当前位置:文档之家› 英文翻译一定通信范围下无线传感器网络的低功耗拓扑结构

英文翻译一定通信范围下无线传感器网络的低功耗拓扑结构

英文翻译一定通信范围下无线传感器网络的低功耗拓扑结构
英文翻译一定通信范围下无线传感器网络的低功耗拓扑结构

一定通信范围下无线传感器网络的低功耗拓扑结构

金彦亮廖慧俊王晖葛泉熊勇

上海大学特种光纤和光接入网络重点实验室上海200072,中国

CNRS-IBISC研究实验室,埃松省埃夫瓦尔德大学,巴黎,法国

无线传感器网络与通信重点实验室,中国科学院上海微系统与信息技术院,上海200050,中国

(方勇推荐)

上海大学和施普林格出版社柏林海德堡 2010年

摘要:对无线器的期望越来越高,无线传感器网络的性能(wsns)受其拓扑结构的影响很大。在这篇文章中,我们认为4图案的拓扑结构最好的支持了连接两层无线传感器网络部署的传感器节点。减少能源消费总量性能优于其他拓扑结构。文章中的分析为网络部署和协议的准则在未来的应用程序的设计提供了指引。

关键词:无线传感器万罗(WSN),拓扑结构,覆盖,连通

引言:

无线通信技术基于MEMS的传感技术的最新进展使相对便宜和低功耗的无线传感器节点(SNS)的开发发展成为可能。这些典型的传感器网络由大量的无线连接的小型电池供电设备组成。节点感知环境信息,并向一个被称作汇或基站(BS)的处理中心发送报告,在中心数据将会被处理成对终端用户有用的信息。这种网络有一个潜在的广泛应用范围,从军事侦察到栖息地检测。无线传感器网络的所有问题都涉及到一个基本的和重要的问题,即如何利用尽可能少的功耗来部署节点组织网络结构以保证无线传感器网络的覆盖面。

网络的拓扑结构是一个关键问题,因为它会影响一个无线传感器网络的成本和检测能力。因此,它对于研究建设一个连接覆盖的WSN变得越来越重要,同时尽可能消耗最少的能耗从而最大化网络的寿命。在【3】中,作者研究了不同消耗功率、其他参数固定的不同拓扑结构的效果,并提出了定向源知道协议(DSAP)。比较了所有不同图案的拓扑结构之间性能【4】。大多数的关于节点布置问题的研究【例如,{3(4)}】是关于分级分层WSNS的传感范围完全覆盖连接。当许多SNS被放置在一个广阔的区域,有效的方法是随机节点的位置,使传感器可以以一种随机的方式分散。为了实现更高的节能效率并保证网络的更长寿命,SNS可以分组成集群,在簇头(CH)收集和处理数据,然后发送给BS。

在本文中,我们通过拓扑结构点的视图解决用低功耗保持两层WSNS连接覆盖的问题。在本文所考虑的两层WSNS中,小(即使更小)SNS以集群的形式被布置环绕目标地区采集基本信息包括视频或者音频流,温度读数,运动的衡量等等。此外,有一个有相同的簇和集群的CH被放置在条形的,方形和基于三角形的拓扑结构中。我们将讨论所有这些拓扑模式,并比较不同模式的WSNS的性能。本文的其余部分安排如下:在第一部分,讨论网络模型和能源模型。第二部分介绍不同图案的拓扑结构的理论分析。在第三部分,模拟和讨论这项工作的主要成果,第四部分结束本文。

1网络模型

1.1双层WSNS

一个双层的WSN ,如图1所示,由一些SN/CH 集群和至少一个BS 组成。每个集群中,有很多SNS 和至少一个CH 。SNS 是负责所有遥感有关的活动: 一旦由内部定时器或外部事件触发的SN 开始捕捉实时信息,将通过的SN 编码,并直接传送到在同一个集群CH 。SNS 是小,成本低,一次性的,可以密集部署集群内。 SNS 不与在同一货不同簇的SNS 联系,通常是独立运作的。另一方面,CHs 比SNS 有更多的责任。一个CH 从在集群中活跃的SNS 收集原始数据和中继到BS 。它也可以控制SNS 进入睡眠、闲置或者活动状态(如果一些SNS 被发现经常处于不活跃或者复制数据,从而允许这些SNS 稍后重新启动当一些现有的活跃SNS 耗尽能量)。BS 也可以作为WSNS 在其他网络上交换数据和控制信息的网关。

有N SNS 均匀分布在一个边长为R 的区域在飞机上。在每个数据收集周期,每个的SN 收集发送其感觉到它的CH 的数据。BS 通过多跳通信模式从CH 收集数据。我们可以用分布式聚类算法,如LEACH 协议[6],SEP[7],选择CH 和每SN

有机会成为一个CH 。 BS 和分群演算法 的能源消耗不包括在我们的研究。

1.2能源消耗模型

我们使用一个简单的通信模型作为收发器类似于【8】中的一个。在一个集群,用于传输χ 距离的数据包消耗的能量为

()αχχb a E t += (1)

a 是花费在发射机电子电路上的能量,αχ

b 是花费在射频(RF )放大电路

上的用于传播损耗,2≥α路径损耗系数。接受数据包所用的总能量为

c r =E (2)

其中c 是接收器花费在电子电路上的能量。因此,对于一个CH 通过数据包转发超过χ,功耗为:

()()c

b a r t f ++=E +E =E α

χχχ (3)

同样,能量消耗量从CH 向CH 或BS 发送一个包被定为:

αχ''+'=E 'b a t

(4) 其中a '、b '、α'有相同的定义。能源消耗量用于从其他CH 接受数据包是: c r '='E

(5) c '和c 有相同的定义。

1.3图案的拓扑结构为两层 WSNS

在条形基础的WSNs 的,单元格组织使用条形模式,每个单元有四个相邻位于它周围的单元格,并用一个在左边和邮编的重叠。其临近单元格连接所有单元格获取条状的最小单位。因此,在这种拓扑结构模式的WSN 为条状基础的无线传感器网络,如图2所示。每SN 可以成为CH 和它可以放置在任何位置的单元格。

相邻小区之间的距离被设置为传输范围c r ,这样单元和其相邻单元的直接沟通就可以实现。当CH 需要使用多跳的转发方式向BS 发送一个数据包,则数据包必须通过其他CHs 中继。图2是一个7单元的基于条形的WSN 。因此传输距离c r 是

ST c l r 13= (6)

在这个基于带状的WSN 中,连续两个相邻小区的最大传输距离为

ST l 3,一个列中的两个相邻小区的距离是ST l 3。因此,连续小区的数量是

()11-??

????=?=++ST ST l R M R M l (7) []+α是一个整数,大于或等于α。 列中的单元数为

+??????=?=ST ST l R N R N l 33 (8)

TR c l r 13=()++++??????=????????≈???? ????????-???? ?

?-??????=2222332633232213c c TR TR TR r R r R l l R l R MN c TR r R l R M H 3213322===13-??????=+

TR l R M +??????-=TR TR l l R N 322

因此,单元的总数为 ++++??????=??????≈???? ???????????? ??-??????=2222313331C ST ST ST r R l R l R l R MN (9)

最大跳数是 ()c ST ST r R l R l R

N

M H 3213313222+=+=+= (10)

1.3.2基于三角形的两个层次的WSN 拓扑

在三角形为基础的WSN ,每个单元都有6个相邻单元唯一围绕在它周围。连接相邻小区以三角形形式形成最小单元。因此这种拓扑结构模式的WSN 被叫做基于三角形的WSN 。以上述方式,相邻单元的距离被设置成传输范围c r 。图3是一个基于三角形的7单元WSN 。因此传输距离c r 也是 (11)

同样在一个基于三角形的WSN 中,两个相邻单元的通信距离连续的和列的都是TR l 13。此外,连续小区的数量为

(12) 列中的单元数为 (13) 因此,单元的总数为

(14)

最大跳数是 (15)

SQ c l r 5=1.3.3基于方形拓扑结构的WSN

在基于方形的WSNs ,每个单元都有8个相邻单元唯一围绕在它周围。连接相邻小区以方形形式形成最小单元。因此这种以这种拓扑结构模式的WSN 叫做基于方形的WSN 。以上述方式,相邻单元的距离被设置成传输范围

c r 。图4是9单元组成的WSN 。因此,传输范围c r 为

(16)

同样在一个基于方形的WSN 中,两个相邻单元的通信距离连续的和列的都是

SQ l 5,此外,连续小区的数量为

15-??????

??=+SQ l R M

(17) 列中的单元数为 M N = (18) 因此,单元的总数为

++++??????=??????≈????????????????=22225c SQ SQ SQ r R l R l R l R MN (19) 最大跳数是c SQ r R l R

N

M H 52222==+=

(20)

1.3.4具有六边形拓扑结构的双层WSN

在基于六边形的WSNs ,每个单元都有3个相邻单元唯一围绕在它周围。连接相邻小区以方形形式形成最小单元。因此这种以这种拓扑结构模式的WSN 叫做基于

方形的WSN 。相邻单元的距离被设置成传输范围c r 。图5是六边形拓扑结构的WSN 。

因此,传输距离是HE c l r 3= (21)

132-??????=+HE l R M ()

3334+=c r R H 2-??????=+HE l R N ++++??????=??????≈???? ??-??

???????? ??-??????=222236322132C HE HE HE r R l R l R l R MN

同样在一个基于方形的WSN 中,两个相邻单元的通信距离连续的和列的都是 HE l 3,此外,连续小区的数量为 (22)

列中的单元数为

(23)

因此,单元的总数为

(24)

最大跳数是 (25) 2 不同图案的拓扑结构的理论分析

在前面的章节中,我们介绍了主要的网络模型。 此外,我们将在本节总结和详细描述。在给出相同的覆盖区域R R ?和固定通信范围的情况下,通过单元边长、检测范围、单元数量、可靠性和最大跳数我们比较上述4种拓扑结构。假

设{}c HE SQ TR ST r l l l l R ,,,,>>,我们不考虑边际被边缘单元覆盖,因为边际区域只存在于少数地方,占据了通常包含一个数量庞大单元的整个覆盖区域的WSN 的微

不足道的一部分。单元的数量是非常庞大的,[]+α等于α。下面我们将用α代替

[]+α。表1给出了这些四个图案拓扑的性能比较结果。 从表1,我们可以看到基于方型拓扑提供了最大的边长和固定通信范围内最少单元数量和相同的覆盖面

积。六边形的拓扑结构的WSNs,提供最佳的可靠性和最佳检测强度的在权衡最大的单元数量和最大的检测范围。基于三角形拓扑的WSNs,提供的最少跳数和能耗。这些结论支持一般情况下的大规模WSNs的比较。

3 仿真结果

R 和通信范围为c r,模拟不同拓扑结在本节中,我们将固定覆盖面积为R

构的性能。基站位于方形检测领域的中心。图6(a)显示单元的数量和感应区固定边长R=100000m的通信范围c r。通信范围不断增加,单元的数量减少并趋于一个固定值。基于三角形和方形的拓扑有最少和相同的单元数量。基于六边形的拓扑结构具有最大的单元数量。在图6(b),通信距离是固定的时,随着检测区的扩大,单元的数量增加。模拟结果与图6(a)所示的相似。

图7显示了在检测区的边长为100000m,通信距离是300米的条件下,四种拓扑结构模式的最大跳数。通信范围不断增加,边长增加,最大跳数也减少了。与图6的仿真结果相同,基于三角形拓扑结构具有最短跳跃范围,基于六边形拓

扑结构具有最长的跳跃范围。

图8中,所示为不同图案拓扑结构的总的通信能量消耗图。 在这种情况下,用于检测的使用能耗不被考虑。 能源消耗参数列于表2。当2='α,总能耗随着通信范围增加而减少。相反的是。当4='α随着通信范围的增加,总能耗也增加。四种模式性能具有一个类似于Figs.6和7所示的趋势。

在图9,显示了不同图案拓扑结构总能耗,并显示了在这个仿真下的传感和传输能耗。 能耗参数也在表2中列出。注意,传输范围和检测范围的是同一顺序规模,并且设置为αα'=,当2='=αα时,总能耗随着通信范围增加而减小。 当达到最低值时,总能耗随着通信距离增加增加。我们还可以看到不同的拓扑结构总能量消耗差异逐渐减少。当4='=αα,随着通信距离增加,总能耗增加。

4 结论

在这个论文,我们对基于条形,三角形,正方形,和六角形两层WSN 拓扑进行了研究。 在讨论中,通信范围是固定的,SNS 是统一部署的。 理论和模拟结果表明,基于三角形拓扑单元数量较小,较短的最大跳跃长度,较少的总能耗,以及比其他拓扑结构更好的性能。 本文分析了可能在未来的应用中提供网络部署和协议的设计准则。在未来的研究中,我们将探讨SNS 随机部署情况下的不同拓扑结构的功率效率。

致谢 作者谨感谢他们对本文早期版本详细意见的评论。

参考文献

[1] Pottie G, Kaiser W. Wireless integrated network sensors [J]. Communications of the ACM, 2000, 43(5):51-58.

[2] Jin Y L, Lin H J, Zhang Z M. Estimating the reliability and lifetime of wireless sensor network [C]//Proceedings of the 4th IEEE International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China. 2008.

[4] Tian H, Shen H, Matsuzawa T. Developing energy efficient topologies and routing for wireless sensor networks [R]. Lecture Notes in Computer Science, NUMB3779, 2005: 461-469.

[5] Pan J, Hou Y T, Cai L, Shen S X. Topology control for wireless sensor networks [C]// Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, USA. 2003: 286-299.

[6] Heinzelman W, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks [J]. IEEE Transactions on Wireless Communications, 2002, 1(4): 660{670.[7]

Smaragdakis G, Matta I, Bestavros A. SEP: A stable election protocol for clustered heterogenous wireless sensor networks [C]// Proceedings of the International Workshop on Sensor and Actor Network Protocols and Applications, Boston, USA. 2004.

[8] Jin Y L, Jiang Y F. Design of maximizing clustered sensor network lifetime [C]// International Conference on Innovative Computing, Information and Control,Beijing, China. 2006: 373-376.

附件:原文Power-efficient topologies for wireless sensor networks with fixed communication range

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,

从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

《通信网络建设与优化》教学大纲

《通信网络建设与优化》教学大纲 一、课程的性质、地位与任务 学习通信系统和通信网络方面的基础理论、组成原理和设计方法,受到通信工程实践的基本训练,具备现代通信系统和网络的设计和开发、调测和工程应用的能力。本课程适合于从事电信工作,特别是移动通信网络建设与优化的工程师、从事移动通信工作的工程技术人员。 二、教学基本要求 1.了解CDMA通信原理、关键技术、网络和信道结构无线通信网的规划与设计; 2.理解天馈线系统、直放站、室内分布系统、核心网的规划与设计; 3.掌握业务预测的依据及原则、业务预测中考虑的因素; 4.掌握用户业务量预测、业务分布预测和业务密度图生成方法; 5.掌握CDMA移动通信系统的容量设计; 6.熟悉网络结构的设计及增加覆盖、容量的技术措施。 三、教学学时分配表 第一章移动通信发展概述……4学时 本章教学目的和要求:了解移动通信的发展历史;掌握第三代移动通信系统的主要技术体制;了解移动通信的未来发展趋势。 重点和难点:功率调整及功率控制;上行同步;智能天线;软件无线电;低速率模式。 第一节移动通信的发展历史

一、移动通信 二、第三代移动通信系统的主要技术体制 三、移动通信的未来发展趋势 第二章无线通信网络规划与设计流程……6学时 本章教学目的和要求:了解无线通信网络规划的概述和无线通信网规划与设计特点;理解CDAMA网络规划与设计的特点;掌握移动通信网络规划与设计流程和无线网络规划原则与目标。 重点和难点:网络负载动态变化;移动通信网络规划;无线网络规划原则与目标。 第一节无线通信网络规划与设计概述 一、无线通信网络规划 二、无线通信网络设计特点 第二节CDAMA网络规划与设计的特点 一、CDAMA网络规划 二、CDAMA网络规划特点 第三节移动通信网络规划与设计流程 一、移动通信网络规划 二、移动通信网络规划设计 第四节无线网络规划原则与目标 一、无线网络规划原则 二、无线网络规划目标 第三章无线通信环境及无线链路传播模型……6学时 本章教学目的和要求:掌握无线通信环境模拟链路传播模型的方法;掌握模型的校正。 重点和难点:移动无线通信环境;无线电波传播环境和链路传播模型;主要链路传播模型 第一节移动无线通信环境 一、无线电波传播环境和链路传播模型 二、主要链路传播模型 第二节数据处理 一、数据处理要求 二、数据处理方法 第四章业务分析与预测……6学时 本章教学目的和要求:掌握业务预测的依据及原则、业务预测中考虑的因素;掌握用户业务量预测、业务分布预测和业务密度图生成方法。 重点和难点:用户业务量预测;用户业务量预测;业务分析与预测方法 第一节用户业务量预测简介 一、用户业务量预测依据 二、业务预测的原则 三、业务预测中考虑的因素 第二节业务分析与预测方法 一、业务分布预测 二、业务密度图生成方法

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

无线传感器网络的应用与影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的范围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素 applications of wireless sensor networks and influencing factors analysis liu peng (college of computer science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a comprehensive description of the development

传感器拓扑结构以及节点结构

无线传感器网络拓扑结构 从无线传感器组网形态和方法来看,有集中式、分布式和混合式。集中式类似于移动通信的蜂窝结构,可以集中管理;分布式结构类似于Ad-hoc网络结构,可自组织网络接入连接,可以分步管理;混合式结构是集中式和分布式结构的组合。其中无线传感器按节点功能及结构层次来看,有可分为平面网络结构、分级网络结构、混合网络结构以及Mesh网络结构。 1、平面网络:结构如下图1.1所示,是无线传感器网络中最简单的拓扑结构,每个节点都为对等结构,具有完全一致的功能特性,也就是每个节点包含相同的MAC、路由、管理和安全等协议。但是由于采用自组织协同算法形成网络,其组网算法比较复杂: 图1.1 无线传感器网络平面网络结构 2、分级网络结构(层次网络结构):如下图1.2所示,分级网络分为上层和下层两个部分—上层为中心骨干节点;下层为一般传感器节点。骨干节点之间或者一般传感器节点间采用的是平面网络结构,然而骨干节点和一般节点之间采用的是分级网络结构。一般传感器节点没有路由、管理及汇聚处理等功能。 图1.2 无线传感器网络分级网络结构

3、混合网络结构:如下图1.3所示,混合网络结构时无线传感器网络中平面网络结构和分级网络结构的一种混合拓扑结构。这种结构和分级网络结构不同的是一般传感器节点之间可以直接通信,可不需要通过汇聚骨干节点来转发数据,但是对所需硬件成本更高。 图1.3 无线传感器网络的混合网络结构 4、Mesh网络结构:如下图1.4所示,这是新型的网络拓扑结构,这是种规则分步的网络,不同于完全连接的网络结构。通常只允许和节点最近的邻居通信。网络内部的节点一般也是相同的,因此Mesh网络也称为对等网。由于通常Mesh 网络结构节点之间存在多条路由路径,网络对于单点或单个链路故障具有较强的容错能力和鲁棒性。其中优点就是尽管所有节点都是对等的地位,且具有相同的计算和通信传输功能,某个节点可被指定为簇首节点,而且可执行额外的功能,一旦簇首节点失效,另外一个节点可以立刻补充并接管原簇首那些额外执行的功能。 图1.4 无线传感器网络的Mesh网络结构

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

无线传感器网络研究报告现状及发展

无线传感器网络的研究现状及发展 默认分类 2008-06-12 18:19:20 阅读910 评论0 字号:大中小 摘要:无线传感器网络(WSN>综合了传感器技术、微电子机械系统(MEMS>嵌入式计算技术.分布式信息处理技术和无线通信技术,能够协作地实时感知、采集、处理和传输各种环境或监测对象的信息.具有十分广阔的应用前景,成为国内外学术界和工业界新的研究领域研究热点。本文简要介绍了无线传感器网络的网络结构、节点组成,分析了无线传感器网络的特点及其与现有网络的区别。进而介绍现有无线传感器网络中的MAC层技术、路由技术、节点技术和跨层设计等关键技术。最后展望无线传俄器网络的应用和发展并指出关键技术的进步将起到决定性的促进作用。 关键词:无线传感器网络节点 MAC层路由协议跨层设计 Abstract: Wireless sensor network (WSN> is integration of sensor techniques, Micro-Electro-Mechanical Systems, embedded computation techniques, distributed computation techniques and wireless communication technique. They can be used for sensing, collecting, processing and transferring information of monitored objects for users. As a new research area and interest hotspot of academia and industries, Wireless Sensor Network(WSN> has a wide application future. This paper briefly introduced the wireless sensor network of networks, nodes, the analysis of the characteristics of wireless sensor networks and the differences wih the existing networks. And the MAC layer technology, routing technology, joint cross-layer design technology and key technology are introduced . At last the prospects of wireless sensor network are discussed in this article. Key Words: Wireless Sensor Network, node, MAC, routing protocol, Cross-layer design 一、概述 随着通信技术、嵌入式计算技术和传感器技术的发展进步,包括微电子机械系统

无线传感器网络的体系结构

无线传感器网络的体系结构 李宁 104753071172 (河南大学,河南大学计算机与信息工程学院 475004) 摘要:在对无线传感器应用特征进行分析的基础上,总结了无线传感器体系结构设计的要素,讨论了无线传感器网络的软件体系结构和通信体系结构。通过与传统Ad hoc网络的对比,归纳了无线传感器网络在各层各面设计的特点。文章认为虽然传统的传感器的应用方向主要在军事领域,但在民用领域也存在着广阔的前景。 关键词:无线传感器网络;软件体系结构;通信体系结构;自组织网络 0 引言 目前在无线通信领域和电子领域的进步促进了低成本、低功耗、多功能无线传感器的发展。这些无线传感器体积小,并具有感知、数据处理和短距离通信的能力。与传统的传感器相比,现在的无线传感器网络具有明显的进步。无线传感器网络由大量高密度分布的处于被观测对象内部或周围的传感器节点组成。其节点不需要预先安装或预先决定位置,这样提高了动态随机部署于不可达或危险地域的可行性。 传感器网络具有广泛的应用前景,范围涵盖医疗、军事和家庭等很多领域。例如,传感器网络快速部署、自组织和容错特性使其可以在军事指挥、控制、通信、计算、智能、监测、勘测方面起到不可替代的作用。在医疗领域,传感器网络可以部署用来监测病人并辅助残障病人。其他商业应用还包括跟踪产品质量、监测危险地域等。 无线传感器网络的实现需要自组织(Ad hoc)网络技术。尽管已有许多Ad hoc网络的协议和算法,但并不能够满足传感器网络的需求。具体来说,相对于一般意义上的自组织网络,传感器网络有以下一些特色,需要在体系结构的设计中特殊考虑。 (1) 无线传感器网络中的节点数目高出Ad hoc网络节点数目几个数量级,这就对传感器网络的可扩展性提出了要求。由于传感器节点的数目多开销大,传感器网络通常不具备全球唯一的地址标识,这使得传感器网络的网络层和传输层相对于一般网络而言,有很大的简化。此外,由于传感器网络节点众多,因此,单个节点的价格对于整个传感器网络的成本而言非常重要。 (2)自组织传感器网络最大的特点就是能量受限。传感器节点受环境的限制,通常由电量有限且不可更换的电池供电,所以在考虑传感器网络体系结构以及各层协议设计时,节能是设计的主要考虑目标之一。 (3)由于传感器网络应用的环境的特殊性、无线信道不稳定以及能源受限的特点,传感器网络节点受损的概率远大于传统网络节点,因此自组织网络的健壮性保障是必须的以保证部分传感器网络的损坏不会影响到全局任务的进行。 (4)传感器节点高密度部署,网络拓扑结构变化快,对于拓扑结构的维护也提出了挑战。 上述这些特点使得无线传感器网络有别于传统的自组织网络,并在当前的一些体系结构设计的尝试中得到了突出的表现。 1 传感器网络节点功能结构和拓扑结构 在不同应用中,传感器网络节点的组成不尽相同,但一般都由数据采集、数据处理、数据传输和电源这4部分组成(见图1)。根据具体应用需求,还可能会有定位系统以确定传感节点的位置,有移动单元使得传感器可以在待监测地域中移动,或具有供电装置以从环境中获得必要的能源。此外,还必须有一些应用相关部分,例如,某些传感器节点有可能在深海或

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

网络拓扑结构大全和图片

网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 星型结构 星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。 星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。 优点: (1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。 (2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。 缺点: (1)需要耗费大量的电缆,安装、维护的工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点的分布处理能力较低。 总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。

无线传感网络概述

无线传感网络概述 学号031241119姓名魏巧班级0312411 一、无线传感器网络(WSN)的定义: 无线传感器网络(WSN)是指将大量的具有通信与计算能力的微小传感器节点,通过人工布设、空投、火炮投射等方法设置在预定的监控区域,构成的“智能”自治监控网络系统,能够检测、感知和采集各种环境信息或检测对象的信息。二、传感器的节点分布及通信方式: 由于传感器节点数量众多,布设时智能采用随机投放的方式,传感器节点的位置不能预先确定。节点之间可以通过无线信道连接,并具有很强的协同能力,通过局部的数据采集、预处理以及节点间的数据交互来完成全局任务,同时节点之间采用自组织网络拓扑结构。由于传感器节点是密集布设的,因此节点之间的距离很短,在传输信息方面多跳(multi—hop)、对等(peer to peer)通信方式比传统的单跳、主从通信方式更适合在无线传感器网络中使用,例如:使用多跳的通信方式可以有效地避免在长距离无线信号传播过程中遇到的信号衰落和干扰等各种问题。 三、WSN运行的环境: 1、WSN可以在独立封闭的环境下(如局域网中)运行。 2、WSN也可以通过网关连接到网络基础设施上(如Internet)。在这种情况中,远程用户可以通过Internet 浏览无线传感器网络采集的信息。 四、无线数据网络的定义及无线自组网络的特点: 主流的无线网络技术,如IEEE 802.11、Bluetooth都是为了数据传输而设计的,我们称之为无线数据网络。 目前,无线数据网络研究的热点问题就是无线自组网络技术,这项技术可以实现不依赖于任何基础设施的移动节点在短时间内的互联。特点有如下几点: (1)无中心和自组性(优点):无线自组网络没有绝对的控制中心,网络中节点通知分布式的算法来协调彼此的行为,这种算法无需人工干预和其他预置网络设施就可以在任何时刻任何地方快速展开并自动组网。 (2)动态变化的网络拓扑(缺点):移动终端能够以任意速度和方式在网中移动,在通过无线信道形成的网络拓扑随时可能发生变化。 (3)受限的无线传输带宽(缺点):无线自组网络采用无线传输技术作为底层通信手段,由于无线信道本身的物理特性,它所能提供的网络带宽相对有线信道要低得多。 (4)移动终端的能力有限(缺点):虽然无线自组网络中移动终端携带方便,轻便灵巧,但是也存在固有缺陷,例如:能源受限,内存较小,CPU性能较低等(5)多跳路由(优点):由于节点发射功率限制,节点覆盖范围有限。因此当它要与其覆盖范围之外的节点进行通信时,需要中间节点的转发。其中转发是由普通节点协作完成的,并不是由专用的路由设备完成的。 (6)安全性较差(缺点):无线自组网络由于采用无线信道、有限电源、分布式控制等技术,使它更容易受到被动窃听、主动入侵、拒绝服务,剥夺“睡眠”等网络攻击。

无线传感器网络技术的应用

无线传感器网络技术的应用 摘要:无线传感器网络(WSN)是新兴的下一代传感器网络,在国防安全和国民经济各方面均有着广阔的应用前景。本文介绍了无线传感器网络的组成和特点,讨论了无线传感器网络在军事、瓦斯监测系统、智能家具,环境监测,农业。交通等方面的现有应用,最后提出无线传感器网络技术需要解决的问题。 关键词:无线传感器网络,军事、瓦斯监测系统、智能家具,环境监测,农业。交通。 1.无线传感器网络研究背景以及发展现状 随着半导体技术、通信技术、计算机技术的快速发展,90年代末,美国首先出现无线传感器网络(WSN)。1996年,美国UCLA大学的William J Kaiser教授向DARPA提交的“低能耗无线集成微型传感器”揭开了现代WSN网络的序幕。1998年,同是UCLA大学的Gregory J Pottie教授从网络研究的角度重新阐释了WSN的科学意义。在其后的10余年里,WSN网络技术得到学术界、工业界乃至政府的广泛关注,成为在国防军事、环境监测和预报、健康护理、智能家居、建筑物结构监控、复杂机械监控、城市交通、空间探索、大型车间和仓库管理以及机场、大型工业园区的安全监测等众多领域中最有竞争力的应用技术之一。美国商业周刊将WSN网络列为21世纪最有影响的技术之一,麻省理工学院(MIT)技术评论则将其列为改变世界的10大技术之一。WSN是由布置在监测区域内传感器节点以无线通信方式形成一个多跳的无线自组网(Ad hoc),其目的是协作的感知,采集

和处理网络覆盖区域中感知对象的信息,并发送给观察者。传感器、感知对象和观察者是WSN的三要素。将Ad hoc技术与传感器技术相结合,人们可以通过WSN感知客观世界,扩展现有网络功能和人类认识世界的能力。WSN技术现已经被广泛应用。图为WSN基本结构。 WSN经历了从智能传感器,无线智能传感器到无线传感器三个发展阶段,智能传感器将计算能力嵌入传感器中,使传感器节点具有数据采集和信息处理能力。而无线智能传感器又增加了无线通信能力,WSN将交换网络技术引入到智能传感器中使其具备交换信息和协调控制功能。 无线传感网络结构由传感器节点,汇聚节点,现场数据收集处理决策部分及分散用户接收装置组成,节点间能够通过自组织方式构成网络。传感器节点获得的数据沿着相邻节点逐跳进行传输,在传输过程中所得的数据可被多个节点处理,经多跳路由到协调节点,最后通过互联网或无线传输方式到达管理节点,用户可以对传感器网络进行决策管理、发出命令以及获得信息。无线传感器网络在农业中的运用是推进农业生产走向智能化、自动化的最可行的方法之一。近年来国际上十分关注WSN在军事,环境,农业生产等领域的发展,美国和欧洲相继启动了WSN研究计划,我国于1999年正式启动研究。国家自然科学基金委员会在2005年将网络传感器中基础理论在一篇我国20年预见技术调查报告中,信息领域157项技术课题中7项与传感器网络有直接关系,2006年初发布的《国家长期科学与技术发展

相关主题
文本预览
相关文档 最新文档