当前位置:文档之家› 跳频通信系统的研究与仿真

跳频通信系统的研究与仿真

跳频通信系统的研究与仿真
跳频通信系统的研究与仿真

*******************

实践教学

*******************

兰州理工大学

计算机与通信学院

2014年秋季学期

通信综合训练课程设计

题目:跳频通信系统的研究与仿真专业班级:

姓名:

学号:

指导教师:

成绩:

摘要

跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。

本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。

关键词:扩频通信、跳频通信、MATLAB Simulink仿真

一、Simulink简介

Simulink 是MATLAB软件的应用,是一个对动态系统进行建模、仿真和对仿真结果进行分析的一个软件包,是在MATLAB中建立系统方框图和基于方框图的系统仿真环境。

Simulink将工程中通用的方框图设计方法与仿真系统建模统一起来,其采用的是基于时间流的链路级仿真方法。这种系统中,仿真结果可以实时的通过可视化模块,将输入输出数据显示出来,可以更加方便地对系统进行可视化建模,使系统设计、模型检验和仿真调试工作更为方便。经过多年的应用,Mathwork 公司开发出了很多工具箱,其中包括Simulink通信系统。此系统目前已成为科学研究和工程应用的软件工具包。

Simulink能够完成大部分系统的动态仿真,提供了大量的内置模块,用户只需要知道模块的参数配置、输入输出等少数外部接口即可,而不必去关心其内部实现方式。这些模块都是图形化的。整个Simulink的建模过程都是在图形用户界面上完成的,这样可以使得用户把更多的精力投入到系统模型的构建,而非语言的编程上。Simulink本身可以实现微分方程和差分方程的求解等复杂的数值计算问题,用户只需要根据问题类型及精度要求对求解器类型进行配置即可。通过对这些基本模块的调用,再将它们连接起来,就可以构成所需要的系统模型,从而进行系统仿真与分析。

二、跳频通信简介

2.1扩频通信系统概述

扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。由于扩频技术尤其是调频具有很多优点:很强的抗干扰能力;低截获概率性;可用于具有选址能力的随机选址多用户通信系统中;较高的距离分辨力等等,因此,它的理论和实践发展非常迅速。

扩频信号具有以下三个特性:

1、扩频信号是不可预测的伪随机的宽带信号;

2、扩频信号带宽远大于欲传输数据(信息)带宽;

3、接收机中必须有与宽带载波同步的副本。

扩频通信系统是最具有代表性的扩频通信技术的应用,它的基本工作方式有以下几种:

(1)直接序列扩频系统(DSSS)

直接序列扩频系统简称直接扩频(DSS)系统或直接序列(DS)系统。准确地说,这种系统应称为直接用编码序列对载波调制的系统。直接序列系统中用的编码序列通常是伪随机序列或伪噪声序列(PN码)。要传送的信息经数字化后变成二元数字序列,它和伪随机序列模二加(波形相乘),合成复合码去调制载波。在直接序列系统中通常对载波进行相移键控调制,为了节省发射功率和提高发射机的工作效率,扩频系统中采用平衡调制器,抑制载波的平衡调制对提高扩频信号的抗侦破能力也有利。当扩频信号采用相移键控调制后由天线发射出去,在接收机中要有一个和发射机中的伪随机码同步的本地码,对接收信号进行解扩(也叫做缩谱),解扩后的信号送到解调器取出传送的信息。

(2)频率跳变扩频系统(FHSS)

频率跳变扩频系统更确切地说应叫做“多频、码选、频移键控”系统。简单的频移键控通常只利用两个频率,例如用f1表示传号,f2表示空号。而频率跳变系统常常有成百上千甚至数万个频率可供选用,选用哪个频率由码决定。频率跳变系统主要由码发生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。

(3)时间跳变系统(THSS)

在时间跳变扩频系统中,扩频码是用来控制发射机的通断的。对于m序列来说,由于0与1各占了约一半,时间跳变系统的发射占空比接近一半。

(4)混合扩频系统

上面的三种基本扩频系统各有优缺点,单独使用一种系统有时难以满足要求,将几种扩频方法结合起来就构成了混合扩频系统。常见的有频率跳变一直接序列混合系统、频率跳变一时间跳变系统、时间跳变一直接序列混合系统。2.2跳频通信系统概述

扩频通信,即扩展频谱通信与光纤通信、卫星通信,一般被誉为进入信息时代的三大高技术通信传输方式,它是上世纪40年代发展起来的一种技术,用来为战争环境下的军队提供可靠安全的通信。20世纪50年代,美国麻省理工学院研究成功NO MAC系统,成为了扩频通信研究发展的开端。时至今日,随着民用、军用通信事业的发展,频带拥挤的矛盾日益突出。而信号处理技术、大规模集成电路和计算机技术的发展,推动了扩频通信理论、方法、技术等方面的研究发展和应用普及。

扩频通信主要有以下几种方式:直接序列扩频、跳频扩频和线性调频。

跳频就是用伪随机码序列构成跳频指令来控制频率合成器,可以看成载波频率不断变化的多频移频键控。跳频指令由所传递的信息码与伪随机序列模二相加构成,其发送频率由跳频指令随机选择。调制器将发送端的信息码序列与伪随机序列调制,频率的合成由不同的跳频图案控制。在接收端,接收到的信号与噪声经滤波后送至混频器。接收机本振信号的跳变规律与发送端相同,而且也是频率跳变信号,接收机的中频为两个合成器产生的对应的频率的频差。要使收发双方的跳频与频率合成器产生的跳变频率同步,需要收发方的伪随机码同步。经混频后,得到一个不变的中频信号,将此中频信号进行解调,就可恢复出发送的信息。

三、跳频通信系统的基本原理

3.1跳频通信系统的结构组成

跳频通信系统主要由发送端和接收端两大部分组成。

在发送端,用信源产生的信息流去调制频率合成器产生的载频,得到射频信号,频率合成器产生的载频受伪随机码的控制按一定规律跳变。

在接收端,接收端接收到的信号经高通滤波后送至混频器,在混频器与本振信号相乘并经中频带通滤波后,得到一个不变的中频信号,经中频放大器放大后,送到信息解调器恢复出原始信息信号。

3.1.1跳频系统的发送部分

信源输出的是双极性二进制码,利用频率合成器合成载波信号。跳频系统通过伪随机地改变发送载波频率,用跳变的频率来调制基带信号,得到载波频率不断变化的射频信号,然后发送到信道中。

在传统的定频通信系统中,载波频率是固定的,因为发射机中的主振荡器的振荡频率是固定设置的。一般要求主振荡器的频率应能遵照控制指令而改变,这样是为了得到载波频率是跳变的跳频信号。这种产生跳频信号的装置叫跳频器。通常,跳频系统的频率合成器输出什么频率的载波信号是受跳频指令控制的,跳频器是由频率合成器和跳频指令发生器构成的。在时钟的作用下,频率合成器不断地改变其输出载波的频率,跳频指令发生器不断地发出控制指令。因此混频器输出的已调波的载波频率,也将随着指令不断地跳变,从而经高通滤波器和天线

发送出去,这就是跳频信号。跳频图案,就是跳频器输出的跳变的频率序列。跳频图案的产生取决于跳频指令。

通常,跳频指令是利用伪随机发生器来产生的,或者由软件编程来产生此跳频指令。所以,跳频器是跳频系统的关键部件,更具体地说,是能产生伪随机性好的跳频指令发生器和频谱纯度好的快速切换的频率合成器。由跳频信号产生的过程可以看出,在原理上,不论是模拟的或数字的定频发送系统,只要加装上一

定频信号的接收设备中,接收方法一般情况下都采用超外差式,即接收机本地振荡器的频率与所接收的外来信号的载波频率产生频差,即相差一个中频。经过混频后,混频产生组合波频率成分和一个固定的中频信号。中频带通滤波器的滤波作用,将滤除组合波频率成分,而使带通中频信号进入解调器。所要传送给收端的信息即为解调器的输出。

跳频信号的接收过程与定频相似。要求频率合成器的输出频率要比外来信号高出一个中频,是为了保证混频后获得带通中频信号。要求本地频率合成器输出的频率也随着外来信号的跳变规律而跳变,是因为外来的信号载波频率是跳变的,这样才能通过混频获得一个固定的带通中颇信号。跳频器产生的跳频图案应当与所要求的高出一个中频,并且收、发跳频要求完全同步。所以,为了确定其

跳频的起、止时刻,接收机中的跳频器还需受同步指令的控制。可以看出,跳频系统的关键部件是跳频器,同时跳频系统的核心技术是跳频同步。

相关器中进入的接收信号,与本地信号相乘,再经过滤波器,得到的信号送入同步系统进行判决。同步系统将调整本地伪码系统,直到滤波器输出接收信号为止。如果系统未同步,则滤波器输出的是噪声信号。

3.2跳频通信系统的性能指标

跳频通信系统的性能指标有以下几点:

(1)跳频带宽

跳频带宽,是跳频系统工作时的最高频率与最低频率之间所占的频率宽度。跳频带宽越宽,跳频的速率越快,跳频的频率数目越多,跳频系统的同步时间越短,跳频码的周期越长,跳频系统性能越好。跳频部分频带的抗干扰能力,受跳频带宽大小的影响,跳频带宽越宽,跳频系统抗宽带干扰能力越强。

(2)跳频速率

跳频速率,即为跳频电台载波跳变的速率,通常用每秒钟频率跳变的次数来表示。抗跟踪式干扰的能力与它有关,跳频速率越高,抗跟踪式干扰的能力越强。

(3)跳频频率数

跳频频率数,就是跳频电台工作时跳变的载波频率点的数目。跳频的频率数目,取决于抗单频干扰及多频干扰的能力。跳变频率数目越多,抗疏状干扰、单频以及多频干扰的能力就越强。

(4)跳频系统的同步时间

跳频系统的同步时间,是系统使收发双方的跳频图案完全同步,并建立通信所需要的时间。同步建立时间越短越好、越隐蔽越好。

(5)跳频周期

跳频周期,即为每一跳占据的时间。它等于跳频驻留时间和信道切换时间之和,与跳频速率成倒数关系。其周期长度决定跳频图案延续时间的长度,这个指标与抗截获的能力有关。

3.3跳频通信系统的调制方式

跳频通信系统一般采用ASK、FSK等非相干解调的调制方式,特别以2FSK 方式最为常用,本文跳频通信系统采用2FSK调制方式。

在二进制频移键控调制方式中,二进制数字信号“1”对应于载波频率1f,

“0”对应于载波频率2f 。信息码元的宽度记为T ,则2FSK 调制信号的表达式如式(1)。

??

?≤≤≤≤=Td

t t A Td

t t A t s 0,2cos 0,1cos )(ωω (1)

其产生原理图如图3所示:

图3 2FSK 产生框图

时域波形如图4所示:

3.4 频率合成器

在跳频系统中,其核心部分就是跳频器,它的主要作用是产生受伪码控制的随机跳变的载波频率。对跳频器的主要要求有:

(1)要求输出信号的频谱要纯,输出频率有很好的稳定度和准确度; (2)频率转换速度要快,输出频率数要多; (3)要求跳频图案要多,频率跳变的随机性要强;

跳频器主要由频率合成器和伪码产生器组成。因此跳频器的关键是频率合成器。

频率合成器,是给微波扫频信号提供一定分辨力的频率参考信号,并对微波信号输出频率进行逐点锁定,以得到高准确度和稳定度的扫频输出信号。频率合成器通常可分锁相环合成法、直接模拟合成法和直接数字合成法三类,广泛地应

用于仪器仪表、遥控遥测通信、雷达、电子对抗、导航以及广播电视等各个领域。

3.5伪随机序列

在跳频通信系统中,伪随机系列是用来控制频率合成器产生的频率随机地跳变,以进行通信和躲避干扰。其性能的好坏,直接影响到整个系统性能的好坏。目前常用的伪随机序列有:m序列、M序列、Gold码、R-S码。

m序列是最长线性移位寄存器序列,是伪随机序列中最重要的一种序列,也是其它序列的基础。这种序列容易生产,具有优良的自相关特性,其长度为2r-1,r为移位寄存器的级数。M序列是最长非线性移位寄存器序列,码长为2r,达到r级移位寄存器所能达到的最长周期,所以又称为全长序列。虽然M序列的长度比m序列多1,但M序列的相关性不如m序列,并且硬件产生时设备较复杂。

Gold码是基于m序列优选对产生的,是作为地址码的一种良好码型。

R-S码是一种特殊的纠错码,也是一种循环码,循环移位后可得到另一组R-S码,即R-S码中任何码字的循环位移还是在码集合中。

上述的几种序列除用硬件发生外,均可由软件编程产生。本设计采用伪随机序列发生器产生采样周期为0.5、周期为15个码元的m序列。

3.6跳频信号的解跳与解调

跳频信号的解跳与解调包括两个方面:首先是跳频信号的解跳,解跳后信号频率集中在窄带滤波器通带之内,接着是对解跳后的信号进行解调,得到发送的原始信息。在跳频系统中一般不采用相干解调器,因为在频率合成器中难以保证各个频率跳变信号之间的相干性。所以跳频系统中的解调器不用锁相环路,而采用包络检波器。

3.6.1跳频信号的解跳

跳频系统的接收机,应对发射信号进行相应的反变换。首先,为了完成解跳功能,将每个接收到的跳频信号切普变换到窄带滤波器的通带内。为了恢复发射端的原始信息流,需要再将已解跳的信号送到基带解调器。解跳乘法器及其后的带通滤波器,能否从接收信号中提取有用信号的能力,将影响跳频接收机的性能。双通道“传号-空号”跳频接收机的原理框图如图5所示:

数据输出:

图5 双通道传号/空号跳频接收机原理框图

在二进制的FH发射机里,数据的传输采用2FSK时,是用发射某个频率(切普)表示“传号”,而发射另一个频率表示“空号”来实现的。对于每一个信息比特,无论只发一个切普,还是发多个切普(每个切普都一定是两个频率中的一个),接收机应能判断两个频率中哪一个是有用信号。因此,接收机必须能够同时观测两个交替信道,或者先对一个取样,然后紧接着对另一个取样。

3.6.2跳频信号的解调

在跳频系统中,多采用非相干的包络检测器。典型的非相干跳频解调器如图6所示:

图6 非相干跳频解调器

这个解调器适用于每比特信息多个频率切普的接收机,其中切普判决是根据顺序而来的每一对切普进行的。这个解调器设计成适合于“1”和“0”频道的顺序取样。也就是说,本地频率合成器把发射“1”所对应的频率插到接收机的积分清洗电路判决器中,而后紧跟着是一个与发射“0”对应的频率。每次交替都占用半个切普周期取样。

四、跳频通信系统仿真与性能分析

4.1跳频通信系统仿真模型的建立

基于Simulink的跳频通信系统的仿真模型的建立,可以实时地观测到系统跳频前后信号的频谱变化,并且能够反映跳频通信系统的动态工作过程。还可以根据需要设计和研究相应的跳频仿真模型,实现现代通信的模拟仿真,为系统的设计和研究提供了强有力的研究平台,此系统以跳频通信为基础。仿真模型如图7所示:

图7 系统仿真模型

在跳频通信系统仿真模型中,信号的处理过程为:

1、由信源生成准备传送的有用信号。

2、由伪随机码序列控制2FSK调制部分,然后与有用信号进行相乘运算。伪随机码元控制2FSK部分的载波频率,在设计中使得载波的相位为零,进而可以实现信号的跳频通信。

3、将经过跳频调制的信号,在经过信道传输,叠加上信道噪声。

4、接收信号时,在接收端的相关器中进行相关处理,相关处理时要求发送端的随机码元与采用的伪随机码保持严格的同步。

5、相关器的输出结果利用计数器进行统计,然后完成比较、判决过程,恢复出原始的信号。

6、将恢复出的有用信号与其发送端的原始信号同时送入误码仪进行比较,计算出误码率。

4.2 S-

计算状态导数和计算输出等等,为了中积分最小步长时间

积分最小步长时间

对于仿真流程,先将模块初始化,再进入仿真环。在仿真环中,先计算出下次抽样时间用于可变模块的抽样时间,然后再计算最大步长输出、最大步长离散状态、导数及输出计算,在仿真环的最后进行零交点定位。其中,积分最小步长时间为导数、输出、再到导数的时间。最后结束程序,完成执行的任务。4.3跳频通信系统的仿真框图

利用Matlab 中的Simulink 对跳频通信系统进行模型建立,跳频扩展频谱通信系统的仿真框图如图9所示:

图9跳频通信系统的仿真结构框图

跳频通信系统,将其中的2FSK调制部分,2FSK解调部分,跳频子系统分别进行封装,封装之后的跳频通信系统的仿真结构框图如图10所示:

图10含有封装子系统的跳频通信系统的仿真结构框图

(a) 2FSK调制子系统 (b) 2FSK解调子系统仿 (c) 跳频子系统仿真结构框图

仿真结构框图真结构框图

图11 跳频通信系统的子系统仿真结构框图

其中,2FSK调制子系统、2FSK解调子系统、跳频子系统结构框图分别如图11中的图(a)、图(b)、图(c)所示。

该跳频通信系统按功能可以划分为五个部分:信号生成部分、发送部分、跳频调制部分、接收部分和判决部分,各部分的详细结构和设计介绍如下:Generator1

Generator3

Generator

(1)信号生成部分

信号生成部分是利用随机整数信号发生器来产生,该模块的参数设置是产生二进制随机序列信号,采样时间设为1,即1秒产生一个码元。它产生的是频率为1HZ的二进制随机信号。

(2)发送部分

由信源产生的二进制随机信号,先通过频率键控来产生一个2FSK信号(发送“1”所用的载波频率为f1=1HZ;发送“0”所用的载波频率为f2=3HZ)。在进行跳频调制时,把跳频子系统模块产生的信号与产生的2FSK信号进行相乘(即跳频调制),产生的信号即为跳频调制信号,然后把跳频调制信号经过信道发送过去。信道是叠加有加性高斯白噪声的信道。

(3)接收部分

在接收端,用跳频子系统模块产生的跳频信号与经过信道后接收的跳频调制信号进行乘法运算,也就是对其进行解跳,将得到跳频解调信号,如仿真结构框图中的跳频解调信号所示。接着,对其进行2FSK相干解调,两个带通滤波器将分别滤出频率为f1及f2的信号,输出信号分别与相应的相干载波相乘,然后提取出含有基带数字信息的低频信号,这一过程分别需要将其相应信号通过低通滤波器。

(4)判决部分

通过对上下两支路的低频信号进行比较作出判决,从而完成解调信号的判决。该判决部分由比较器、常数发生器以及误码率计算部分组成。比较器将门限值与码元的相关峰值进行比较,若相关峰大于门限则该码元判为“1”,其余的均判为“0”。设上支路信号为X1(t),下支路信号为X2(t)。当X1(t)大于X2(t)时,判为“1”;当X1(t)小于X2(t)时,则判为“0”。

误码率的计算过程是由一个误码仪来实现的。它将发送端的信息码元经过一定延迟后与接收端恢复出的码元进行比较,若两者不同则认为码元传输错误,最后将误码个数除以总的传输码元个数,即得到误码率。在图中的误码率计算部分,上面的输入信号是发送端的原始信息,下面的输入信号是接收端恢复出的信号,送入误码仪以后完成比较、统计和图形用户界面的生成功能。从误码率计算的显示模块可以看到该快跳频通信系统的误码率为0.05。

在统计系统的误码率时,门限值的设定很重要,设定不同的门限值,会得到不同的误码率。对于不同的系统,门限值的设定是不同的,在本设计中,门限值的取值为2。

(5)跳频子系统模块

跳频子系统的设计是这次设计的关键。快跳频通信是指频率的跳变速度大于信息传输速率的通信系统。在本次设计中,为了便于观察各点信号,特设信息的传输速率1bit/s,频率的跳变速度为2h/s。在跳频子系统中,跳频信号的产生过程:PN Sepuence Generator产生采样周期为0.5,周期为15个码元的m序列。通过Buffer将单列的二进制序列编排为2列二进制数,通过Bit to Integer Converter后变为整数。通过初值设为2的Unbuffer及Zero-Order Hold(采样时间设为0.1)后,伪随机序列发生器产生的二进制序列变成了与之相应的整数,馈送到VCO的控制输入端。

4.4 仿真模型中示波器的仿真结果显示

跳频通信系统仿真模型,进行Simulink模型仿真后,各示波器的结果显示分别如图12、图13所示:

图12示波器Scope的仿真结果

由图12可知,信源发送信号为双极性二进制码,发送端的随机信号发生器所产生的二进制信号的信息速率为1bit/s,载波频率在伪码控制下不断随机跳变,产生跳频调制信号,发送信号经过调制后2FSK调制信号如图所示,相应的跳频解调信号也如示波器Scope所示,从图中还可知跳频调制信号和解调信号基本相似,存在一定的误码率。

(a)示波器Scope1的仿真结果(b)示波器Scope2的方针结果

图13示波器Scope1和Scope2的仿真结果

图13中(a)图,将发送信号和接收信号的示波器显示进行了对比,可以看出,发送信号和接收信号的波形相同,恢复的信号基本正确,误码率为0.05。当然,由于系统中叠加有噪声,各种滤波器的设计存在一定的缺陷使得滤波特性不理想,以及仿真图中有些部件的参数设置存在误差等原因,在最终的判决恢复时,使得恢复序列存在一些误码。这也是这次快跳频通信系统仿真设计中需要进一步完善的地方。

图13中(b)图,示波器显示了m序列信号波形,即Simulink仿真模型中产生的跳频序列;同时显示了VCO的输入电压值和输出频率,简明易懂。由上图中(b)图可知,VCO的输入电压值在一秒内(也就是一个码元周期内)发生两次变化,对应的它所控制的VCO的输出频率在一秒内也发生两次变化(即频率的跳变速度为2h/s)。由于频率的跳变速度大于发送信号的信息速率,因而用这种跳变频率去调制、解调2FSK信号时,就实现了简单的快跳频通信。

4.5基于源代码的跳频通信系统仿真

跳频通信系统,可以利用源代码进行简单仿真,程序主要由以下几步构成:通过rand 函数,首先生成一个固定频率载波信号carrier和数据信号signal,然后将两者进行调制,此调制过程为2FSK调制。调制输出为2FSK modulated signal。然后,通过stitch 函数,将产生一个频率随机变化的跳频载波spread frequency signal,我们在这里仅选用了6种(我们认为,简单演示跳频的工作过程及效果,6种跳变的频率就可以满足需要)变化的频率,跳频载波在这6个频率中随机变化。最后,将spread frequency signal 与2FSK modulated signal 跳频调制,产生最终的跳频信号。

此跳频通信系统的信号在跳频调制前后的波形,利用matlab 仿真后如图14所示:

图14跳频扩频调制前后仿真波形

如图所示,随机产生的二进制序列Original bit sequence ,作为待传输的数据信号,经过2FSK 调制后,得到2FSK modulated signal ,其中随机产生的调频信号 为spread signal with 6 frequencies ,信号共有六种频率,跳频调制后的输出信号是frequency hopped spread spectrumsignal ,由图可见,对于此数据信号,频率成分增加,带宽被展宽,并且表现出随机性,因此对于接收方而言,如果不知道频率跳变的规律是无法解调出原数据信号的。

此跳频通信系统,利用matlab 仿真后,每一部分的具体仿真结果如图15所示:

(a )信息序列 (b )2FSK 调制后频谱 (c )2FSK 调制后经过高通滤波的波形

0500

1000

1500

2000

2500

3000

-1

01

Original Bit Sequence

500

100015002000

2500

3000

-1

01 2FSK Signal

50010001500200025003000

-1

1 Spread Signal with 6 frequencies

-1

01 Frequency Hopped Spread Spectrum Signal

信息序列

time (seconds)

frequency (Hz)

time (seconds)

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

通信系统建模与仿真

《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目FM调制解调系统设计与仿真 姓名学号 指导教师胡娟 二О一年月日

内容摘要 频率调制(FM)通常应用通信系统中。FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。 FM调制解调系统设计是对模拟通信系统主要原理和技术进行研究,理解FM系统调制解调的基本过程和相关知识,利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,非相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。在课程设计中,系统开发平台为Windows XP,使用工具软件为 7.0。在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。了解FM调制解调系统的优点和缺点,对以后实际需要有很好的理论基础。 关键词 FM;解调;调制;M ATL AB仿真;抗噪性

一、M ATLAB软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。其特点是: (1) 可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数。从而大大扩展了其应用范围。当前支持Matlab的商用Toolbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。 (2) 易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。 (3) 高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。如fft语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。据MathWorks公司声称,Matlab软件中所包含的Matlab 源代码相当于70万行C代码。

跳时通信系统仿真完整版

******水*********** 实践教学 兰州理工大学 计算机与通信学院 2014年秋季学期 通信系统综合训练 题目:跳频通信系统的研究与仿真 专业班级:_______________ 姓名:______________________________ 学号:___________________________ 指导教师:__________________________

成绩:___________________________________ 摘要 本次课程设计介绍了跳频通信系统的基本匸作过程,从跳频系统的结构组成、匸作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理。并利用Matlab 中的Simuliiik 仿真系统对跳频通信系统进行了仿真研究和理论分析。着重研究了其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分的工作方式及仿真设计并达到了预期结果。 关键词:跳频系统;扩频通{a; Matlab; Simuliiik仿真

前言 (1) 1.跳频 (2) 1.1跳频通信系统简介及发展状况 (2) 1.2跳频通信系统的组成 (3) 1.2. 1跳频发送端 (3) 1.2. 2跳频接收端 (4) 13跳频通信系统关键技术 (5) 2.跳频通信理论基础 (6) 2.1跳频信号及频率合成器的设计 (6) 2.1.1伪随机码-m序列的产生 (6) 2.1.2频率合成器设计 (7) 2.2桃频调制 (7) 2.3跳频信号的解跳与解调 (8) 2.3.1跳频信号的解跳 (8) 2.3. 2跳频信号的解调 (9) 3.跳频通信系统仿真 (11) 3.1 Simuliiik 仿真介绍 (11) 3.2跳频通信系统仿真设计 (13) 3.3仿真流程图设计 (14) 3.4跳频系统模块设计仿真 (15) 3.5仿真各示波器的仿真结果 (19) 3.6系统抗干扰性能分析 (22) 总结 (23) 参考文献 (24)

跳频通信技术的研究

跳频通信技术的研究 当今信息时代,如何有效的利用宝贵的频带资源,如何进行准确可靠的信息通信是通信领域中至关重要的问题。扩频通正是在这种背景下迅速发展起来的。从20世纪40年代起,人们就开始了对扩频技术的研究,其抗干扰、抗窃听、抗测向等方面的能力早已为人们所熟知。但由于扩频系统的设备复杂,对各方面的要求都很高,在当时的技术条件下,要制成适应军事和民用需要的扩频系统是不可能的,因而扩频技术发展缓慢。进入20世纪60年代后,随着科学技术的迅速发展,许多新型器件的出现,特别是大规模、超大规模集成电路、微处理器、数字信号处理(DSP)器件、扩频专用集成电路(ASIC)以及像声表面波(SAW)器件、电荷耦合器件(CCD)这样的新型器件的问世,使扩频技有了重大的突破和发展,许多新型系统相继问世,兵在实际的使用和实验中显示出了它们的优越性,使扩频通信成为未来通信的一种重要方式。并因此受到了人们极大的重视。扩展频谱系统主要包括以下几种扩频方式: (1)直接序列扩频(DS) (2)跳频(FH) (3)跳时(TH) (4)线性调频(Chirp) 本文中主要讲述对跳频通信的研究。本论文共分X章, 第一章扩频技术及其理论基础 1.1概论 扩展频谱系统具有很强的干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,被广泛地应用于军事通信和民用通信中。 扩展频谱系统是指发送的信息被展宽到一个很宽的频带上,这一频带比要发送的信息的带宽宽得多,在接收端通过相关接收,将信号恢复到信息带宽的一种系统,简称为扩频系统或SS(Spread Spectrum)系统。

1.2 扩频通信的理论基础 扩频通信技术是把要发送的信号扩展到一个很宽的频带上,然后再发送出去,系统的射频带宽比原始信号的带宽宽得多。这样做,系统的复杂度比常规系统的复杂度要高得多,付出的代价是昂贵的,能得到什么好处呢?可以从著名的香农定理来看。 香农定理指出:在高斯白噪声干扰条件下,通信系统的极限传播速率(或称信道容量)为 C=B lb(1+S/N)b/s (1-1)式中:B为信号带宽,S为信号平均功率,N为噪声功率。若白噪声的功率谱密度可为,噪声功率N= B,则信道容量C可表示为 (1-2) 由上式看出,B、、S确定后,信道容量C就确定了。由香农第二定理知,若信源的信息速率R小于或等于信道容量C,通过编码,信源的信息能以任意小的差错概率通过信道传输。为使信源产生的信息以尽可能高的信息速率通过信道,提高信道容量是人们所期望的。 由香农公式可以看出: (1)要增加系统的信息传输速率,则要求增加信道容量。增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。由式(1-1)可知,B与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N 更有效。 (2)信道容量C为常数时,带宽B与信噪比S/N可以互换,即可以通过增加带宽B来降低系统对信噪比S/N的要求;也可以通过增加信号功率,降低信号的带宽,这就为那些要求小的信号带宽的系统或对信号功率要求严格的系统找到了一个减小带宽或降低功率的有效途径。 (3)当B增加到一定程度后,信道容量C不可能无限地增加。由式(1-1)可知,信道容量与信号带宽成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。由式(1-2)知,随着B的增加,由于噪声功率N= B,因而N也要增加,从而信噪比S/N要下降,影响到C的增加。1-2扩频系统的物理模型

基于matlab的直接序列扩频通信系统仿真

基于MATLAB的直接序列扩频通信系统仿真 1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调 制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。 1.1 直扩系统模型 直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式,本实验中采取BPSK方式。 直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<

模拟通信系统与数字通信系统的设计与仿真分析解析

广西科技大学 课程设计说明书 课题名称:模拟通信系统与数字通信系统的设计与仿真 院(系):计算机科学与通信工程学院 专业:通信工程 班级:121班 学生姓名:王永源 学号: 201200402016 指导教师:陈艳 2015年1月20日

目录 第一章课程设计的任务说明 (1) 1.1课程设计目的 (1) 1.2课程设计要求 (1) 第二章 MATLAB/SIMULINK简介 (3) 第三章设计原理 (5) 3.1通信系统设计一般模型 (5) 3.2模拟通信系统 (5) 3.3数字通信系统 (5) 第四章 DSB的基本原理与实现 (6) 4.1 DSB信号的模型 (6) 4.2 DSB信号调制过程分析 (7) 第五章 PCM的基本原理与实现 (8) 5.1 PCM原理 (8) 5.2 PCM编码介绍 (8) 5.3 PCM编码电路设计 (12) 第六章 2ASK的基本原理及实现 (16) 6.2 ASK调制基本原理 (16) 6.2 2ASK的产生 (16) 6.3 2ASK解调 (17) 6.4 2ASK功率谱及带宽 (18) 第七章 Smulink的模型建立和仿真 (19) 7.1 模拟通信系统仿真图 (19) 7.2 数字通信系统仿真图 (22) 7.3 模拟通信系统仿真效果图 (23) 7.4 数字通信系统仿真效果图 (26) 第八章结束语 (27) 参考文献 (28)

第一章课程设计任务说明 1.1课程设计的目的 (1)通过利用matlab simulink,熟悉matlab simulink仿真工具。 (2)通过课程设计来更好的掌握课本相关知识,熟悉模拟DSB、SSB、VSB和数字2ASK、2FSK、2PSK、2DPSK的调制与解调方法。 (3)通过实验掌握模拟信号转换为数字信号的方法和步骤。 (4)更好的了解通信原理的相关知识,磨练自己分析问题、查阅资料、巩固知识、创新等各方面能力。 1.2 课程设计的要求 1.2.1模拟信号通信系统 (1)输入:输入模拟信号(例如正弦型单音频信号等),给出其时域波形和功率谱密度。 (2)调制:对输入的模拟信号进行DSB、SSB、PM(三选一)调制;给出调制后信号的时域波形和功率谱密度。 (3)信道:假定信道属于加性高斯信道,或自行设计。 (4)解调: DSB、SSB、PM(与所选调制方式相对应)解调,仿真获得该系统的输出波形,并得到该模拟传输系统的性能指标,即该系统的输出信噪比随输入信噪比的变化曲线。 图1-1 模拟信号调制解调模型图 1.2.2数字信号通信系统 (1)输入:首先输入模拟信号,给出此模拟信号的时域波形。 (2)数字化:将模拟信号进行数字化,得到数字信号,可以选择PCM编码。

跳频通信系统中的迟入网技术研究

科技情报开发与经济SCI-TECHINFORMATIONDEVELOPMENT&ECONOMY2007年第17卷第2期 随着跳频技术的出现,跳频通信得到了迅速发展,由于其独特的技术性能,跳频通信在军事领域得到了广泛的应用。跳频信号的载频具有伪随机跳变的特点,而侦察方无法预先获知其跳变规律,因此难以用伪码同步方法来实现对跳频信号的解跳侦收。本文讨论了跳频通信中的同步控制技术,并提出了一种实现迟入网同步的有效方法。 1系统结构及基本原理 以一种数字化的超短波跳频电台的简要框图为例(见图1),图中Ain,Aout分别表示模拟话音输入和输出。DSP是进行同步控制和信号处理的核心模块。发送时,DSP主要完成信号的组织、波形形成、驱动频率合成器跳频等任务;接收时,完成信号捕获、同步信息接受、驱动频率合成器跳频以实现解跳及对基带信号进行码元判决等。数字上、下变频器的作用是在DSP和高速A/D/A器件之间完成取样率的匹配,同时进行调制、解调;跳频码发生器根据DSP提供的时间信息TOD(TimeOfDelay),启动加密算法计算出伪随机的跳频码送给DSP;主控单片机用于对系统内的各模块功能进行集中控制和协调,并提供人机接口;外接计算机用于数据传输。 2时间信息(TOD)与3种跳频同步分类 2.1TOD设计格式 为了提高跳频电台的抗干扰能力,同步频率要随时间变化。我们设计了一种非线性的TOD表示方法(见图2),将TOD分为高段和低段,高段以1min为计时单位,低段以跳频间隔为计时单位,低段计够1min后要向高段进位;所以低段只需要16kb,高段为32kb。TODh与TODl一起代表了系统的实时状态。 2.23种跳频同步的关系 跳频同步又分为初始同步、迟入网同步和勤务同步。初始同步是指接收方通过接收同步字头实现与发送方同步的过程;迟入网同步是指未能通过接收初始同步入网的电台或者初始同步后又失去同步的电台,通过接收发送方在信息(话音数据或数传数据)跳中的迟入网同步信息实现跳频同步;勤务同步是指接受方在取得初始同步或者迟入网同步后,仍然需要通过接收方插入在信息(如话音数据)跳中的勤务同步信息来保持同步,以免因为收发双方频率源漂移等原因丢失跳频同步。 通常迟入网同步跳和勤务同步跳放在一起设计,只是用途不同而已,简称为迟入网同步。插入在信息跳中的迟入网同步信息和勤务同步信息称为迟入网勤务同步信息,简称为勤务同步;也就是说勤务信息的作用有两个:迟入网同步和同步跟踪保持。 同步跟踪保持在跳频同步中必不可少。不同电台之间由于系统频率源的差异,会造成彼此定时关系的差异。这种差异在同步之后会导致失步。这是因为,两电台获得初始同步以后,在接受机前端收发的跳沿(起跳时刻)是对齐的,现在假定收方的系统频率源略快于发方,那么收方的抽样定时也就略快于发方,从而收方的跳频间隔略快于发方,见图3。当然这里为了说明问题,对时钟差异做了夸大。 由图3可以看出,同步后随着时间增长,跳沿的逐渐错开会导致信号接收出错,直至完全失步。在设计中应避免这种失步,需要设置跳频勤务信息跳,实现跳频同步跟踪保持。勤务信息的接收应具有判断这种跳沿错开方向及大小的作用,所以说,勤务信息是同步保持及快速再同步的保证。 用于计算同步频率的算法称为同步频率算法。在设计同步频率算法时,不管在初始同步中,还是在迟入网勤务同步中,同步频率算法都采用一个不变的算法,但要求这一组同步频率应具有足够的随机性,以提高同步信息的防截获、抗干扰能力。因此在同步方案设计与实现中,对算法提出了很高的要求。 3迟入网同步方案 3.1勤务序列格式 本通信系统的设计方案为,每隔280跳发一组勤务信息序列,共20跳(传插有6跳数据),用于迟入网同步和跳频跟踪保 持。设计的跳频迟入网勤务同步序列组成格式见图4。 它由同步序列、网号、TOD构成,各自的跳数分配如下: 第一组f0 ̄f5发\Walsh0~\Walsh5(\表示负的);第二组f2 ̄ 文章编号:1005-6033(2007)02-0197-02收稿日期:2006-09-11跳频通信系统中的迟入网技术研究 李冬贵,帖翊,陈生潭 (西安电子科技大学,陕西西安,710071) 摘要:介绍了超短波跳频电台系统结构及基本原理,分析了时间信息(TOD)与3种 跳频同步分类,提出了一种迟入网同步方案。 关键词:跳频通信;跳频同步;迟入网同步 中图分类号:TU914.41文献标识码:A 图1系统结构图示 图2TOD表示方法注:图中带端点的箭头指示的是跳频起始时刻—— —跳沿;第几跳指初始同步完成后跳频跳数计数的跳序数。 图3收发跳沿错开的情况 197

扩频通信及matlab仿真

扩 频 通 信 及Matlab 仿 真 江西师范大学 物理与通信电子学院2009级通信工程(2)班姓名xxx 学号xxxxxxxx

目录 一、摘要 (3) 二、数字通信原理 (4) 三、衰落信道与抗衰落技术 (5) 四、多址通行 (6) 五、扩频通信原理 (6) 六、直接序列扩频通信 (8) 七、基于matlab的直接序列扩频仿真 (10) 八、结束语 (13) 九、参考书目 (14) 十、致谢 (15)

摘要 扩频通信即扩展频谱通信,它与光纤通信、卫星通信一同被誉为信息时代的三大高技术通信传输方式。扩频通信技术自50年代中期美国军方开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域,直到80年代初才被应用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。本文根据扩频通信的原理,利用MATALB对扩频通信中最常用的直扩通信系统进行了仿真。

数字通信原理: 1)所谓数字通信就是利用数字传输技术来进行的通信。它包括对模拟信号的编码和调制,传输媒介以及对数字信号的解调和解码。 2)典型的数字通信系统模型如图1-1: 图1-1 信源:信息的来源一般是模拟信号。 信源编码:模拟信号转变为数字信号; 信号压缩处理;信号的高效率编码。 信道编码:检错、纠错编码,提高信号抗干扰能力;

信息加密,防止信息被窃取。 调制变换:波形编码,信号调制,使基带信号适合在特定的 道中传输。 传输媒介:有线、无线信道,网络交互设备。 解调、信道译码、信源译码:对信号作上述处理相反对变换。 信宿:信息的最终传输目的地 衰落信道与抗衰落技术: 1)衰落信道的产生:无线通信是基于电磁波在空间中的传播来实现信息的传递的。无线信道的电波传播特性与电波传播的环境密切相关。电波环境主要包括:地形地貌、各种建筑物、气候气象、电磁干扰、移动体的运动速度和工作频段等。因此在实际应用中不可避免的产生衰落信道。 2)衰落信道主要包括:阴影衰落和多径衰落。 3)抗衰落技术主要包括:①空间分集技术 ②Rake接收方式 ③信道交织技术 ④多载波传输技术 ⑤信道均衡技术 ⑥扩频通信技术等等

跳频和扩频通信

跳频通信和扩频通信 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。 2 跳频通信的基本概念 2.1 定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。 2.2 同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3 跳频通信的主要特点 3.1 抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。

基于MATLAB的通信系统的设计与仿真

基于MATLAB的通信系统的设计与仿真 摘要通信是通过某种媒体进行的信息传递,目的是传输信息,通信系统是用以完成信息传输过程的技术系统的总称,作用是将信息从信源发送到一个或多个目的地。调制与解调在信息的传输过程中占据着重要的地位,是不可或缺的,因此研究系统的调制和解调过程就极为重要。MATLAB是集数值计算、图形绘制、图像处理及系统仿真等强大功能于一体的科学计算语言,它强大的矩阵运算和图形可视化的功能以及丰富的工具箱,为通信系统的调制和解调过程的分析提供了极大的方便。 本论文首先介绍了通信系统的概念,进而引出调制和解调,然后介绍了我们常用的几种调制和解调的方法。由于MATLAB具有的强大功能所以详细介绍了MATLAB通信系统工具箱,并给出了基于MATLAB的通信系统的调制与解调的实现,运用MATLAB仿真软件进行仿真。 关键词通信系统;调制与解调;MA TLAB

Simulation And Design Of Communication Systems Based On MATLAB Abstract Communication is through a media for transportation. Communication system which is used to complete the process of information transmission systems ,in general, is to send the information from the source to one or more destinations. Modulation and demodulation occupied an important position in the transmission of information which is essential, so the research about the modulation and demodulation process in the communication system is extremely important. MATLAB is a numerical computation, graphics rendering, image processing and system simulation and other powerful features in one of the scientific computing language, it is a powerful matrix calculation and graphical visualization features and a rich toolbox provides a great convenience for the communication system of modulation and demodulation process. This paper introduces the concept of the communication system, and then leads to modulation and demodulation, and then introduced several of our commonly used method of modulation and demodulation. As the power of MATLAB so we introduced the communication system toolbox in the MATLAB. We gives several examples about the communication system based on MATLAB modulation and demodulation and use the software of MATLAB to simulate them. Keywords Communication Systems;Modulation and demodulation; MATLAB

跳频通信技术及其应用与发展

跳频通信技术及其应用与发展 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70 年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代, 跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30 年间,倍受世界各国,特别是几大军事强国的青睐。 2跳频通信的基本概念 2.1定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。

2.2同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3跳频通信的主要特点 3.1抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。 另外,跳频频率受伪随机码控制而不断跳变,在每一个频率 的驻留时间内,所占信道的带宽是很窄的。由于频率跳变的速率非常快,因而从宏观上看,跳频系统又是个宽带系统,即扩展了频谱。事实上,跳频的带宽就是频率的数目与每个频率所占信道带宽的乘积。由扩频通信理论可知,扩展频谱的好处可以换取更好的信噪比。也就是说,如果扩展了频带,

扩频通信系统仿真论文

扩频信号处理仿真技术 摘要 本文阐述了扩展信号处理过程的基本原理、主要性能指标及其工作特点,然后根据香农定理,利用MATLAB提供的可视化工具Simulink,建立了扩频通信系统仿真模型,详细讲述了各个模块的设计,并指出了仿真建模过程中所需注意的问题。通过建模深入理解MATLAB/Simulink基本建模仿真方法的实质性,掌握通信系统仿真的思维方法,增强系统建模和设计的自主能力和创造力。并根据给定的参数设置,仿真出结果,证明了所建仿真模型的正确性

Simulation Technology of spread-spectrum signal processing Abstract This article elaborated the spread spectrum communication technology's basic principle, the main performance index and the operating feature, then act according to the Shannon theorem, provides visualization tool Simulink using MATLAB, has established the wide frequency communications system simulation model, narrated in detail each module's design, and had pointed out in the simulation model must pay attention question. Through the modeling further understanding the substantive of this simulation based on MATLAB, master the methods of communication system simulation. Enhance the independent ability and creativity of system modeling and design, and according to a given set of parameters, and the simulation the results. Had proven constructs the simulation model the accuracy. 目录 1 绪论 (1) 1.1选题的背景 (1) 1.2选题的主要任务 (2) 2 扩频通信系统 (3) 2.1扩频通信的基本原理 (3) 2.2扩频通信的特点 (3) 2.2.1抗干扰性强 (3) 2.2.2 抗干扰性强 (4) 2.2.3 抗多径干扰 (4) 2.2.4 保密性好 (4) 3 线性调频扩频系统 (5)

通信原理 数字频带通信系统的设计与仿真分析分析

目录 前言 (1) 1 数字频带通信系统原理 (2) 1.1 二进制振幅键控(2ASK) (2) 1.2 二进制频移键控(2FSK) (4) 1.3二进制相移键控(2PSK) (7) 1.4 正交相移键控(QPSK) (8) 2 Matlab/Simulink介绍 (11) 2.1 Matlab简介 (11) 2.2 Simulink简介 (11) 2.1.1 Simulink基本模块库 (11) 2.1.2 Simulink建模仿真的一般过程.................... 错误!未定义书签。 2.3 Simulink在通信仿真中的应用............................... 错误!未定义书签。3利用Simulink进行模型建立和系统仿真 (12) 3.1 2ASK的调制与解调仿真 (12) 3.1.1 建立模型方框图 (12) 3.1.2 参数设置 (12) 3.1.3系统仿真及各点波形图 (13) 3.1.4 误码率分析 (14) 3.2 2FSK的调制与解调仿真 (14) 3.2.1 建立模型方框图 (14) 3.2.2 参数设置 (15) 3.2.3系统仿真及各点波形图 (18) 3.3 2PSK的调制与解调仿真 (20) 3.3.1 建立模型方框图 (20) 3.3.2 参数设置 (20) 3.3.3系统仿真及各点波形图 (23) 3.4 QPSK的调制与解调仿真 (24) 3.4.1 建立模型方框图 (24) 3.4.2 参数设置 (25) 3.4.3系统仿真及各点波形图 (27) 总结 (29) 参考文献 (30)

前言 随着现代通信系统的飞速发展,计算机仿真已经成为分析和设计通信系统的主要工具,在通信系统的研发和教学中具有越来越重要的意义。在当代社会中,信息的交换日益频繁,随着通信技术和计算机技术的发展及它们的密切结合,通信能克服对空间和时间的限制,大量的、远距离的信息传递和存取已成为可能。展望未来,通信技术正在向数字化、智能化、综合化、宽带化、个人化方向迅速发展,各种新的电信业务也应运而生,正沿着信息服务多种领域广泛延伸。 Simulink是The MathWorks公司开发的用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具,常集成于MathWorks公司的另一产品MATLAB中与之配合使用。 Simulink提供了一个交互式的图形化环境及可定制模块库(Library),可对各种时变系统,例如通讯、控制、信号处理、视频处理和图像处理系统等进行设计、仿真、执行和测试。 本次课设在深刻理解通信系统理论的基础上,利用MATLAB提供的Simulink 建模和仿真原理,做出数字通信系统的基本模型,分别是ASK、FSK、PSK、QPSK,并且用Simulink来实现通信系统中各个部分的仿真,调制部分,解调部分等等,并且整合到一起,设置不同的参数,观察示波器的波形图并记录。通过对仿真结果进行分析,更深入地掌握数字调制系统的相关知识。

基于matlab的跳频通信系统的仿真

摘要 跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。 关键词:跳频系统; 扩频通信; Matlab; Simulink仿真

目录 第1章绪论 (1) 1.1 概述 (2) 1.2 跳频通信简介 (1) 1.2.1 跳频通信系统概述 (1) 1.2.2 跳频技术的应用背景和发展趋势 (2) 1.3 MATLAB简介 (3) 1.4 本文研究内容及章节安排 (3) 第2章跳频通信系统的基本原理 (4) 2.1 跳频通信系统的结构组成 (4) 2.1.1 跳频系统的发送部分 (4) 2.1.2 跳频系统的接收部分 (5) 2.2 跳频通信系统的性能指标 (6) 2.3 跳频通信系统的调制方式 (7) 2.4 频率合成器 (8) 2.5 跳频信号的解跳与解调 (8) 2.5.1 跳频信号的解跳 (8) 2.5.2 跳频信号的解调 (9) 第3章跳频通信系统仿真及性能分析 (10)

跳频信号的侦察技术研究

跳频信号的侦察技术研究 跳频通信因其良好的抗干扰性、低截获概率及组网能力,在军事通信中得到了广泛的应用,也向通信侦察提出了严峻的挑战。开展对跳频信号侦察的研究,寻求截获、估计、分选跳频信号的方法,已成为当前通信侦察领域紧迫而艰巨的任务之一。论文研究了复杂电磁环境下跳频信号侦察的关键技术,主要包括跳频信号的检测、参数估计和信号分选三部分内容。首先,将各种时频表示应用于跳频信号的检测,仿真其性能,在时频聚焦性和抑制交叉项两项指标上定性和定量比较了各种时频表示的优劣,寻求综合性能较好的时频表示。建立了跳频信号的数学模型,给出了跳频信号各种参数的定义;重点研究了各种线性时频表示、二次时频分布、重排类时频分布、组合时频分布在跳频信号检测中的应用;利用信息熵,定量评价了各类时频分布的性能,并估算了几种典型时频分布的计算复杂度,给出了各类时频分布的综合评价。其次,针对单天线宽带数字接收系统,研究了复杂电磁环境下基于时频分析的跳频信号参数盲估计算法。针对跳频信号侦察,提出了“复合信息熵”的定量评估指标,该指标综合考虑电磁环境中的信号类型数、跳频信号数目、跳速和信道使用情况,由类型熵、密度熵和分布熵三部分组成;基于信道化门限和时频分析完成了去噪和信号预选;基于谱图对单个跳频信号的跳周期、跳时和载频进行了盲估计;基于组合时频分析(SP&SPWVD),对多个跳频信号的跳周期、跳时、载频和幅度参数进行了盲估计,并给出了各参数估计的仿真性能。再次,基于时频分析、空间谱估计,结合数字信道化、时频聚焦等技术对FH

信号、FH/DS信号进行空时频测向,实现了欠定条件下的高精度测向。根据传统的空时阵列模型,结合信号的时频分析,建立了空时频分布 的数学模型;分析了空时频测向能获得时频增益的原因,研究了增益 大小与哪些因素相关;利用空时频分析实现了多个跳频信号的DOA估计,提出了适合无“频率碰撞”情况下的线性空时频DOA估计算法; 虽然利用空时频技术能够实现欠定条件的多信号测向,但在N /M值较大情况因为信号之间的互扰较大使测向性能欠佳,故再结合数字信道 化技术,解决了N /M值较大情况信号之间互扰很大的问题,实现了多 个跳频信号的高精度测向;将空时频分析和宽带信号测向方法,实现 了欠定条件下多FH/DS信号的DOA高精度估计。最后对跳频信号分选技术进行了深入的研究,针对不同的应用场合提出了相应的分选算法。提出了一种适应于环境中仅存在异步组网电台的实时分选方法,该方 法计算量少,便于实时分选,适合应用于快速、高速跳频信号的侦察; 提出了一种类数目K值的估计和优选初始聚类中心的改进K-Means算法;初始聚类中心优选能使聚类迭代次数大为减少,并能避免聚类过 程中陷入局部最小,增强了聚类的鲁棒性;利用改进K-Means聚类算 法对HDW集合进行了聚类分选;针对高斯核参数σ的优选问题,提出 了粗搜索和精估计相结合的改进方法,在得到精确的σopt同时减少 了总搜索次数;利用密度分布图和领域半径、门限参数实现了KKM算 法中类数目K的估计和初始聚类中心的优选;利用基于高斯核函数的 K-Means对跳速和到达角均时变的跳频信号进行聚类分选,分选效果 良好。

相关主题
文本预览
相关文档 最新文档