行光电转化,所得到的电信号再经量化就可形成空间和幅度均离散化的灰度图。图像的空间分辨率主要由CCD摄像机里图像采集矩阵中光电感受单元的尺寸和排列所决定,而灰度图的幅度分辨率主要由对电信号进行量化所使用的级数所决定。 至今,CCD摄像仪己从实验室研究走向实际应用阶段,在航空航天、卫星侦察、遥感遥测、天文测量、传真、静电复印、非接触工业测量、光学图像处理等领域都得到了广泛的应用。目前世界上所有极轨和地球静止气象卫星在可见光和红外波段的成像遥感器都采用某种

伺服电机内部结构及其工作原理

创作编号:BG7531400019813488897SX 创作者:别如克* 伺服电机内部结构

伺服电机工作原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、2 6V、36V、115V等多种。

相关主题
文本预览
相关文档 最新文档