当前位置:文档之家› 磷脂的相变温度

磷脂的相变温度

磷脂的相变温度

磷脂的相变温度

在脂质体、纳米脂质载体、纳米乳等含磷脂的药物新制剂制备过程中,磷脂相变温度是一个十分重要的参数,成膜是制剂形成最重要的因素,成膜温度则一定要高于磷脂的相变温度。磷脂相变温度是组成磷脂的酰基链由晶态向液态过渡时的温度。处于相变温度时,酰基链活动性增强,脂质体膜通透性提高。磷脂的相变温度对脂质体膜稳定性有重要参考意义。在制备脂质体时,应充分考虑脂质体的保存条件、体内过程、药物释放行为等,选择具有适宜相变温度的磷脂。

磷脂相变温度(部分):

钢连续冷却转变图CCT曲线的测定(精)

材料加工测定 实验一钢连续冷却转变图(CCT 曲线的测定 一. 实验目的 1. 了解钢的连续冷却转变图的概念及其应用; 2. 了解钢的连续冷却转变图的测量方法特别是热膨胀法的原理与步骤; 3. 利用热模拟仪观察钢在加热及冷却中的相变并测量临界点; 4. 建立钢的连续冷却转变图(CCT 曲线。 二. 实验原理 当材料在加热或冷却过程中发生相变时, 若高温组织及其转变产物具有不同的比容和膨胀系数, 则由于相变引起的体积效应叠加在膨胀曲线上, 破坏了膨胀量与温度间的线性关系, 从而可以根据热膨胀曲线上所显示的变化点来确定相变温度。这种根据试样长度的变化研究材料内部组织的变化规律的称为热膨胀法 (膨胀分析。长期以来,热膨胀法已成为材料研究中常用的方法之一。通过膨胀曲线分析,可以测定相变温度和相变动力学曲线。 钢的密度与热处理所得到的显微组织有关。 钢中膨胀系数由大到小的顺序为:奥氏体〉铁素体〉珠光体〉上、下贝氏体〉马氏体; 比容则相反, 其顺序是:马氏体〉铁素体〉珠光体〉奥氏体〉碳化物(但铬和钒的碳化物比容大于奥氏体。从钢的热膨胀特性可知, 当碳钢加热或冷却过程中发生一级相变时, 钢的体积将发生突变。过冷奥氏体转变为铁素体、珠光体或马氏体时,钢的体积将膨胀;反之,钢的体积将收缩。冷却速度不同,相变温度不同。图 1-1为 40CrMoA 钢冷却时的膨胀曲线。不同的钢有不同的热膨胀曲线。 图 1-140CrMoA 钢冷却时的膨胀曲线

连续钢连续冷却转变 (ContinuousCooling Transformation 曲线图,简称 CCT 曲线, 系统地表示冷却速度对钢的相变开始点、相变进行速度和组织的影响情况。钢的一般热处理、形变热处理、热轧以及焊接等生产工艺,均是在连续冷却的状态下发生相变的。因此 CCT 曲线与实际生产条件相当近似,所以它是制定工艺时的有用参考资料。根据连续冷却转变曲线, 可以选择最适当的工艺规范,从而得到恰好的组织, 达到提高强度和塑性以及防止焊接裂纹的产生等。连续冷却转变曲线测定方法有多种, 有金相法、膨胀法、磁性法、热分析法、末端淬火法等。除了最基本的金相法外,其他方法均需要用金相法进行验证。 用热模拟机可以测出不同冷速下试样的膨胀曲线。发生组织转变时,冷却曲线偏离纯冷线性收缩, 曲线出现拐折, 拐折的起点和终点所对应转变的温度分别是相 变开始点及终止点。将各个冷速下的开始温度、结束温度和相转变量等数据综合绘在“温度 -时间对数”的坐标中,即得到钢的连续冷却曲线图 (如图 2 。动态热 -力 学模拟试验机 Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被 测定试样通电流, 通过试样本身的电阻热加热试样, 使其按设定的加热速度加热到 测试温度。保温一定时间后, 以一定的冷却速度进行冷却。在加热、保温和冷却 过程中用径向膨胀仪测量均温区的径向位移量(即膨胀量 , 绘制膨胀量 -温度曲线如图 1-1所示,测试不同冷却速度下试样的膨胀量 -温度曲线。根据膨胀量 -温度曲线确定不同冷却速度下的相转变开始点和结束点,即可绘制 CCT 曲线。

材料热力学

2012 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料热力学 学生所在院(系):理学院应用化学系 学生所在学科: 学生姓名 学号: 学生类别: 考核结果阅卷人 第 1 页(共 5 页)

材料热力学在材料研究方面的应用 摘要:材料热力学对于材料的预测和使用具有理论指导作用,本文总结了近年来材料热力学在功能材料设计分析方面的应用,并对材料热力学这门学科在材料方面的应用进行了总结。 关键词:材料热力学;材料;应用 1.材料热力学概述 材料热力学就是把热力学原理和材料联系起来,用热力学的理论解决材料在设计、制造、应用时的相应问题。材料热力学课程以热力学定律为基础,着重介绍了统计热力学在材料中的应用,如溶液的统计热力学、相图热力学、相变热力学和化学平衡热力学等。 2.计算材料科学与热力学 随着科学技术的不断进步,已有的材料越来越不能满足当前甚至可预见的未来的科技发展对于生产、生活中各种器械材料的需要,已有的材料不断被淘汰,人们对材料提出越来越多的要求和希望。材料逐渐向功能的多样化和性能的优异化发展。大量的材料量和质的需求使人们不得不摈弃传统材料开发的逐一试探的方法。带预测性的材料设计理念就这样应运而生了。随着现当代材料分析与检测仪器精度和灵敏性的提高,人们可以积累大量的材料性能的数据,这为发展新的材料模型或新材料的预测和模拟研究提供了有利条件。由此产生了以材料热力学理论为基础,计算机技术辅助支撑的计算材料科学。 耿太在他的硕士论文[1]中提到,计算材料科学发展中最活跃的是包含相图热力学和相变动力学计算在内的CALPHAD领域。在此领域中,热力学模拟优化的过程和实验技术紧密结合,并与材料的成分、足迹和制备过程联系密切。而目前,材料设计领域的新课题就是连接不同层次材料的成分设计、微观结构、制备工艺来达到从微观结构到宏观性能的整体预测和设计。在这篇文章中,应用了热力学计算软件,计算了平衡态相图对耐腐蚀合金的耐腐蚀性能,计算了铁铝、铁硼合金的平衡态相图,并与标准的二元相图做了比较分析。他认为这种计算分析对于合金成分设计制备具有指导意义。 3.材料热力学用于金属材料 实际生产生活中应用最广泛的材料是金属材料。而金属材料中用到最多的又是金属基的复合材料。通过复合化设计后金属材料可以形成金属基的复合材料。金属基的复合材料具有更好的机械性能和功能性能,是当前高新技术、环境、能源、通信、汽车、国防及航空航天设备中不可替代的重要材料,并在国民经济和国防建设中有着不可替代的重要作用。 范同祥等人认为,金属熔体的热力学性质历来是材料科学、冶金化学和流体物理学等领域的工作者关注的冶金热力学的核心课题之一[2]。他们认为,热力学和动力学在研究复合材料界面反应控制、反应自生增强相种类选择、反应自生增强相尺寸控制、金属基复合材料体系设计及复合制备工艺优化等方面有很大的应用价值。并且,基于组元元素的悟性参数能为金属基复合材料的研究提供理论指导。但是,金属熔体的结构比较复杂,其热力学和动力学性质带有复杂性,且不同的体系有其特殊性,在这种情况下的热力学和动力学的模型应用就有其局限性和针对性,这样的模型需要发展和完善。另外,可以把热力学和动力学与第一性原理相结合,从原子尺度进行计算,这样就能在复合材料的研究中扩大热力学和动力学的应

钢的锻造温度

钢的锻造温度 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 1.始锻温度 始锻温度即坯料开始锻造的温度,应理解为钢或合金在加热炉内允许的最高加热温度。从加热炉内取出毛坯送到锻压设备上开始锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 2.终锻温度 终锻温度即坯料终止锻造的温度,终锻温度主要应保证在结束锻造之前坯料仍具有足够的塑性,以及锻件在锻后获得再结晶组织。 3.锻造温度范围 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 由Fe-Fe3C合金相图可以确定始锻温度和终锻温度以及锻造的温度范围。目前应用的铁碳合金状态图是含碳量为0~6.69%的铁碳合金部分(即Fe-Fe3C部分),因为含碳量大于6.69%的铁碳合金在工业上无使用价值。右图为简化后的Fe-Fe3C状态图。 Fe-Fe3C状态图 碳钢的锻造温度范围如图1(铁-碳状态图)中的阴影线所示。 钢的始锻温度主要受过热的限制,合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以钢的始锻温度一般应低于熔点(或低于状态图固相线AE温度)150~200℃。由于钢锭的过热倾向小,始锻温度比同钢种的锻坯和轧材高20~50℃。当采用高速精锻时由于热效应大,始锻温度可降低越100℃。 图10 铁-碳状态图 当亚共析钢始锻温度应在GS(A3)线以上15~50℃,使钢在单相奥氏体(γ)区内完成锻造。因为单相(γ)区组织均一,塑性良好。但对于碳的质量分数<0.3%的低碳钢,因为铁素体(α)的塑性好,故在A3线以下的γ+α双相区仍有足够的塑性,变形抗力也不高,这就扩大了锻造温度范围,且可以细化晶粒。 对于过共析钢终锻温度应在SE线(A cm)以下,PSE’(A1)线以上50~100℃。这是因为,这是因为,若终锻温度选在A cm线以上,则会使锻件在锻后的冷却过程中,从奥氏体中从晶界析出二次网状Fe3C呈脆性,因此,因此会大大降低锻件的力学性能。而在A cm线与A1线之间进行锻打,塑性变形破碎了网状Fe3C并使之弥散分布,锻件具有较好的力学性能。 需要指出的是,根据状态图大致确定的锻造温度范围,还需要根据钢的塑性图、变形抗力图等资料加以精确化。这是因为状态图是在实验室中一个大气压及缓慢冷却的条件下作出的,状态图上的临界点与钢在锻造时的相变温度并不一致。 由于生产条件不同,各工厂所用的锻造温度范围也不完全相同。合金结构钢的锻造温度范围见表1。合金结构钢钢锭锻造温度范围见表2。合金工具钢、弹簧钢和滚珠轴承钢的锻造温度范围见表3。

材料热力学与固态相变研究生试题-20131115

西南交通大学研究生2013 -2014 学年第(II)学期考试试卷 课程代码 0805021202a 课程名称 材料热力学与固态相变 考试时间 90 分钟 阅卷教师签字: 材料热力学部分 一、 基本概念题(请按照热力学与材料科学的基本理论正确叙述下列概念(对))(30分,每题10分) 1、 拉乌尔定律 2、 热焓与熵 3、 化学位与物相平衡 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

二、简答题(30分,每题10分) 1、假设有一孤立体系:10摩尔处于-10℃的过冷水,在一个大气压下,将自发转变 为固态冰,同时放出结晶潜热使体系升温(没有热量损失),欲计算转变结束时,该体系的最终温度,若为两相共存,则如何计算水和冰的比例(摩尔比),请设计计算框图。(假定已知水的结晶潜热、液态水和固态冰的恒压比热容,不用计算。) 2、若A、B两组元可以形成稳定的中间相(即合金化合物AnBm),请根据热力学 理论,解释端际固溶体(A固溶B或B固溶A)的最大溶解度与合金化合物AnBm 的稳定性之间的定性关系。

3、根据体系与环境的关系,简单说明何为开放体系、何为封闭体系,何为孤立体 系? 三、综合分析题(40分,每题20分)

2、单相体系热力学计算(误差在±50K以内15分,±5K以内 18分,±0.5K以内19分,±,0.05K以内20分)(要求列出详细计算过程) 某液态金属的蒸气压随温度变化的关系式为: lgp(atm)=(-6600/T)-1.0 lgT + 9 其固体的蒸气压随温度的变化关系为: lgp(atm)=(-6700/T)-0.9 lgT + 9 求:(1)在一个大气压下该液态金属的沸点(大于1000K); (2)三相点温度(小于1000K)。

材料热力学计算及其在合金制备中的应用

材料热力学计算 及其在纳米材料中的应用 一导论 材料热力学对于材料科学的研究和发展有着重要的意义。相图在材料工程中有重要的应用价值,它和合金体系中各相的热力学参数是材料设计和制备的重要依据之一。从理论上来说,热力学和相图之间的联系不存在任何障碍。但从历史上看,两者却是沿着各自的方向独立发展。传统上,相图主要是用热分析、金相分析和X射线结构分析等实验方法测定,并没有用到热力学知识,也没有完全将热力学用来解决生产实际问题。而热力学则主要是对相平衡进行理论分析,提出不同状态下平衡过程的方向和限度,其实验数据主要是热化学性质的测定。直至近年来,由于在溶液模型、数值方法和计算机软件等方面取得较大的进展,这才使得人门能够将热力学应用到相图中来。热力学和相图的计算机耦合形成了CALPHAD(computer CALculations of Phase Diagram)技术。CALPHAD技术主要是依据热力学原理和基本关系计算物质体系的平衡性质。一个物质体系的热力学特征函数确定,这个物质体系的全部热力学性质都可计算出来,其中包括相图。这就是CALPHAD技术中的相平衡计算部分。 二CALPHAD技术的发展 现今CALPHAD方法的内涵已由相图和热化学的计算机耦合拓展至宏观热力学计算与量子化学第一性原理计算相结合、宏观热力学计算与动力学模拟相结合、建立新一代计算软件和多功能数据库(multi-function database),其科学内容十分丰富,已成为材料科学比较成熟的重要分支., CALPHAD可以按照常规方法进行复杂的相平衡计算,而且还是建立在合理的物理基础之上。已经有大量可以在PC上运行的软件来进行复杂计算,例如FACT[5]、MTDATA[6]、Lukas Program[7]、Ther-mo-Calc[8]、ChemSage等[9]已在全球通用;建立了许多相图热力学数据库,如SGTE纯物质数据库、溶液数据库等。这些软件运行时不需要大量的专门技术,并且在不断地升级以采用更精确的热力学模型和算法更新现有的数据库,在很多情况下可以预测多元合金的相平衡,并与实验结果接近。目前,新一代的软件也在不断地开发完善之中,例如WinPhad[10]和PANDAT等[11]。因此,CALPHAD成为了一个成熟的科学分支,事实上,已经进入了其发展的另一个阶段,强调的是扩展其应用范围的集中要求。

钢的锻造温度范围

钢的锻造温度围 锻造热力规是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。 在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规是否能保证产品机械性能的资料。 锻造温度围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度围具有较高的塑性和较小的变形抗力,

并得到所要求的组织和性能。锻造温度围应尽可能宽一些,以减少锻造火次,提高生产率。 碳钢的锻造温度围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如 Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度围,但相变点(如熔点,A3,A1,A Cm等)则需改用各具体钢号的相变点。 1.始锻温度 始锻温度应理解为钢或合金在加热炉允许的最高加热温度。从加热炉取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以

材料热力学与相变复习总结

热力学定律定义表达式:一、能量从一种形式转化为其他形式时,其总量不变。▽u=q —W 二、一切自发过程都是不可逆的。或热不可能从低温物体传到高温物体而不引起其他变化。 盖.吕萨克(Gay-Lussac )定律:恒压下,任何气体温度升高或降低1℃所引起的体积膨胀都等于它们零度时体积的1/273.16。)16.2731(16.273000t V t V V V t +=+= 敞开体系或开放体系: 与环境之间既有物质交换,也有能量交换的体系 封闭体系或关闭体系:与环境之间只有能量交换,而无物质交换的体系 隔离体系或孤立体系:与环境之间既无物质交换,也无能量交换的体系 体系的性质是状态的函数。我们把这些性质,包括体系的温度、压力、体积、能量或其他,都叫做体系的状态函数 强度性质:与体系的总量无关的性质,例如温度、压强、比表面能、磁场强度等 广度性质:与体系的总量成比例的性质,例如体积、面积、质量等。 盖斯定律:同一化学反应,不论其经过的历程如何(一步或几步完成),只要体系的初态和终态一定,则反应的热效应总是一定的(相同的)。 对于可逆过程而言,qR/T 最大,所以对于同样的△u ,qR 是一定的,且仅取决于体系的状态。这样,qR /T 就具备了状态函数的特点。以S 表示之,称为熵。T q S R ?=?,T dq dS R =熵虽然可以作为此问题判断的依据,但是只适用于隔离体系。 G 称为吉布斯(Gibbs )自由能,也是个状态函数,可以判断恒温恒压下过程可逆与否。若令 G =H -TS 则dW' ≤-dG 如果过程只作膨胀功,即dW' =0,则有 dG ≤0,或 △G ≤0 判断恒温恒压、无非膨功的条件下过程自发进行的可能性。自由能减小不可逆、自发。不变则可逆平衡。 能斯特定理0)()( lim lim 00=?=???→→T T P T S T G 后来人们提出了另外两种热力学第三 定律的表达式: 0)(lim 0=?→S T 00 l i m S S T =→ 将偏摩尔量的定义式中的广度性质G 以自由能F 代之,则得到偏摩尔自由能1 21......,,,)/(-??=i n n n P T i i n F μ 化学位的物理意义是:恒温恒压下,加入微量i 所引起的体系自由能的变化。显然,化学位与自由能之间存在以下关系∑=i i dn dF μ 化学位反映了某一组元从某一相中逸出的能力。某一组元在一相内的化学位越高,它从这相迁移到另一相中的倾向越大。所以可以用化学位来判断过程的方向和平衡: 0≤∑i i dn μ“<”表示反应的方向;“=”表示平衡条件 拉乌尔定律:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其摩尔分数的乘积。 亨利定律:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比 大多数实际溶液都对拉乌尔定律有偏差,即蒸气压大于或小于拉乌尔定律的计算值。如果蒸气压大于拉乌尔定律的计算值,称为正偏差;如果蒸气压小于拉乌尔定律的计算值,叫做负

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

钢的五种热处理工艺

钢的五种热处理工艺 热处理工艺——表面淬火、退火、正火、回火、调质工艺: 1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。 2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。 3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油) 快速冷却叫淬火。 ◆表面淬火 ?钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 感应表面淬火后的性能: 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普 通淬火高2~3单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬 层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。 对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。 一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺

退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ?退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能 或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 ?退火工艺的种类 ①均匀化退火(扩散退火) 均匀化退火是为了减少金属铸锭、铸件或锻坯的化学成分的偏析和组 织的不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以 化学成分和组织均匀化为目的的退火工艺。 均匀化退火的加热温度一般为Ac3+(150~200℃),即1050~ 1150℃,保温时间一般为10~15h,以保证扩散充分进行,大道消除 或减少成分或组织不均匀的目的。由于扩散退火的加热温度高,时间长, 晶粒粗大,为此,扩散退火后再进行完全退火或正火,使组织重新细化。 ②完全退火 完全退火又称为重结晶退火,是将铁碳合金完全奥氏体化,随之缓慢 冷却,获得接近平衡状态组织的退火工艺。 完全退火主要用于亚共析钢,一般是中碳钢及低、中碳合金结构钢锻 件、铸件及热轧型材,有时也用于它们的焊接构件。完全退火不适用于 过共析钢,因为过共析钢完全退火需加热到Acm以上,在缓慢冷却时, 渗碳体会沿奥氏体晶界析出,呈网状分布,导致材料脆性增大,给最终 热处理留下隐患。 完全退火的加热温度碳钢一般为Ac3+(30~50℃);合金钢为Ac3+ (500~70℃);保温时间则要依据钢材的种类、工件的尺寸、装炉量、 所选用的设备型号等多种因素确定。为了保证过冷奥氏体完全进行珠光 体转变,完全退火的冷却必须是缓慢的,随炉冷却到500℃左右出炉空 冷。 ③不完全退火 不完全退火是将铁碳合金加热到Ac1~Ac3之间温度,达到不完全奥氏体化,随 之缓慢冷却的退火工艺。 不完全退火主要适用于中、高碳钢和低合金钢锻轧件等,其目的是细化组织和 降低硬度,加热温度为Ac1+(40~60)℃,保温后缓慢冷却。

材料热力学练习题

1、由5个粒子所组成的体系,其能级分别为0、ε、2ε及3ε,体系的总能量为3ε。试分析5个粒子可能出现的分布方式;求出各种分布方式的微观状态数及总微观状态数。 2、有6个可别粒子,分布在4个不同的能级上(ε、2ε、3ε及4ε),总能量为10ε, 各能级的简并度分别为2、2、2、1,计算各类分布的Ωj 及Ω总。 3、振动频率为ν的双原子分子的简谐振动服从量子化的能级规律。有N 个分子组成玻耳兹曼分布的体系。求在温度T 时,最低能级上分子数的计算式。 4、气体N 2的转动惯量I =1.394?10-46kg ?m 2,计算300K 时的Z J 。 5、已知NO 分子的Θυ=2696K ,试求300K 时的Z υ。 ν~J υ7、计算300K 时,1molHI 振动时对内能和熵的贡献。 8、在298K 及101.3kPa 条件下,1molN 2的Z t 等于多少? 9、在300K 时,计算CO 按转动能级的分布,并画出分子在转动能级间的分布 曲线。 10、计算H 2及CO 在1000K 时按振动能级的分布,并画出分子在振动能间的分 布曲线;再求出分子占基态振动能级的几率。 11、已知HCl 在基态时的平均核间距为1.264?10-10m ,振动波数ν~=2990m -1。计 算298K 时的Θm S 。 12、证明1mol 理想气体在101.3kPa 压力下 Z t =bLM 3/2(T /K )5/2 (b 为常数) 13、计算1molO 2在25?C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。设Θ0U 等于零。 14、已知300K 时金刚石的定容摩尔热容C V ,m =5.65J ?mol -1?K -1,求ΘE 及ν。 15.已知300K 时硼的定容摩尔热容C V ,m =10.46J ?mol -1?K -1,求(1) ΘD ; (2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值;(3) 作C V ,m 值? T 图形。 16、试根据Einstein 热容理论,证明Dulong-Petit 经验定律的正确性。 17、假设?H 及?S 与温度无关,试证明金属在熔点以上不可能发生凝固。 18、在25?C 、0.1MPa 下,金刚石和石墨的摩尔熵分别为 2.45J ?K -1?mol -1和 5.71J ?K -1?mol -1,其燃烧热分别为395.40J ?K -1?mol -1和393.51J ?K -1?mol -1,其密度分别为3.513g ?cm -3和2.26g ?cm -3,试求此时石墨→金刚石的相变驱动力。 19、已知纯钛α/β的平衡相变温度为882?C ,相变焓为14.65kJ ?mol -1,试求将βTi 冷却到800?C 时,β→α的相变驱动力。 20、除铁以外的所有纯金属的加热固态相变有由密排结构向疏排结构的转变的规 律,试用热力学解释这一规律。 21、空位在金属的扩散与相变中都发挥着重要的作用,试推算在平衡状态下,纯 金属中的空位浓度。

钢的相变温度

(1)Ac1 钢加热时,开始形成奥氏体的温度。 (2)Ac3 亚共析钢加热时,所有铁素体都转变为奥氏体的温度。 (3)Ac4 低碳亚共析钢加热时,奥氏体开始转变为δ相的温度。 (4)Accm 过共析钢加热时,所有渗碳体和碳化物完全溶入奥氏体的温度。(5)Arl 钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度。(6)Ar3 亚共析钢高温奥氏体化后冷却时,铁素体开始析出的温度。 (7)Ar4 钢在高温形成的δ(铁素体区)相在冷却时,开始转变为奥氏体的温度。 (8)Arcm 过共析钢高温完全奥氏体化后冷却时,渗碳体或碳化物开始析出的温度。 (9)A1 也写做Ae1,是在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,也就是一般所说的下临界点。 (10)A3 也写做Ae3,是亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度,也就是说亚共析钢的上临界点。 (11)A4 也写做Ae4,是在平衡状态下,δ相和奥氏体共存的最低温度。(12)Acm 也写做Aecm,是过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,也就是过共析钢的上临界点。 (13)Mb 马氏体爆发形成温度,以Mb表示(Mb≤ MS)。当奥氏体过冷至MS 点以下时,瞬间爆发式形成大量马氏体,并伴有响声,同时释放相变潜热,使温度回升。 (14)Md 马氏体机械强化稳定化临界温度。 (15)MF马氏体相变强化临界温度。 (16)Mf 有的文献以Mf表示奥氏体转变为马氏体的终了温度。 (17)MG 奥氏体发生热稳定化的一个临界温度。 (18)MS 钢奥氏体化后冷却时,其中奥氏体开始转变为马氏体的温度,符号中的“S”是“始”字汉语拼音第一个字母,也就是俄文书籍中的MH和英文书籍中的MS。 (19)MZ奥氏体转变为马氏体的终了温度,符号中的“Z”是“终”字的汉语拼音第一个字母,也就是俄文书籍中的MK和英文书籍中的Mf。

液固相变的热力学基础

液固相变的热力学基础- - 金属有液态转变为固态的过程称为凝固。由于凝固后的固态金属通常是晶体,所以讲这一转变过程称之为结晶。一般的金属制品都要经过熔炼和铸造,也就是说都要经历由液态转变为固态的相变过程。 1.1 凝固过程的宏观现象 1.1.1 过冷现象 金属在凝固之前,温度连续下降,当液态金属冷却到理论凝固温度T m时,并未开始凝固,而是需要继续冷却到T m之下的某一温度T n,液态金属才开始凝固。金属的实际温度T n与理论凝固温度T m之差,称为过冷度,以ΔT表示,ΔT=T m-T n。过冷度越大,则实际凝固温度越低。 过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大的范围内变化。今属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大。当以上两因素确定之后,过冷度的大小主要取决于冷却速度,冷却速度越大,则过冷度越大,即实际凝固温度越低。反之,冷却速度越慢则过冷度越小,实际凝固温度越接近理论凝固温度。但是,不管冷却速度多么缓慢,也不可能在理论凝固温度进行凝固。对于一定的金属来说,过冷度有一最小值,若过冷度小于此值,凝固过程就不能进行。 1.1.2 凝固潜热 一摩尔物质从一个相转变为另一个相时,伴随着放出或吸收的热量称为相变潜热。金属熔化时从固相转变为液相是要吸收热量,而凝固时从液相转变为固相则放出热量,前者称为熔化潜热,后者称为凝固潜热。当液态金属的温度到达凝固温度T n时,由于凝固潜热的释放,补偿了散失到周围环境的热量,所以冷却过程中出现了温度恒定的现象,温度恒定的这段时间就是凝固过程所需要的时间,凝固过程结束,凝固潜热释放完毕,温度才开始继续下降。 另外,在凝固过程中,如果释放的凝固潜热大于向周围环境散失的热量,温度将会上升,甚至发生已凝固的局部区域的重熔现象。因此,凝固潜热的石方和散失,是影响凝固过程的一个重要因素。 1.2 金属凝固的微观过程 凝固过程是如何进行的?它的微观过程怎样?多年来,人们致力于研究解决这些疑问,关于凝固过程的研究人们做了大量的工作,取得了很多卓有成效的研究结果。上个世纪20年代,有人研究了透明的易于观察的有机物的接近过程,结果发现,无论是非金属还是金属,在凝固时均遵循着相同的规律:凝固过程从其发生到结束是由两个过程构成,即起始晶核的形成和这些核心的长大。凝固时首先在液体中形成具有某一临界尺寸的晶核,然后这些晶核再不断凝聚液体中的原子

热力学相变

第二章 热力学基础 1) 热力学第零,第一,第二,第三定律的定义及其数学表达式 热力学第零定律:一切互为热平衡的物体具有相同的温度 热力学第一定律:能量从一种形式转化为其他形式时,其总量不变。表达式W q u -=? 热力学第二定律:一切自发过程都不可逆。 热力学第三定律:当温度接近0 K 时,任何凝聚系在任何压强下任何熵变都趋于零。表达式为0)(lim 0 =?→S T 2) 盖吕萨克定律和盖斯定律 盖吕萨克定律:恒压下,一定质量气体体积与热力学温度成正比。(原表述过繁琐P5)表达式摄氏表达为)15.2731(0t V V t +=,开氏表达为)15.273()15.27315.273(00T V t V V T =+= 盖斯定律:同一化学反应,热效应仅由初末状态决定。(即状态量改变仅由始末决定) 3) 理想气体状态方程 nRT PV = 4) 三种体系定义P10 开放体系:体系与环境有物质也有能量交换 封闭体系:体系与环境无物质却有能量交换 隔离体系:体系与环境无物质也无能量交换 5) 状态函数定义P11 体系性质一定时,其状态一定。表征这种一定状态的物理量称为状态函数。(温度、压力、体积、能量包括内能U 焓H 熵S 自由能A G 等)注:功W 和热Q 不是。 6) 强度性质和广度性质P11 强度性质:与体系总量无关的(温度、压强、磁场强度、密度等) 广度性质:与体系总量成正比(体积、面积、质量) 例子:将一杯水分成两杯:两杯水质量相加为原来的质量,所以质量是广度性质。显然密度是强度性质不可加。 以下个人理解: 单位广度性质就是强度性质:密度就是单位体积的质量。熵也是如此。 强度性质就是状态量 7) 熵、吉布斯自由能的定义和表达式 熵S :指的是体系的混乱的程度。是一种热力学几率。 定义式:ωln k S = 定义式T dq dS R =。R dq 为可逆过程的热变化 对于不可逆过程T dq T dq dS R >= 吉布斯自由能G :等温等压下做非体积功的能力。 定义式: TS H U -=

材料热力学考试习题

6、10个小球分配在4个完全相同的容积中,试求4个小容积中各分 得3、2、0、5个小球的微观状态数为多少? 7、由5个粒子所组成的体系,其能级分别为0、ε、2ε及3ε,体系的 总能量为3ε。试分析5个粒子可能出现的分布方式;求出各种分布方式的微观状态数及总微观状态数。 8、有6个可别粒子,分布在4个不同的能级上(ε、2ε、3ε及4ε),总 能量为10ε,各能级的简并度分别为2、2、2、1,计算各类分布的Ωj及Ω总。 9、振动频率为ν的双原子分子的简谐振动服从量子化的能级规律。有 N个分子组成玻耳兹曼分布的体系。求在温度T时,最低能级上分子数的计算式。 10、气体N2的转动惯量I =1.394?10-46kg?m2,计算300K时的q J。 11、已知NO分子的Θυ=2696K,试求300K时的qυ。 12、已知下列各双原子分子在基态时的平均核间距r0及振动波数ν~如 下: 计算各分子的转动惯量、ΘJ及Θυ。 13、计算300K时,1molHI振动时对内能和熵的贡献。

14、在298K 及101.3kPa 条件下,1molN 2的q t 等于多少? 15、在300K 时,计算CO 按转动能级的分布,并画出分子在转动能 级间的分布曲线。 16、计算H 2及CO 在1000K 时按振动能级的分布,并画出分子在振 动能间的分布曲线;再求出分子占基态振动能级的几率。 17、已知HCl 在基态时的平均核间距为 1.264?10-10m ,振动波数 ν~=2990m -1 。计算298K 时的Θm S 。 18、证明1mol 理想气体在101.3kPa 压力下 q t =bLM 3/2(T /K )5/2 (b 为常数) 19、计算1molO 2在25?C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。设Θ0U 等于零。 20、已知300K 时金刚石的定容摩尔热容C V ,m =5.65J ?mol -1?K -1,求ΘE 及ν。 21.已知300K 时硼的定容摩尔热容C V ,m =10.46J ?mol -1?K -1,求(1) ΘD ; (2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值; (3) 作C V ,m 值? T 图形。 22、试根据Einstein 热容理论,证明Dulong-Petit 经验定律的正确性。 23、假设?H 及?S 与温度无关,试证明金属在熔点以上不可能发生凝 固。 24、在25?C 、0.1MPa 下,金刚石和石墨的摩尔熵分别为2.45J ?K -1?mol -1 和 5.71J ?K -1?mol -1,其燃烧热分别为395.40J ?K -1?mol -1和393.51J ?K -1?mol -1,其密度分别为3.513g ?cm -3和2.26g ?cm -3,试求

材料热力学与固态相变研究生试题-20151117

西南交通大学研究生2015 -2016 学年第(I)学期考试试卷 课程代码 60933002 课程名称 材料热力学与固态相变 考试时间 90 分钟 阅卷教师签字: 材料热力学部分 一、 基本概念题(请按照热力学理论对下列概念(对)进行阐述)(30分,每题10分) 1、 吉布斯自由焓与熵 2、 状态与状态函数 3、 亨利定律与规则溶液 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

二、 简答题(25分) 1、 如何正确理解热力学封闭体系。(10分) 2、 1mol 某单质,其熔点为400K ,熔化热ΔH m 为600KJ/mol ,试求其在恒定350K 下结晶时的热焓变化ΔH 、自由焓变化ΔG ,以及熵的变化ΔS 。并依据热力学定律说明这一转变是否是自发的转变?(已知该物质液固两相的恒压热容差为ΔC p = C l p -C S p =10J/(mol.K))(15分) 附:吉布斯.亥姆霍兹(Gibbs-Helmholtz )方程: Kirchhoff 方程: dT T H T G d T T 2θ θ ?-=??? ? ? ??dT C H d p T ?=?θ

三、 综合分析计算题(45分) (5分) 附录: dT C H d p T ?=?θ

2、单相体系热力学计算(误差在±50K以内15分,±5K以内 18分,±0.5K以内21分,±,0.05K以内24分)(要求列出详细计算过程) 某固体的蒸气压随温度的变化关系为: lgp(atm)=(-6750/T)-0.93 lgT + 9.0 求:在一个大气压下该固态金属的升华点。

材料热力学知识点

1. 简述熵判据、亥姆赫兹函数判据和吉布斯函数判据的内容及使用条件: ①对于孤立系统:(△S )u,v,w ’:>0自发 =0可逆 <0自阻不自发 ②非孤立系统:△S 总=△S 系+△S 环:>0自发 =0可逆 <0自阻不自发 ③亥姆霍兹自由能(F ) dF ≤w ’ 在恒温容器不做其他功的情况下△F :<0自发 =0可逆(平衡) >0自阻不自发 ④吉布斯自由能(G )dG ≤w ’在恒温恒压下不做其他功的情况下△G :<0自发 =0可逆(平衡) >0自阻不自发 5. 说明为什么纯金属(纯铁材料除外)加热的固态相变是由密排结构到疏排结 构的相变: dH=TdS+VdP →(?H/?V )T =(?S/?V )T +V (?P/?V )T Maxwell 方程(?S/?V )T =(?P/?V )T 体积不变,温度升高导致压力升高(?P/?T )V >0 →(?S/?V )T >0 在温度 一定时,熵随体积而增大,即:对于同一金属,在温度相同是,疏排结构的熵大于密排结构。 (?H/?V )T >0温度一定时,焓随体积而增大,即:对于同一金属,在温度相 同是,疏排结构的焓大于密排结构。G=H-TS 在低温时,TS 项对G 的贡献小,G 主要取决于H 项,H 疏排>H 密排,G 疏排>G 密排,低温下密排相是稳定相;在高温下,TS 项对G 的贡献很大,G 主要取决于TS 项,S 疏排>S 密排,G 疏排<G 密排,高温下疏排相是稳定相。 6. 说明为什么固相与气相或液相之间平衡时,相平衡温度T 与压力P 之间的关系 是指数关系;而固相与液相之间平衡时,相平衡温度T 与压力P 之间的关系是直线关系: ①由dT/dP=△V/△S 对于凝聚态之间的相平衡(L →S )dT/dP=△αβVm/△αβSm 压力改变不大时,△S 和△T 的改变很小,可以认为dT/dP=C P ∝T 为直线关系;②有一相为气相的两相平衡dP/dT=△vapH/T △vapV ,蒸发平衡,升华平衡的共同特点是其中有一相为气相,压力改变时△V 变化很大。 △vapVm=Vm(g) 得dP/dT=△vapHmP/RT 2→dlnP/dT=△vapHm/RT 2→P=Aexp(-Hm/ RT 2) L(s) ←→G 相平衡溫度T 和压力之间的关系为指数关系。 10.化学势:保持温度,压力和除i 以外其他组元的量不变的情况下,在溶液中改变1摩尔i 引起溶液Gibbs 自由能的变化,μi =(?G/?ni)T,P,n ξ≠ni Gm-X 图中化学位的确定:在摩尔自由能曲线(Gm-X 图)上,过成分点的切线与两纵轴的交点为两个组元A 和B 的化学势。 11.活度:既能克服化学势的缺点,又能保存化学势的基本特征.定义式:μi =0G i +RTlna i ai 为组元i 的活度 a i =x i ·f i f i 为活度系数 表示实际溶液 与理想溶液的偏差。f i =exp(1-x i )2I AB /RT 9.试简述两相平衡条件的热力学条件、意义,对于两种或者两种以上物相存在的二元体系吉布斯自由能-组分关系图中如何确定相平衡条件和范围,以及上述方法的热力学原理; 两相平衡的热力学条件:每个组元在各相中的化学位相等,u i α=u i β

材料热力学知识点

材料热力学知识点 第一章单组元材料热力学名词解释:1 可逆过程 2 Gibbs 自能最小判据 3 空位激活能 4 自发磁化:5 熵: 6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题 1 根据材

料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变自能与温度的关系曲线。计算题1已知纯钛α/β的平衡相变温度为882OC,相变焓为4142J?mol-1,试求将β-Ti过冷到800OC时,β→α的相变驱动力2若某金属形成空位的激活能为?mol-1,试求在700OC下,该金属的空位浓度。3纯Bi在压力下的熔点为544K。增加压力时,其熔点以/10000K?MPa-1的速率下降。另外已知融化潜热为?g-1,试求熔点下液、固两相的摩尔体积差。混合在一起后,既没有热效应也没有体积效应时所形成的溶体。混合物:结构不同的相或结构相同而成分不同的相构成的体系化合物:两种或两种以上原子组成的具有特定结构的新相溶解度:溶体

相关主题
文本预览
相关文档 最新文档