当前位置:文档之家› Lurgi-MTP-MTO

Lurgi-MTP-MTO

Lurgi MegaMethanol Technology – Delivering the building blocks for future fuel and monomer demand
Presented at the DGMK Conference ?Synthesis Gas Chemistry“, October, 4. – 6., 2006 Dr. Thomas Wurzel, Lurgi AG

Agenda
Motivation Today′s methanol industry Towards larger capacities – a joint effort of R&D, catalyst development and plant engineering Monomer and fuel from Methanol Conclusions
2

Increasing energy demand
Billion tons of coal equivalent
3 0 28 26 24 22 20 1 8 1 6 1 4 1 2 1 0 8 6 4 2 0
1970
£ ¨ ¢ ¤ ¥| ¤ §¤ | ? ?
198 0
£ £     ¥ ¤ |  ¤ ?
1990
£  ¨  ¥ | ¥ ¥ ?
2 001
   ¥ ¤ |  ¤ | 
2 02 0
! £   ¤ | | ¤ §¤ ¥ ¤ ¤ 
2 05 0
§¤ | ¨ ¤ " 
3

How will the future look like?
Sources: www.spiegel.de/fotostrecke/0,5538,16327,00.html https://www.doczj.com/doc/d614957914.html,/fischer-tropsch.htm
4

Spoilt for feedstock choices
1380 hits
1110 hits
754 hits
5

Syngas & MeOH – the flexible dream team
Coal Natural Gas BioMass Tar Sands etc.
Chemicals Propylene DME Fuels
Syngas
Methanol
6

Chemical Methanol Market
Today Formaldehyde MTBE Acetic Acid Miscellaneous Uses TOTAL 12 6 3 11 32 MM tpa MM tpa MM tpa MM tpa MM tpa
development up down up up
annual increase pre-dominant feedstock: close the gap in low cost methanol supply: selection of syngas technology is key to economic methanol production
3 % i. e. 1 MM tpa natural gas MegaPlants (> 1 million tpy) 60 – 65 % of ISBL cost
7

Ways to produce Syngas
Heavy Naphtha LPG Refinery Off-gases Residue Prereforming
Gasification
Coal
Natural Gas Prereforming MPG Secondary Reforming Autotherm. Reforming
Tubular Reforming Tubular Reforming
MPG H2S Rectisol
Tubular Reforming
H2S Rectisol
CO Shift Conversion
CO2 Removal Cold Box PSA
PSA
H2
H2
CO
Synthesis Gas
8

H2/CO Ratios for Syngas Generation
S MR
C MR
A T R
MPG
1
F e e d N atu ral G as
2
3
4
H2/CO ratio
5
CMR= Co m b i n e d Me t h a n e Re f o r m i n g
9

Typical Single-Train Capacities
Steam Reforming Autothermal Reforming MPG- Partial Oxidation MeOH Reforming 100 1.000 10.000 100.000 1.000.000
10

Lurgi Highlights for Syngas Production
Lurgi offers all gas-b ased sy n gas t ec h n ologies W W orld largest sin gle t rain sy n gas un it ( A T LA S ) orld largest m ult ip le t rain sy n gas un it ( M p erat ure for a st eam reform osselb ai) er ( B P
S ic h uan p lan t )
H igh est out let t em
V ast ex p erien c e in h an d lin g ox y gen ( sin c e 1 9 2 8 ) 5 0 + y ears ex p erien c e in A T R ( sin c e 1 9 5 4 ) M P ilot p lan t t o t est m ore t h an 1 0 0 , 0 0 0 , 0 0 0 N m 3 / d ay c ap ac it y in st alled
ore sev ere op erat in g c on d it ion s
11

Syngas Benchmarks for MeOH Parameter
Stoechiometric number, SN CO/CO2 ratio Methane slip, % (dry) Steam reformer duty, GJ/hr Syngas flow at compressor suction, m3eff. / hr
Steam Reforming 2.95 2.3 3.28 1740 43713
Autothermal Reforming 2.05 2.5 1.76
-
Combined Reforming 2.05 2.8 2.10 460 19433
12
20240

Syngas Benchmarks for MeOH
Parameter
Capacity, MTPD
Natural gas consumption (MMBTU/ton MeOH)
Conventional Technology 2500 30 100 100 100
MegaMethanol Technology 5000 28.5 130 97 79
Investment1), % Operating cost, % Production cost, %
1)
Oxygen supply over the fence
13

Preferred route: Oxygen-based
ATR: homogeneous/heterogeneous formation of syngas
principle reactions: combustion of methane steam reforming of methane Water gas shift reaction
14

Features of Autothermal Reformer
Low S/C ratio ≈ 1.5 - 0.5 mol/mol high CO selectivity low CO2 emission Outlet temperature 950 - 1050 ° C Low methane slip Close approach to equilibrium Pressure: 40 bar realised (large scale) 70 bar realised Demoplant High gas throughput possible Up to 1,000,000 Nm3 gas /hr
# # # # # #
15

Reactor Design
uncooled burner (no CW circuit) → proper mixing and combustion → free of vibration Burner and Reactor as one unit no start-up burner low SiO2 α-Al2O3 Nickel catalyst → high thermal stability multilayer refractory lining → thermal protection
16

相关主题
文本预览
相关文档 最新文档