当前位置:文档之家› D1_2数列的极限

D1_2数列的极限

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()() 112lim 11x x x x →∞-∞+--+ 10 .n = 解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→??+= ??? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1

12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0x → 解:原式有理化 16.求0ln cos 2lim ln cos3x x x → 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形 注:原式02sin 2cos3lim cos 23sin 3x x x x x →∞?? ?∞??-?- 17.求02lim sin x x x e e x x x -→--- 解: 原式0020lim 1cos x x x e e x -→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+?? 解: (1) 拆项,111...1223(1) n n +++??+ 1111111...122311n n n ??????=-+-+-=- ? ? ???++????(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+??

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

考点数列的极限函数的极限与连续性

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3→∞??+-+===??-?? 所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞ )上的函数()f x 满足()f x =3(2)f x +,当[ 0,2)x ∈时,()f x =2 2x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且{}n a 的前n 项和为S n ,则lim n n S →∞ =( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2)f x f x =+可推得 1()(2)3 f x f x = -,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

数列的证明的四种

第二章数列极限 证明留在下节进行. 三、关于极限 例6 例7 例8 四.数列单调有界证法欣赏: Cauchy (1789—1857 ) 最先给出这一极限,Riemann(1826—1866)最先给出以下证法 一. 证法一( Riemann最先给出这一证法)设应用二项式展开,得 , +

注意到 比多一项即↗. 且 有界. }单调有界. 综上, 数列{ 证法二( 利用Bernoulli不等式 ) 注意到Bernoulli不等式为正整数 ), 有 由利用Bernoulli不等式,有 ↗. 为证{ }上方有界, 考虑数列可类证↘. 事实上,

(此处利用了Bernoulli不等式 ) ↘. 显然有 有 即数列{ }有上界. 评註: 该证法的特点是惊而无险,恰到好处. 证法三( 利用均值不等式 ) 在均值不等式 中, 令 就有 即 ↗. 令 可仿上证得 时 ↗, ( 时无意义, 时诸 = , 不能用均值不等式. ) 当 时, 由

由 ↗ ↘. < 4. 证法四 ( 仍利用均值不等式 ) < 即 ↗. 有界性证法可参阅上述各证法. 证法五 先证明:对 和正整数 ,有不等式 事实上, < 该不等式又可变形为 ( 为正整数 ) 在此不等式中, 取 则有 就有 ↗.

取又有对 成立, 又由 小结、习题(2学时) 数列(1+1/n)^n的极限问题,主要是证明此数列单调递增且有上界,然后根据数列极限的单调有界准则就证明了这个极限存在。而证明此数歹」单调递增及有上界,大多数现行微积分教材都是将(1+告)·按二项式定理展开来分析证明的。本文我们将介绍四种不同方法来证明

函数极限与数列极限的关系

使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项). 对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小 ,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε即可. 的N 2(性质 收敛数列有如下性质: (1)极限唯一性; (2)若数列{an}收敛,则{an}为有界数列; (3)若数列{an}有极限A,则其任一子列{ank}也有极限A; (4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0; (5)保序性,即若,且AN1时an

等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在x?x0时的极限,记作 上述定义的几何意义是:将极限定义中的四段话用几何语言表述为 1对:任意以两直线为边界的带形区域; 2总:总存在(以点x0位中心的)半径; 3当时:当点x位于以点x0位中心的δ空心邻域内时; 4有:相应的函数f(x)的图像位于这个带形区域之内. (2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x??时的极限,记作 并称y=A为函数y=f(x)的图形的水平渐近线. 2(性质 (1)极限唯一性; (2)局部有界性 若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立; )局部保号性 (3 若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立; (4)局部保序性

g3.1030数列与函数的极限(1)

g3.1030数列与函数的极限(1) 一、知识回顾 1、 数列极限定义 (1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim ∞→n a n =a 。 对前任何有限项情况无关。 *(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε0,则特别地 01 lim =∞→n n ③设q ∈(-1,1),则lim ∞ →n q n =0;;1lim ,1==∞ →n n q q ,1-=q 或n n q q ∞ →>lim ,1不存在。

若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:q a s s n n -= =∞ →1lim 1 3、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B (3)lim ∞ →n n n b a =B A (B ≠0) 极限不存在的情况是1、±∞=∞ →n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1…. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限; (2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 二.基本训练 1、n n n n 2312lim 22++∞→= ;22322 lim n n n n n →∞+++= 2、135(21) lim 2462n n n →∞+++???+-+++???+=_________________ 3.已知a 、b 、c 是实常数,且a cn c an b cn c bn c bn c an n n n ++=--=-+∞→∞→∞→2222lim ,3lim ,2lim 则的值是……… ( ) A . 121 B .61 C .2 3 D .6

数学实验-数列极限与函数极限

基础 数列极限与函数极限 一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验材料 1.1割圆术 中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正123-?n 多边形面积,则其极限为圆周率π。用下列 Mathematica 程序可以从量和形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正123-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正123-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图) 1.2裴波那奇数列和黄金分割 由2110;1;0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n n n F F R 11--=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511 1++???? ??--???? ??+=n n n F ; 2 15lim lim 1-==+∞→∞→n n n n n F F R 。 用下列Mathematica 程序可以从量和形两个角度考察数列{n R }的收敛情况: n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项) rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1]; Print[i," ",rn," ",Rn," ",dn]; ] t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t] 1.3收敛与发散的数列 数列}{1∑=-n i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。 1.4函数极限与数列极限的关系 用Mathematica 程序

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

数列极限的证明

数列极限的证明 数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|以此类推,改变数列下标可得 |Xn-A||Xn-1-A|…… |X2-A|向上迭代,可以得到|Xn+1-A|2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1设x(k)x(k+1)=√[2+3x(k)]3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)

则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。n/(n^2+1)=0 √(n^2+4)/n=1 sin(1/n)=0

关于数列极限和函数极限解法的解析

关于数列极限和函数极限解法的解析 王雅丽 摘要在数学分析中,极限的知识体系包括数列极限和函数极限。在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;另外,对于函数极限的求解,文中列出六种类型,根据函数数列的定义、性质得出相关的定理和法则,对于不同类型,采用不同的方法。上述方法对函数概念的理解和加强,以及对极限方法的掌握起很大的帮助作用。 ε-定义单调有界收敛无穷小量络必达法则 关键词数列极限N

早在两千多年前,我们的祖先就已经能够算出正方形,圆形和柱形等几何图形的面积。公元前3世纪刘徽创立割圆术,就是用圆内接正多边形面积这一思想近似的计算圆周率,并指出“割之弥细,所失弥少,割之又割,以致不可割,则于圆和体而无所失矣”在数学分析中,极限是一个核心内容,同时它本身研究问题的工具。极限概念与求极限的运算贯穿了数学分析课程的始终,因此全面掌握极限的方法与技巧是学习数学分析的关键。 1 数列极限 古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。 其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去。把每天截下部分的长度列出如下(单位为尺):第一天截下12 ,第二天截下 2 12 ……第n 天截下 12 n ,……这样 就得到一个数列{ 12 n } 。只有无穷数列才可能有极限,有限数列无极限.不难看出,数列{ 1 2 n } 的通项 12 n 随着n 的无限增大而无限地接近于0。“无限增大”和“无限地接近”是对极限做了定性的描述, 无限地接近于0说明了当n 无限的增大时数列的第n 项 12 n 与0的距离 102 n -要多小有多小。 下面把任意小量化: 对于 12 ,如果要求 11102 2 2 n n -= < ,只需要1n >即可; 对于 2 12 ,如果要求 2 1110222n n -= < , 只需要2n >即可; 对于 31 2,如果要求 311102 2 2 n n -=<, 只需要3n >即可;...由上可以看出能满足不等式的 n 不是唯一的,这就需要一个一般的任意小的正数来代替特殊的,如12 , 2 12 , 3 12 ... 为此就出现了任意小的正数ε。 对于ε 如果要求 1102 2 n n ε-= <, 只需要1 2log n ε >, 即可; 从数列1 2log N ε ??=???? 项以后的正整数都能满足不等式11022n n ε-=<,通过任意小的正整数

专题十数列极限与函数极限

专题十 数列极限与函数极限 一、选择题 1.(2008年高考·湖北卷)已知m ∈N * , a 、b ∈R ,若0n lim →b x a x)(1m =++,则a ·b=( ) A .-m B .m C .-1 D .1 2.∞→n lim )2n 8641864164141(+++++++++++ 的值为( ) A .1 B .411 C .1811 D .2411 3.若函数?????>+≤+-=1)(x 1 3x 15a 1)(x a 2x x f(x)23在点x=1处连续,则实数a=( ) A .4 B .-41 C .4或-41 D .4 1或-4 4.下列命题:①发果f(x)=x 1,那么∞→x lim f(x)=0;②如果f(x)=1x -,那么f(x)=0;③如果f(x)=2x 2x x 2++,那么2x lim -→f(x)不存在;④如果?????<+≥=0 x 1,x 0x ,x f(x),那么0lim →x f(x)=0,其中真命题是( ) A .①② B .①②③ C .③④ D .①②④ 5.设abc ≠0,∞→x lim 31b ax a cx =++,∞→x lim 43c bx bx ax 22=-+,则∞→x lim a cx bx c bx cx 233+--+的值等于( ) A .4 B .94 C .41 D .4 9 6.设正数a, b 满足2x lim →(x 2+ax-b)=4,则n 1n 1n 1n n 2b a ab a lim ++--+∞→等于( ) A .0 B .41 C .21 D .1 7.把1+(1+x)+(1+x)2+…+(1+x)n 展开成关于x 的多项式,其各项系数和为a n ,则1a 12a lim n n n +-∞→等于( ) A .4 1 B .21 C .1 D .2 二、填空题 8.已知数列的通项a n =-5n+2,其前n 项和为S n ,则2n n n S lim ∞→=________. 9.2x lim →)2 x 14x 4(2---=________.

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

数列函数极限和函数连续性(推荐文档)

数列、函数极限和函数连续性 数列极限 定义1(N ε-语言):设{}n a 是个数列,a 是一个常数,若0ε?>,?正整数N ,使得当n N >时,都有n a a ε-<,则称a 是数列{}n a 当n 无限增大时的极限,或称{}n a 收敛于a ,记作lim n n a a →+∞ =,或()n a a n →→+∞.这时,也称{}n a 的极限 存在. 定义2(A N -语言):若0A >,?正整数N ,使得当n N >时,都有n a A >,则称 +∞是数列{}n a 当n 无限增大时的非正常极限,或称{}n a 发散于+∞,记作 lim n n a →+∞ =+∞或()n a n →+∞→+∞,这时,称{}n a 有非正常极限,对于,-∞∞的定 义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理. 1.2 数列极限求法的常用定理 定理1.2.1(数列极限的四则运算法则) 若{}n a 和{}n b 为收敛数列,则 {}{}{},,n n n n n n a b a b a b +-?也都是收敛数列,且有 ()()lim lim lim , lim lim lim . n n n n n n n n n n n n n n a b a b a b a b →∞→∞ →∞ →∞ →∞ →∞ ±=±?=? 若再假设0n b ≠及lim 0n n b →∞ ≠,则n n a b ?? ???? 也是收敛数列,且有 lim lim /lim n n n n n n n a a b b →∞→∞ →∞ ?? = ???. 定理1.2.2(单调有界定理) 在实数系中,有界的单调数列必有极限.

浅谈数列极限与函数极限在解题中的区别和联系

浅谈数列极限与函数极限在解题中的区别和联系摘要在数学分析中,极限的知识体系包括数列极限和函数极限。在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;在求解函数极限时,其方法与数列极限有着相同之处,同时又有所区别。本文重点在于分析数列极限与函数极限在解题中的相似之处与不同之处,同时研究数列极限与函数极限的关系。 关键词:数列极限;函数极限;区别;联系

目录 1 数列极限与函数极限在解题中的相似之处 (3) 1.1 定义法在极限解题中的应用 (3) 1.1.1 定义法概述 (3) 1.1.2 定义法解题实例分析 (3) 1.2 迫敛性在极限解题中的应用 (4) 1.2.1 迫敛性概述 (4) 1.2.2 迫敛性解题实例分析 (4) 1.3 积分中值定理在极限解题中的应用 (5) 1.3.1 积分中值定理概述 (5) 1.3.2 积分中值定理实例分析 (6) 1.4 本章小结 (6) 2 数列极限与函数极限在解题中的不同之处 (7) 2.1 存在条件不同 (7) 2.1.1 数列极限存在条件 (7) 2.1.2 函数极限存在条件 (9) 2.2 特殊形式的极限 (10) 2.2.1 数列极限的特殊解法研究 (10) 2.2.3 两个重要形式的函数极限解法研究 (12) 3数列极限与函数极限的关系 (13) 3.1海涅定理 (13) 3.2海涅定理的应用 (14) 4 结论 (16)

1 数列极限与函数极限在解题中的相似之处 数列极限与函数极限在解题过程中,存在着很多的相似之处。主要表现在数列极限与函数极限的解题过程中,其方法的运用方面存在着很多的共同点。下面将重点分析进行数列极限与函数极限的解题过程中,定义法以及利用数列迫敛性在数列极限与函数极限中的运用。 1.1 定义法在极限解题中的应用 1.1.1 定义法概述 数列极限的N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a 。记作: lim n n a a →∞ =。否则称{}n a 为发散数列。 函数极限定义:设n X {}是一个数列,a 是实数,如果对任意给定的ε>0,总存在一个正整数N ,当n N >时,都有n X a -<ε,我们就称a 是数列n X {}的极限。记为lim n n X a →∞ =。 1.1.2 定义法解题实例分析 例. 求证数列极限1 lim 1,n n a →∞ =其中0a >。 证:当1a =时,结论显然成立。 当1a >时,记1 1n a α=-,则0α>,由()1111(1)n n a n n ααα=+≥+=+- 得11 1n a a n --≤,任给0ε>,则当1a n N ε->=时,就有1 1n a ε-<,即11n a ε-<即1lim 1,n n a →∞ = 当 11 1 1 101,1,lim 1,lim 1 lim n n n n n n a b b b a a b →∞→∞→∞ <<=>=∴= =时,令则由上易知 综上,1lim 1,n n a →∞ =0a >

相关主题
文本预览
相关文档 最新文档