当前位置:文档之家› 拉森钢板桩计算

拉森钢板桩计算

拉森钢板桩计算
拉森钢板桩计算

钢板桩设计

1.1 地质状况

本工程项目座落在张家港市北部长江南岸张家港化工保税区内。

厂区位于长江冲积平原的河漫滩地,地形平坦。原自然地坪标高较底,场地平均高程106.20m,现已采用吹砂回填,将厂区地坪标高提高。根据地质报告,本工程土质上层为吹填砂,以下分别为粉质粘土夹粉土;粉细砂夹粉土,土的抗压、抗剪强度均较低,且难以采取有效的降排水措施。目前厂区内地下水位较高,土质松软,地质情况较为复杂。

该区地质结构断面如下图所示:

1.2 电梯井形状

本工程结构形式如下。目前基坑结构长13.50米,宽10.35米,基坑底标高EL.98.55m,基坑深度7.65米。池壁每一侧考虑2.0米宽的工作面,则支护结构的尺寸为长17.50米,宽14.40米。

2 支撑式钢板桩挡土墙的构造

本工程采用内撑钢板桩挡土墙结构。其主要由钢板桩、支撑二部分组成,钢板桩起承受水平土压力防止土体沿滑动面滑动以及阻隔地下水的作用。它的稳定主要靠两道钢支撑使钢板桩保持垂直、稳定,并确保两侧土体不向基坑内发生位移,钢板桩应插入土体一定深度,防止土体滑动和基坑向上隆起。支撑式钢板桩支挡结构简单且便于施工,整个支挡系统均在基坑开挖过程中完成,作业(包括支撑和挖土)十分安全,施工质量容易保证,且较经济。3 钢板桩设计

其钢板桩和内钢支撑布置示意图如下:

EL.105.700

EL.104.850

钢板桩钢支撑立体布置图

安全围栏

EL.103.250

EL.100.250

电梯井钢板桩平面布置图

安全围栏

上下通道

1.0m宽

13500

2000

2000

12m钢板桩

4500

2000

钢板桩围檩及内支撑平面布置图

工字钢400×400围檩

φ377×10钢管支撑

φ630×12钢管支撑

4500

4500

本工程钢板桩采用Ⅳ型拉森钢板桩,长度为12m,宽度400mm。(即每2.5块1m)。钢板桩水平围檩采用40号工字钢,内支撑采用Φ630×12的直撑钢管和Φ377×10的斜撑钢管。

为此,共需12米长的钢板桩数量:

N =(A+B)×2÷0.4 =(17.5+14.35)×2÷0.4 = 160根。

本方案基坑开挖深度最深按6.30m计算,设二道水平支撑。第一道水平钢支撑中心布置在103.25m处,第二道水平钢支撑中心布置在100.25m处,这样下道支撑距基坑底约为1.70m。

4 钢板桩支撑体系设计及验算以及基底土抗隆起验算

对内支撑基坑,造成基坑失稳的直接原因一般可归纳为两类:结构不足(墙体、支撑等的强度或刚度不足)和地基土强度不足。

根据地质资料和现场实际情况分析,本工程可不考虑管涌和承压水,不进行钢板桩的抗渗透稳定性验算。本设计主要计算钢板桩、围檩、支撑在施工全过程中的强度和稳定性,以及为防止基坑整体滑动和基底土隆起所需的钢板桩插入深度。

根据地质报告,计算出排水管道施工区域土的有关加权平均指标如下:

γ=18KN/m3 φ=20oC=8kpa

本设计计算时取C=0,不考虑地下水的作用。仅考虑被动土压力修正系数k=1.6(见《深基坑工程设计施工手册》P.286),

4.1 土压力计算

主动土压力系数Ka=tg2(45o-20o/2)=0.49

被动土压力系数Kp=tg2(45o+20o/2)=2.04

被动土压力修正系数k=1.6,则:Kp=kKp=3.264

如图A所示,图中B点为R

1和R

2

间的中间点(1/2点),C点为R

2

与基坑底面间的中点。近似计算时,即认为R

1

等于e

与e

1

间的三

角形荷载,R

2等于e

1

与e

2

间的梯形荷载,土压力为:e

i

=K

a

γH

i

。另考虑基坑边土体和机械行走等产生的附加荷载,按20KN/m2计算。

上式中H

i

为土压力计算高度。

其中H

1=1600;H

B

=3100; H

2

=4600;H

C

=5450;H

3

=6300。

经计算: e

=0

e1= KaγH1= 0.49×18×1.6=14.112KN/m2

eB= KaγHB= 0.49×18×3.1=27.342 KN/m2

e2= KaγH2= 0.49×18×4.6=40.572 KN/m2

eC= KaγHC =0.49×18×5.45=48.069 KN/m2

e3= KaγH

3

= 0.49×18×6.3=55.566 KN/m2 设支撑间间距均为L=4.50m,则通过公式:

Ri={[(e

n +e

n+1

)/2] *h

n+1

+ qKa*h

n+1

} L可计算出支撑反力R

1

、R

2

上式中h

0=0;h

0B

=3.1m;h

BC

=2.35m;Q=qKa=20×0.49=9.8 KN/m2。

则:R

1

= [(0+27.342)÷2×3.1+20×0.49×3.1]×4.5=327.420 KN

R

2

=[(27.342+48.069)÷2×2.35+20×0.49×2.35]×4.5=502.371 KN

e0

e1

e B

B

1

2 C

3 S O M e

4 Pp e3

Pa2

e c

Pa1

qka

R1

R2

q = 20kN/m2

图A:钢板桩支护计算示意图

4.2 钢支撑强度和稳定性验算

本工程二道长钢支撑均采用φ630×12钢管。已知Rmax=502.371KN,A=232cm2, r=21.8 cm,[f]=200Mpa。取安全系数为K=2.0。

A、对钢管支撑长度15.0 m的直钢管,其长细比λ=115.38,查表得φ=0.5。

则由公式N/(φ×Α)≦[f]/ K可计算出15米长直支撑满足稳定性要求的允许压力为:

Nz=1160 KN >Rmax=502.371 KN 符合要求。

本工程二道钢斜支撑均采用φ377×10钢管。已知Rmax=502.371KN,A=115cm2, r=13.0 cm,[f]=200Mpa。取安全系数为K=2.0。

B、对钢管支撑长度约6.0m的斜钢管,其长细比λ=46.15,查表得φ=0.903。

则由公式(N/(φ×Α)≦[f]/ K可计算出6米长斜支撑满足稳定性要求的允许压力为:

Nx=1038.45 KN >√2 Rmax=710.353 KN 符合要求。

由此可见支撑的强度和稳定性均满足要求。

4.3 钢板桩抗弯验算

两道支撑间及下道支撑与基坑底面之间的钢板桩弯矩可以近似按照两端简支梁承受梯形荷载计算。查《静力计算手册》,可按以下公式计算钢板桩的最大弯矩:

M max =[q

2

L2/6]·{[2υ3-μ(1+μ)]/(1-μ)2}

上式中μ= q

1/q

2

;υ=√(μ2+μ+1)/3

μ12=0.475 μ23=0.771

υ12=0.753 υ23=0.888

由此可计算出:

A、两道支撑间之间钢板桩的最大弯矩为:

M

maxB

=(50.37×32÷6)×{[2×0.7533-0.475(1+0.475)]÷(1-0.475)2} =42.031 KN.m/m

B、下道支撑与基坑底面之间钢板桩的最大弯矩:

M

maxC

=(65.37×1.72÷6)×{[2×0.8883-0.753(1+0.753)]÷(1-0.753)2} =10.256 KN.m/m

Ⅳ型拉森钢板桩W=2043cm3/m,安全系数K=2。

f max = M

maxB

/W=42031/(2043×10-6)=20.573Mpa<[f]/2=100Mpa

因此钢板桩的抗弯强度可以满足要求。

4.4 工字钢围檩抗弯抗压验算

(1)、抗弯验算

本工程围檩采用40号工字钢,详见平面布置图。支撑与围檩连接的计算简图见图B。

4500

150

150

4200

钢管支撑40#工字钢围檩

钢板桩

图B

已知作用在下道围檩的均布荷载较大,为Q=R

2

/4.5m=111.638KN/m,40#工字钢对其x—x轴的截面系数 W=1090cm3;f=200Mpa。

将围檩视为多跨连续梁,净跨度仍按4.2m计算,最大弯距在跨中,若安全系数取K=2.0。计算时按两跨连续梁计算,则查《静力计算手册》可得:

M max =0.07QL

j

2=0.07×111.638×4.22=137.850 KN-m =1378500N-cm

M

max

/W=1378500/1090=1264.680N/cm2 < f/2.0=10000N/cm2

符合要求。

(2)、压弯验算

当斜向支撑作用在围檩上时,围檩是压弯构件,因此还应进行围檩在压弯状态下的强度。

按公式(N/An)+[Mx/(γx ·Wnx)]≤f计算

上式中γx——截面塑性发展系数,取1.05;N——轴心压力,为502.371;An——净截面面积,为86.1cm2;Mx——最大弯矩;Wnx ——截面矩。

则:(N/An)+[Mx/(γx ·Wnx)]

= (502.371/86.1)+[13785.0/(1.05×1090)]

=17.88 KN/cm2 < f=20 KN/cm2符合要求。

从以上计算可知,当支撑间距为4.5米时,工字钢围檩可以满足要求。

考虑到影响土体侧压力的因素很多,为了确保整个支撑体系的稳定、安全,现场应配备足够的Φ377钢管和40#工字钢,以便对可能发生的支撑体系变形进行加固。所有钢结构焊缝均应满焊,焊缝厚度应符合钢结构规范的要求。

4.5 钢板桩变形验算

按图A计算简图计算,1、2两点间钢板桩所受弯矩最大,因此只计算该跨的钢板桩最大变形量,按梯形荷载一端固定、一端简支计算,参照《建筑结构静力计算手册》P.161,其计算公式为:

fx=l3x[5q

1(1-3ξ2+2ξ3)+2q

(1-2ξ2+ξ4)]/240EI

上式中:l——3.0m;

q 1——e

1

+qKa=23.912 KN/m;

q 0——e

2

-e

1

=26.46KN/m;

ξ——x/l ;1点处ξ1=0,跨中ξ0=0.5;

E——钢板桩弹性模量=206×103 Mpa=206×102 KN/cm2;

I——钢板桩截面惯性矩=31.95cm4/m;

X——1点距变形计算点的距离。1点处X

1=0,跨中X

=1.5m。

① 1点处钢板桩位移:

f 1= l3X

1

[5q

1

+2q

]/240EI=0

②跨中B点处钢板桩位移:

f 0= l3X

[5q

1

(1-3ξ2+2ξ3)+2q

(1-2ξ2+ξ4)]/240EI

f

=0.08cm

以上计算所得数值满足三级基坑围护结构位移值的要求,该变形量不会造成基坑周边土体的扰动,因此围护结构和周边建构筑物是安全的。

4.6 坑底土抗隆起验算

由于基坑下部为深厚软土层,因此需验算坑底软土的承载力。如图C所示,采用此滑动模型进行验算。先以O为圆心,以OB为半径作圆,交坑底水平线于E、F。再由E作垂直线交地面线于D。

设想滑动面为DEBF。并设地面有临时荷载q=20KN/m2。取C

1=C

2

=8Kpa。(不计算基坑内土的抗滑作用)

此时抗滑力矩 = C

1HOB+(1/2) C

2

πOB2

滑动力矩 =(1/2)(q+γH)OB 取抗滑系数K=1.5

则2[C

1HOB+(1/2)C

2

πOB2]/(q+γH)OB≥1.5

计算出OB=3.95m,实际取1.2*OB=4.7m,这样偏于安全。

因此钢板桩理论计算长度为0.4+6.3+4.7=11.4m,而本工程钢板桩的实际总长度为12m,此时坑底土不会出现隆起现象。

F

A

O

B

E

D

γH

q

C

2

C

2

C

1图C

多项施工实例阐明了拉森桩在围护措施上所显示的作用,大力推广拉森桩在特殊土层条件的运用,勇与创新,大胆尝试,敢于充当做第一个吃螃蟹的人,展望未来数年拉森桩在我国将产生一次大的飞跃。

钢板桩施工方案

一、工程概况:

宁波市综合办案楼改建工程消防水池及水泵房位于底层U∽H轴×1∽4轴间,其平面尺寸为10.2M*15.0M,消防水池及水泵房承台底挖土深度为3.5M,其北侧2.5M处为2层临时宿舍楼,东侧2M处为2层原有砖混结构办公楼。其周围的堆载较大,挖土深度又较深,考虑到工期及成本,拟采用钢板桩支护方案。

二、钢板桩围护的设计

消防水池基坑设计土方挖深为-3.5米,基坑北侧为临时宿舍,东临建筑物,为保证安全施工及周边建筑物不受影响,基坑北侧与东侧采用钢板桩围护,设计选用8米长拉森Ⅲ型(60Kg/m)钢板桩,基坑挖深为3米左右,钢板桩入土深度取5米长。

2.1、防倾覆计算(如图一示)

根据工程勘察报告,钢板桩所处土层为淤泥质粘土,土的重度γ=17.6内摩擦角р=8.4°,粘聚力с=10.5

①主动土压力Ea

Ea=1/2γ(H+t)2tg2(45°-р/2)-2·C·(H+t)·tg(45°-р/2)+2C2/γ=1/2*17.6*(13+5)2 tg240°.8-2*10.5*(3+5)* tg240°.8+(2*10.52/17.6)=287.15KN

h1=1/3*[H+t-2C/γ·tg40°.8]=1/3*(3+5-2*10.5/17.6* tg 40°.8)=2.206m

②被动土压力Ep

Ep=1/2γt2tg2(45°+р/2)+2C·t·tg(45°+р/2)

=1/2*17.6*52* tg249.2+2*10.5*5*tg49.2=416.92KN

h2=t/3·(t·γtg°49.2+6C)/( t·γtg°49.2+4C)

=5/3*(5*17.6* tg°49.2+6*10.5)/( 5*17.6* tg°49.2+4*10.5)=1.91M

③主动土压力Ea对e点的力矩m1

m1=Eah1=287.15*2.206=633.45KN·m

④被动土压力Ep对e点的力矩m2

m2=Eph2=416.92*1.91=796.32 KN·m

⑤防倾覆安全系数m2/ m1=796.32/633.45=1.26<2故不符安全要求。

2.2、内力计算拉森Ⅲ号钢板桩W=1600CM3

最大弯矩MC= m2- m1=796.32-633.45=162.87 KN·m

f=(162.87*103*0.74)/(1600*10-6)=75.33mpa<1/2[f]

=100 mpa故内力计算符合要求

综上所述采用单排钢板桩围护不符合防倾覆安全要求,所以本基坑围护须采用双排钢板桩,其布置图如附图二所示。

2.3、降水、排水措施

因施工现场西侧临河,根据地质勘察报告显示,地下水位高度约0.6M,水源较高且水源丰富,施工期间必须考虑降水、排水措施。在基坑的北侧及东侧设降水井,作法如下:用φ600的钻孔桩机钻成φ600的孔,深10M,用8φ12,φ6@200的骨架外包钢板网做成护笼,放入φ600孔内以防止土方塌方便于水泵抽水。施工期间用水泵通过降水井不停降水。同时土方https://www.doczj.com/doc/d814453090.html, 房地产E网开挖好后在基坑内四周设排水沟,并在四角设集水井,做好有组织的排水。

2.4两排钢板桩间距设定为800,为了提高钢板桩支护的安全性,前排钢板桩上口用钢板梁全部连接起来,再用钢丝绳固定于地描上。

2.5支护结构监测

1、深层土体位移观测:在钢板桩围护结构的北侧和东侧设置深层土体位移观测孔,设观测孔2个,埋深12米。

2、水平位移观测:在钢板桩支护结构梁、邻近原有两层建筑物及临时宿舍上设水平位移观测点;

2、沉降观测:在钢板桩支护结构梁、基坑内外土体、邻近原有两层建筑物及临时宿舍上设沉降观测点;

4、基坑支护结构变形报警值:深层土体位移50MM,支护梁水平位移30MM,基坑四周外侧土体沉降20MM。

三、钢板桩支护开槽施工

3.1、钢板桩支护开挖施工工艺流程:

打钢板桩→挖土→基础砼浇注→墙板及顶板砼浇注→模板拆除→防水施工→土方回填

3.2、钢板桩施工要点

①、根据基坑边线,先开挖钢板桩槽,宽度为0.80m,深度0.50m左右。采用长臂液压挖掘机施打,为保证钢板桩的打入质量,采用夹板定位的

根据《危险性较大工程安全专项施工方案编制及专家论证审核办法》的规定,上海市浦东铁路金汇港大桥深基坑围堰工程,必须编制专项施工方案且通过专家论证。为了编制安全可靠、经济合理的优化方案,我们以深埋板桩和围檩计算为主,进行了深基坑围檩支护计算。在此基础上,我们结合本公司施工的南京雍六高速公路马汊河大桥、南京马汊河葛新桥,山东枣庄市运河特大桥深水基坑围堰支护的经验,针对上海地区淤泥粉质软土的特点,编制了上海市浦东铁路金汇港大桥深基坑围堰支护加固安全专项施工方案,一次通过了专家评审,并在实施中确保了工程安全、质量和工期。本文就深基坑围堰的计算成果作简要介绍。

一、工程概况

1.工程概况

浦东铁路金汇港特大桥河道宽95m,主跨65.1m,主跨桥墩位于金汇港河内,两桥墩中心距离岸边约15.0m,桥墩基础为双排钻孔桩,每个墩桩基为8根,共16根桩(钻孔桩直径1.25m、桩长56.0m)。承台底标高为-3.90m,承台顶标高为-1.2m。水深约3.5m,河流测时水位2.68m,最高通航水位3.0m,百年一遇水位3.77m。本工程水文地质如下:河床下为③-1层,淤泥粉质黏土,γ=17.8kn/m3,θ=18°,厚3-4m;④层:淤泥粉质黏土,γ=17.1kn/ m3 θ=10.1°;素填土γ=19kn/ m3 ,θ=19°;

2.基坑围护方案选择

根据本工程地基土质差,地下水位高等不利因素,决定采用拉森钢板桩支护。钢板桩具有重量轻、强度高、锁口紧密、重复使用、施工方便、施工速度快等优点,同时本单位具有钢板桩深基坑施工方面的相应经验。

施工流程:打拉森钢板桩围堰→钻孔桩施工平台→钻孔桩施工→抽水→高压水枪清淤(人工挖土)→施工承台、墩身及顶帽→拉森钢板桩拆除承台围堰根据施工的需要,设计尺寸为17.2×11.7m(见图)。离岸侧临水,近岸侧为素填土。

二、多支撑钢板桩计算

支撑层数和间距的布置是钢板桩施工中的重要问题,根据现场的支撑材料和开挖深度(基底至水面7.0m),我们采取在钢板桩内侧加三层围檩并设置支撑,按多支撑进行钢板桩计算,计算时仍采用等值梁法。围堰采用拉森ⅳ型钢板桩,w=2037cm3,[f]=200mpa。围堰顶部荷载按70kn/m2计算。钢板桩拟采用15m(标准尺寸为10、12、15m)。

(1)计算钢板桩承受土压力,绘出土压力分布图a.γ、θ按16.5m深,加权平均计算γ=(4.5×19+4.0×17.8+8× 17.10)÷16.5=17.79 kn/ ;m3 θ=(4.5×19+4×18+8× 10.1)÷16.5=14.44。 b.计算土压力系数 kp=tg2(45。+14.44。÷2)=1.66 ka= tg2(45。-14.44。÷2)=0.6 c.板桩压力pa=γh1ka=10.67 kn/m2;pb=γh2ka=44.83 kn/m2;pd=γh3ka=78.99 kn/m2 d. 土压力分布图

(2)计算板桩上土压力等于0的点距挖土面的距离y 设距地面y处板桩前的被动土压力等于板桩后的主动土压力,考虑板桩与土的摩擦作用,对板桩前的土压力乘以修正系数k,查表k=1.378。γkkpy=γka(h+y) = pb+γkay y= pb/[γ×(k×kp- ka)]=78.99/[17.79×(1.378×1.66-0.6)]=2.63 m

(3)多支撑钢板桩土压力简化模型计算截取ac梁,在c点加自由支承,形成与ad梁上ac段的近似等值梁(如上图),按多跨连续梁用弯距分配法计算(计算简略)。 a、绘制弯矩图 b、计算支座反力 b处支座反力为pb,由∑mc=0得: pb=28.11 kn c处支座反力为pc,由∑md=0得:pc=154.74 kn 由∑md=0,取de为隔离体pe*2.63+45.85-1/2*78.99*2.63*1/3*2.63=0 pe=17.19 kn pd=1/2*78.99*(3.2+3.2+2.63+1.0)-pb-pc-pe=196 kn c多支撑板桩入土深度检算 x= 6pe/[γ×(k×kp-ka)] =1.85m t0=x+y=4.48 m ;t=1.1×t0=4.93m ;l=h+t=4.93+7.4=12.33 钢板桩长度满足要求。

(4)多支撑钢板桩围檩检算围檩横梁长17.2m,每隔2.90m设一道支撑(见下图),横梁按连续梁用弯距分配法计算,并选择工字钢横截面。 a、计算节点b、c、d、e处弯距分配系数 b点:sba=3i sbc=4i ∑sb=7iμba=3/7μbc=4/7 c点:scb=4i scd=4i ∑sd=8i;μcb=1/2μcd=1/2 d点:sdc=4i sde=4i ∑sd=8iμdc=1/2μde=1/2 e点:sef=3i sed=4i ∑se=7iμef=3/7μed=4/7 b、计算各杆端固端弯距 mfba=1/8ql2=1/8*196.1*2.92=206.15knm mfbc=-1/12ql2=-1/12*196.1*2.92=-137.43knm mfcb=-mfbc=- dc=mfed=-mfde=mfcd=137.43knm mfba=-1/8ql2=-1/8*196.1*2.962=-206.15knm c、弯矩分配计算 d、绘制弯矩图:跨中弯矩:mab=1/8ql2-1/2*173.6=119.35 knm mbc=1/8ql2-1/2*(173.6+130.2)=54.25knm mbc=1/8ql2-130.2=75.95 knm c、选择工字钢截面由上

可得横梁所受最大弯距在b处mmax=173.6 knm,采用40c工字钢时:σmax= mmax/w=173.6*103/(1190*10-6)=146 mpa σmax<[σ]/k=[σ]/1.5=235 /1.5=157 mpa 采用40c型号的工字钢。

(5)多支撑板桩围檩支撑检算 a、求支座反力由∑mb=0 na*2.9+173.6-196.1*2.92*1/2=0 na=224.5kn 由∑mc=0 na*2.9*2+nb*2.9+130.2-1/2*196.1*(2*2.9)2=0 nb=643.5kn nc=1/2(196.1*14.5-2*224.5-2*643.5)=553.7kn b、斜支撑的轴力计算 b处斜支撑轴力n= nb /sinα= 643.5/0.63=1021.4kn c处斜支撑轴力n= nc/sinα= 553.7/0.63=878.89kn c、选斜支撑截面① b 处斜支撑 b处斜支撑长度为:i= 2.342+2.92 =3.73 选用2根[22槽钢,为b类截面,其截面几何性质如下: ix=2*2570=5140 iy=2.21 cm iy=176 cm4 a=36.246 cm4 iy=2*[176+(7.9-2.21)2*36.246]=2699cm4 最小惯性半径: iy= 2699/2a =6.1cm 杆件两端焊接,按固定端确定长度系数:μ=0.5长细比: λ=μl1/iy =0.5*373/6.1=30.6 压杆稳定系数查表: φ=0.932计算应力: σ=n/φa=1021.4*103/(0.932*2*36.246*102)=151.2mpaσ<[σ]/k=[σ]/1.5=235/1.5=157mpa k为安全系数,取 1.5 ② c处斜支撑: c处斜支撑长度为 l2= 4.682+5.82 =7.45 m 长细比: λ=μl2/iy =0.5*745/6.1=61 压杆稳定系数查表: φ=0.802计算应力: σ=p/φa=878.89*103/(0.802*2*36.246*102)=151.2mpa <[σ]/n=[σ]/1.5=235mpa /1.5=157 mpa 满足要求

三、结束语深基坑工程施工属危险性较大的施工作业,编制施工方案必须周密、可靠,其中最主要的首推正确的计算。浦东铁路金汇港大桥的计算,为施工方案的优化编制提供了技术计算基础,该基坑围堰方案得到了平审专家的一致好评,在工程施工中取得了良好效果. 上海联圣建筑工程有限公司吕涛陈松江焦赞荣

摘要:根据钢板桩围堰的实际受力状况建立力学模型。通过理论计算确定钢板桩围堰的实际受力,并通过实际施工情况验证该方法的可行性。比规范中采用的经验算法具有更高的精确性和安全性,能够更好的满足工程施工需要。

关键词:钢板桩围堰设计施工

拉森钢板桩计算

拉森钢板桩计算 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

钢板桩设计 地质状况 本工程项目座落在张家港市北部长江南岸张家港化工保税区内。 厂区位于长江冲积平原的河漫滩地,地形平坦。原自然地坪标高较底,场地平均高程,现已采用吹砂回填,将厂区地坪标高提高。根据地质报告,本工程土质上层为吹填砂,以下分别为粉质粘土夹粉土;粉细砂夹粉土,土的抗压、抗剪强度均较低,且难以采取有效的降排水措施。目前厂区内地下水位较高,土质松软,地质情况较为复杂。 该区地质结构断面如下图所示: 电梯井形状 2 支撑式钢板桩挡土墙的构造 本工程采用内撑钢板桩挡土墙结构。其主要由钢板桩、支撑二部分组成,钢板桩起承受水平土压力防止土体沿滑动面滑动以及阻隔地下水的作用。它的稳定主要靠两道钢支撑使钢板桩保持垂直、稳定,并确保两侧土体不向基坑内发生位移,钢板桩应插入土体一定深度,防止土体滑动和基坑向上隆起。支撑式钢板桩支挡结构简单且便于施工,整个支挡系统均在基坑开挖过程中完成,作业(包括支撑和挖土)十分安全,施工质量容易保证,且较经济。3 钢板桩设计 其钢板桩和内钢支撑布置示意图如下: 钢板桩钢支撑立体布置图 安全围栏 上下通道 12m钢板桩

2000 钢板桩围檩及内支撑平面布置图 工字钢400×400围檩 φ377×10钢管支撑 φ630×12钢管支撑 4500 4500 本工程钢板桩采用Ⅳ型拉森钢板桩,长度为12m,宽度400mm。(即每块1m)。钢板桩水平围檩采用40号工字钢,内支撑采用Φ630×12的直撑钢管和Φ377×10的斜撑钢管。 为此,共需12米长的钢板桩数量: N =(A+B)×2÷ =(+)×2÷ = 160根。 本方案基坑开挖深度最深按计算,设二道水平支撑。第一道水平钢支撑中心布置在处,第二道水平钢支撑中心布置在处,这样下道支撑距基坑底约为。 4 钢板桩支撑体系设计及验算以及基底土抗隆起验算 对内支撑基坑,造成基坑失稳的直接原因一般可归纳为两类:结构不足(墙体、支撑等的强度或刚度不足)和地基土强度不足。 根据地质资料和现场实际情况分析,本工程可不考虑管涌和承压水,不进行钢板桩的抗渗透稳定性验算。本设计主要计算钢板桩、围檩、支撑在施工全过程中的强度和稳定性,以及为防止基坑整体滑动和基底土隆起所需的钢板桩插入深度。 根据地质报告,计算出排水管道施工区域土的有关加权平均指标如下: γ=18KN/m3 φ=20o C=8kpa 本设计计算时取C=0,不考虑地下水的作用。仅考虑被动土压力修正系数k=(见《深基坑工程设计施工手册》), 土压力计算 主动土压力系数Ka=tg2(45o-20o/2)= 被动土压力系数Kp=tg2(45o+20o/2)= 被动土压力修正系数k=,则:Kp=kKp= 如图A所示,图中B点为R 1和R 2 间的中间点(1/2点),C点为R 2 与基坑底面间的中 点。近似计算时,即认为R 1等于e 与e 1 间的三角形荷载,R 2 等于e 1 与e 2 间的梯形荷 载,土压力为:e i =K a γH i 。另考虑基坑边土体和机械行走等产生的附加荷载,按20KN/m2 计算。 上式中H i 为土压力计算高度。 其中H 1=1600;H B =3100; H 2 =4600;H C =5450;H 3 =6300。 经计算: e =0

拉森钢板桩支护方案计算书

桂林市西二环路道路建设工程排水管道 深基坑开挖施工方案计算书 一、工程概况 桂林市西二环路二合同段污水管道工程的起点K12+655,终点K17+748,埋设管道为聚氯乙烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采用粗砂垫层,基础至管顶上50cm范围为粗砂回填,其上为级配碎石回填至路床;起点管道底部标高为150.277m,管道平均埋深为5.2米左右,最深为7.8米,地下水位较高,其中有局部里程段3.5m厚土层以下是流沙层,开挖时垮塌较严重,为防止开挖时坍塌事故发生,特制定该方案,施工范围为K12+655~K14+724段左侧污水管。 本段施工段地质为松散耕土、粉质粘土,地下水位高,遇水容易形成流砂。 二、方案计算依据 1、《桂林市西二环路道路建设工程(二期)施工图设计第三册(修改版-B)》(桂林市市政综合设计院)。 2、《市政排水管道工程及附属设施》(06MS201)。 3、《埋地聚乙烯排水管管道工程技术规程》(CECS164:2004)。 4、《钢结构施工计算手册》(中国建筑工业出版社)。 5、《简明施工计算手册》(中国建筑工业出版社)。 三、施工方案简述 1、钢板桩支护布置 钢板桩采用拉森ISP-Ⅳ型钢板桩,其长度为12米/根,每个施工段50m需260根钢板桩。根据施工段一般稳定水位154.0m和目前水位情况,取施工水位为154.00m。根据管沟开挖深度(4.7m),钢板桩支护设置1道型钢圈梁和支撑。以K14+100左侧排污管道钢板桩支护为例,桩顶标高为157.83m,桩底标高为148.83m,依次穿越松散耕土→粉质粘土层。 2、钢板桩结构尺寸及截面参数 拉森ISP-Ⅳ型钢板桩计算参数如下表所示:

6m拉森钢板桩计算书2

6m拉森钢板桩支护计算书 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- [ 基本信息 ]

---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- [ 附加水平力信息 ] ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ----------------------------------------------------------------------

[ 土压力模型及系数调整 ] ---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型: ---------------------------------------------------------------------- [ 工况信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况:

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m 3,内摩擦角φ=15o ,卵石重度γ= KN/m 3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m 2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m 3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 (φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。=

基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m 2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ

=1000*1340=<175 Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载: q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢 板桩最大弯矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支 点力T1=,钢板桩最大弯矩M max =*m 剪力图

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m,开挖尺寸×,筑岛顶标高:495m;常水位标高:+;承台顶标高:+;承台底标高:489m;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o,卵石重度γ= KN/m3,内摩擦角φ=36o,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ 平均 =(*+*)/= KN/m3 φ 平均=(15*+36*)/=

主动土压力系数:K a =-45Tan 2(φ/2)=; 被动土压力系数:K p =+45Tan 2(φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。=h K -KK P 6a P 0+?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175

Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载:q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢板桩最大弯 矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支点力T1=, 钢板桩最大弯矩M max =*m 剪力图 弯矩图 满足要求,围檩施工完后可继续开挖。 3)、工况三:当基坑开挖到基坑底时,相当于多层支点支护结构 支点力T1=,T2=,基坑底部钢板桩受力T3=,钢板桩最大弯矩M max =50KN*m 剪力图 弯矩图 如图所示工况三维钢板桩受力最不利时: 钢板桩满足要求,可继续下一道工序。

钢板桩设计计算

钢板桩设计计算及施工方案 本标段施工范围内共有75个承台,分8种类型: A类承台:下部采用9根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于30+30m跨径组合; B类承台: 下部采用9根φ1.2m 钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于40+40m跨径组合; C类承台: 下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于25+25m跨径组合; D类承台: 下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于30+40m跨径组合; E类承台: 下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为8.4×5.34m(横×顺), 厚2.5m。主要适用于25+30m跨径组合(斜交20°); F类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.34m(横×顺), 厚2.6m。主要适用于33.5+33.5m跨径组合(斜交20°); G类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.872m(横×顺), 厚3.0m。主要适用于40+40m跨径组合(斜交40°); H类承台: 下部采用10根φ1.0m钻孔灌注桩,承台尺寸为27.0×4.5m(横×顺), 厚 1.5m。主要适用于桥台基础;拟采用拉森Ⅳ型钢板桩实施围护,以确保基坑安全开挖、承台结构和墩身结构的顺利施工。 二、地质情况 根据地质勘察报告显示:勘察深度范围内(河床底至钻孔桩底)可分为7个地质单元层,钢板桩深度主要在:⑴层为近代人工堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘土 三、钢板桩施工方案 1、钢板桩的选用

拉森钢板桩围堰施工专项方案详细

京沪高铁蕴藻浜特大桥222号墩 深大基坑施工专项方案 第一章工程概况 京沪高速铁路于里程DK1284+865.86~DK1284+982.06处跨越蕴藻浜河,河流与线路中心线的夹角为73°,蕴藻浜河最高通航水位为1.96m,航道等级现状为五级,规划三级,通航净宽70m,净高7.5m,跨河桥梁结构为1-112m 提篮拱。提篮拱主墩(222#)情况如下:桩基18根,直径1.5m,桩顶标高-6.855m,桩底标高-89.855m,桩长83m,承台为双层承台,承台总高4.5m,下承台尺寸22.1×10.6×3.0m,上层承台尺寸21.2×7.25×1.5m,墩身高11.5m,墩身长19.2m,总宽5.25m。桩基分布情况见下图: 根据现场实测的地面标高为+2.44,承台底标高-6.855,地面到承台底高差为9.3米,该处地质条件以淤泥质粉质黏土和粉土为主。基坑开挖深度达10.3米(考虑混凝土封底1.0m)。 第二章编制依据及技术指标 1、TB10002.5 J464-2005《铁路桥涵地基和基础设计规范》 2、TZ213-2005《高速铁路桥涵工程施工技术指南》 3、蕴藻浜特大桥京沪高徐沪施图Ⅵ(桥)-117

4、京沪高徐沪施图(桥参)-承台及钻孔灌注桩钢筋布置参考图 5、时速350Km客运专线铁路通用设计图《双线矩形空心桥墩》(图号:肆桥设(2008)4381-1) 6、相关标准规范等 第三章施工难点分析 该基坑所处位置地质条件很差,地下水位较高,基坑边缘距蕴藻浜河20多米,蕴藻浜河河面标高+1.08,该处从现有地面以下6米范围内为蕴藻浜河河道内清理出来的河底淤泥,给大面积挖土卸载造成相当大的困难,原有土质以淤泥质粉质黏土和粉土为主,状态以流塑和软塑为主,基本承载力较低,土体内摩擦角平均16°,土容重平均取值为19kN/m3,而且该基坑属于深大基坑,开挖深度达10.3m,产生的土压力和水压力相当大,平面开挖尺寸为26.1×14.6m,再加之承台及墩身下部作业施工需要在基坑内完成,给内部支撑造成很大困难,而且从基坑开挖到墩台身施工过程中需要进行数次受力体系的转换,给各道围檩及内支撑的确定增加难度。 第四章基坑及墩台身施工 基坑施工流程:施工准备→测量定位→插打抗滑钢管→插打钢板桩→开挖基坑→逐层进行钢板桩内支撑→排水→浇筑封底混凝土→承台施工→基坑回填→逐步拆除内支撑→墩身施工→基坑回填→钢板桩拔出→抗滑钢管拔出。 第一节施工准备 首先在钢板桩堆放基地对钢板桩进行分类、整理,选用同种型号的板桩,进行弯曲整形、修正、切割、焊接,整理出施工需要的型号(拉森IV号钢板桩)、规格(450×310×15.5)、数量(24m×190根)的钢板桩。 钢板桩进场前需要检查整理,发现缺陷随时调整,整理后在运输和堆放时尽量不使其弯曲变形,避免碰撞,尤其不能将连接锁口碰坏。 钢板桩的设置位置应便于基础施工,应在原地面下结构边缘之外,并留有支、拆模板的操作空间; 钢板桩平面不直的,应尽量使其平直整齐,避免不规则的转角,以便顺利将钢板桩插打入地下,并利于围檩支撑的设置。 第二节测量定位 对墩位承台控制点标明并经过复核无误后加以有效保护,同时距离承台

拉森钢板桩设计计算书

拉森钢板桩设计计算书 Prepared on 24 November 2020

拉森钢板桩设计计算书 (1)钢板桩的设置位置要符合设计要求,便于基础施工,即在基础最突出 的边缘外留有支模、拆模的余地。 (2)基坑护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转 角,以便标准钢板桩的利用和支撑设置。各周边尺寸尽量符合板桩模数。 (3)整个基础施工期间,在挖土、吊运、扎钢筋、浇筑混凝土等施工作业 中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不 应在支撑上搁置重物。 差的钢板桩应尽量不用。 ---------------------------------------------------------------- ------ 弹性法土压力模型: 经典法土压力模型: 层号土类名称水土水压力主动土压力被动土压力被动土压力 调整系数调整系数调整系数最大值(kPa) 1 杂填土合算 2 圆砾合算 3 中砂合算 4 粘性土分算 - [ 工况信息 ] --------------------------------------------------------------------- 工况工况深度支锚 号类型(m) 道号 1 开挖--- 2 加撑--- 1.内撑 3 开挖--- 4 加撑--- 2.内撑 5 开挖---

---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况: 内力包络图: 2、拉森钢板桩型号的选择与验算 由上节弯矩图可见钢板桩桩身最大弯矩标准值为M max=·m。 选取SP-Ⅳ型号的拉森钢板桩,每延米W=2270cm3。由《钢结构设计规范》3.4.1条知钢板桩的强度设计值为215N/mm2,安全系数取2。由于地下水较丰富,所以采用双层拉森钢板桩,每延米W=4540cm3。考虑两层钢板桩的折减系数为。则桩身最大应力为: 由于<215××=86MPa,所以满足要求! 拉森钢板桩技术参数表

钢板桩计算方案

设计单位:X X X 设 计 院 设 计 人:X X X 设计时间:2010-03-21 15:03:44 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 连续墙支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- 内力计算方法增量法 规范与规程《建筑基坑支护技术规程》 JGJ 120-99 基坑等级二级 基坑侧壁重要性系 1.00 数γ0 基坑深度H(m) 4.700 嵌固深度(m) 5.300 墙顶标高(m)-1.000 连续墙类型钢板桩 127.00 ├每延米板桩截面 面积A(cm2) ├每延米板桩壁惯6600.00

性矩I(cm4) 600.00 └每延米板桩抗弯 模量W(cm3) 有无冠梁无 放坡级数1 超载个数0 ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- 坡号台宽(m)坡高(m)坡度系数 1 1.000 1.0000.500 ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- 土层数4坑内加固土否 内侧降水最终深度(m) 5.000外侧水位深度(m) 1.500 弹性法计算方法m法 ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- 层号土类名称层厚重度浮重度粘聚力内摩擦角 (m)(kN/m3)(kN/m3)(kPa)(度) 1素填土0.6018.0---15.0014.60 2粘性土 3.6019.07.024.007.80 3粉砂 2.0018.87.08.0026.60

拉森钢板桩围堰施工专项方案详细详解

昆明地铁6号线二期塘子巷车站盘龙江钢板桩围堰 施工专项方案 第一章工程概况 塘子巷车站里程为DK0+0.00~DK0+588全长588米,本工程位于北京路,青年路与拓东路交叉路下,并且穿越盘龙江,盘龙江最大水位达到4.2米,目前盘龙江水位大概为2米左右,此处需钢板桩筑岛围堰施工,距钢板桩围堰2米处为车站围护结构地下连续墙,钢板桩与车站西侧路基挡墙形成封闭的作业区,在钢板桩范围内回填粘土并压实,形成围堰,为导墙和连续墙施工做铺垫。钢板桩围堰按长21.1米,宽按18.3米,高为15米,SP-IV 型号@400钢板桩。盘龙江东侧为导流,宽度为9.3米,待西侧施工完毕后,同样方法再施工东侧。根据现场实测的地面标高为1892.38,盘龙江河底标高为1887.17,地面到河底高差为5.21米,该处地质条件以淤泥质粉质黏土和粉土为主。基坑开挖深度达23.6米。 第二章编制依据及技术指标 1、TB10002.5 J464-2005《铁路桥涵地基和基础设计规范》 2、TZ213-2005《高速铁路桥涵工程施工技术指南》 第三章施工难点分析 该基坑所处位置地质条件很差,地下水位较高,盘龙江河面标高1889.17,该处河底有大量淤泥,给施工造成很大困难,原有土质以淤泥质粉质黏土和粉土为主,状态以流塑和软塑为主,基本承载力较低,土体内摩擦角平均21°,土容重平均取值为19kN/m3,而且该基坑属于深大基坑,开挖深度达23.6m,产生的土压力和水压力相当大,平面开挖尺寸为19.1×14.3m。 第四章筑岛围堰 基坑施工流程:施工准备→测量定位→插打抗滑钢管→插打钢板桩→钢板桩围堰内回填粘土→导墙施工→地下连续墙施工→筑岛围堰开挖→逐层进

拉森钢板桩设计计算书

拉森钢板桩设计计算书 (1)钢板桩的设置位置要符合设计要求,便于基础施工,即在基础最突出 的边缘外留有支模、拆模的余地。 (2)基坑护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转角, 以便标准钢板桩的利用和支撑设置。各周边尺寸尽量符合板桩模数。 (3)整个基础施工期间,在挖土、吊运、扎钢筋、浇筑混凝土等施工作业 中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不应 在支撑上搁置重物。 差的钢板桩应尽量不用。 --------------------------------------------------------------------- - 层号土类名称水土水压力主动土压力被动土压力被动土压力 调整系数调整系数调整系数最大值(kPa) 1 杂填土合算 1.000 1.000 1.800 10000.000 2 圆砾合算 1.000 1.000 1.800 10000.000 3 中砂合算 1.000 1.000 1.800 10000.000 4 粘性土分算 1.000 1.000 1.800 10000.000 - [ 工况信息 ] --------------------------------------------------------------------- 工况工况深度支锚 号类型(m) 道号 1 开挖 2.500 --- 2 加撑--- 1.内撑 3 开挖 5.500 --- 4 加撑--- 2.内撑 5 开挖7.400 --- - [ 设计结果 ] --------------------------------------------------------------------- - --------------------------------------------------------------------- - [ 结构计算 ] ---------------------------------------------------------------------

拉森钢板桩围堰支护计算说明修订稿

拉森钢板桩围堰支护计 算说明 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o ,卵石重度γ= KN/m3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 ( φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p

h= K——为被动土压力的修正系数,取。2)、计算支点力米处:P。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图最小嵌入深度t: t=。

t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175 Mpa 满足要求。 2、多层支护 多层支护最小嵌入深度h :h=*h o =*n o *H=**= 第一层支撑设在+79m 处,第二层支撑设在+处, 已知外界荷载:q =Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m 处时,相当于悬臂式支护结构,钢板桩最大弯矩M max =*m ,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m 处时,相当于单支点支护结构。支点力T1=,钢板桩最大弯矩M max =*m

钢板桩计算

钢板桩计算 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

深基坑拉森钢板桩计算 计算依据为《建筑施工计算手册》。挡土钢板桩根据基坑挖土深度、土质情况、地质条件和邻近建筑管线情况,选用多锚(支撑)板桩形式,对坑壁支护, 以便基坑开挖。根据现场实际情况,基坑深度~米,现按开挖深度米计算,宽米, 钢板桩施工深度按9m计算,单层支撑,撑杆每隔3m一道。从剖面可知,沟槽施工 关系到素填层、粉质粘土及淤泥质中砂层。求得其加权平均值为:坑内、外土 的天然容重加全平均值1γ,2γ均为:20KN/m3;内摩擦角加全平均值Φ:20°; 粘聚力加全平均值c=10。 多支撑式板桩计算,钢板桩选用拉森Ⅲ型钢板桩,每延长米截面矩 W=1600cm3/m,[f]=200Mpa。支撑图附在后页。 一、内力计算 (1)作用于板桩上的土压力强度及压力分布见下图 板桩外侧均布荷载换算填土高度h0, h0=q/r=20=1.0m。 (2)计算反弯点位置。 假定钢板桩上土压力为零的点为反弯点,设其位于开挖面以下y处,则有:整理得: 式中,1γ,2γ——坑内外土层的容重加权平均值; H——基坑开挖深度; Ka——主动土压力系数; Kpi——放大后的被动土压力系数。

(3)按简支梁计算等值梁的最大弯矩和支点反力,其受力简图如下图所示。 由0Q M =∑得: 解得: R=m Q=+×5/2+× =m (4)计算钢板桩的最小入土深度。 根据公式得: 由公式得:最小入土深度 t=×(+)= H 桩总长=+= <9m(拉森钢板桩),符合要求。 (4)板桩稳定性验算 板桩入土深度除保证本身的稳定外,还应保证基坑底部在施工期间不会出现隆起和管涌现象。 A 、基坑底后隆起验算 当墙背后的土柱重量超过基坑底面以下的地基承载力时,地基上的塑性平衡状态便受到破坏,墙背后的土就会发生从墙脚下向基坑内流动,基坑底面向上隆起,坑顶下陷的现象。为防止这种现象发生,应验算挡墙入土深度能否满足抵抗基坑底隆起的要求。 Ks=(γtNq+cNc)/[ γ(h+t)+q] 式中 t ——墙体入土深度(m ); 取t= h ——基坑开挖深度(m ); 取h= γ——坑底及墙后土体的密度(KN/m 3); M max 29.8KN/m 2钢板桩受力简图44.8KN/m

钢板桩设计计算

I40钢板桩设计计算及施工方案 本标段施工范围内共有75个承台,分8种类型: A类承台:下部采用8根φ1.0 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2m。主要适用于32+32m跨径组合; B类承台: 下部采用10根φ1.25m 钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于24+32m跨径组合; C类承台: 下部采用15根φ1.5 m钻孔灌注桩,承台尺寸为8.4×7m(横×顺), 厚2.4m。主要适用于80m跨径组合; D类承台: 下部采用8根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.2m(横×顺), 厚2.6m。主要适用于30+40m跨径组合; E类承台: 下部采用6根φ1.2 m钻孔灌注桩,承台尺寸为8.4×5.34m(横×顺), 厚2.5m。主要适用于25+30m跨径组合(斜交20°); F类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.34m(横×顺), 厚2.6m。主要适用于33.5+33.5m跨径组合(斜交20°); G类承台: 下部采用9根φ1.2 m钻孔灌注桩,承台尺寸为8.4×8.872m(横×顺), 厚3.0m。主要适用于40+40m跨径组合(斜交40°); H类承台: 下部采用10根φ1.0m钻孔灌注桩,承台尺寸为27.0×4.5m(横×顺), 厚1.5m。主要适用于桥台基础;拟采用I型钢板桩实施围护,以确保基坑安全开挖、承台结构和墩身结构的顺利施工。 二、地质情况 根据地质勘察报告显示:勘察深度范围内(河床底至钻孔桩底)可分为7个地质单元层,钢板桩深度主要在:⑴层为近代人工堆填土,⑵黄~灰黄色粘土和灰黄~灰色砂质粉土,(3)灰色粉质粘土

拉森钢板桩围堰检算书15m

钢板桩围堰检算 1、构件特性 取钢材的弹性模量为 211/N 101.2m ?,3.0=μ,)1(2/μ+=E G 1.1拉森Ⅳ钢板桩 截面参数: 截面积 20242.0m A = 惯性矩 441086.3m I -?= 截面抵抗矩 331027.2m W -?= 截面回转半径 ix=0.282m 1.2单根Ⅰ45a 工字钢 截面参数: 截面积 23102.10A m -?= 惯性矩 4410224.3m I x -?= 截面抵抗矩 331043.1m W x -?= 1.3单根Ⅰ56a 工字钢 截面参数: 截面积 23105.13A m -?= 惯性矩 441056.6m I x -?= 截面抵抗矩 331034.2m W x -?= 2、工况分析 ①工况1:增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰第一层支撑、封底混凝土已完成,抽水至+3.07m ,第二层支撑还未安装时; ②工况2:当围堰支撑实施结束,增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰受到静水压力,流水冲击力和砂土的主动土压力共同作用时。 3、围堰检算 3.1工况1: 3.1.1围堰拉森Ⅳ型钢板桩 最不利工况受力分析,主要荷载有: a 、静水压力,随着水深增加从上往下呈线性分布。 b 、流水冲击力,设流速为s m /2,影响围为整个水深围。 c 、下层饱和砂土的主动土压力

荷载分析:水深7.31m ,流水冲击力合力作用点位于距上端水深1/3高度处,主动土压力为7.31—9.36m 处,另加封底混凝土以下0.5m ,也即9.36—9.86m ①集中荷载:流水冲击力 g rv kA F 22 = K 取1.5,v 取2m/s,截面面积取一延米长,则 ()KN F 93.2110 221031.70.15.12 =?????= 作用点距顶端m 44.23/31.7=处 ②分布荷载: a.静水压力 rh p = 最大线荷载值 KN F 4.6224.6100.1=??= 从钢板桩顶端下0.19m 往下6.43m 处呈三角形分布 b.主动土压力 取饱和砂土容重3/18m KN sat =γ,砂土摩擦角030=?则 )2/45(tan )(02?γγ--=h P w sat KPa P 8.6)2/3045(tan 55.2)1018(002=-??-= 为简化计算过程,具体如下: 荷载分布图: 弯矩图:

钢板桩计算

目录 一、工程概况 (1) 二、基坑支护方案选择 (1) 三、方案设计 (2) 1、土压力计算 (3) 2、工字钢选型计算 (7) 四、“工”字钢木挡板支护结构施工 (8) 1、施工准备 (8) 2、施工工艺 (10) 五、工字钢桩的拔除 (12) 1、拔桩阻力计算 (12) 2、振动拔桩法 (13) 六、质量要求 (14) 1、质量标准 (14) 2、打桩倾斜纠正方法 (15) 3、成品保护 (15) 七、安全要求 (15) 深基坑支护方案 一、工程概况 本工程为钢结构组合工程,层高为4.0 米,基坑开挖深度-8.4 米,占地面积为1536 平米,地面以上15 层,地下室2 层,地下水位为-5.6 米,总建筑面积为15442 平米。 二、基坑支护方案选择 基坑南侧长为50 米,施工场地较小,建筑物沿红线设计。由于种种原 因,工程在基坑开挖完毕后,暂停一段时间。西南侧由于放坡过大, 占用市政马路用地,采用护坡进行回填以满足马路的施工,根据卡塔 尔土质条件,确定采用基坑内降水工字钢支护方案。因为基坑开挖深 度-8.4 米,地下水位为-5.6 米,操作面属于含水层中,采用集水坑人 工降低地下水位,并结合明沟排水,保证施工作业面的干燥环境。 基坑内降水工字钢支护方案的优点是桩可拔出,成本低,施工简便; 受力性能好、刚度大、材料省、易于施打、挤土少。缺点是打、拔桩 后留下的孔洞要处理。

三、方案设计 该支护结构由“工”字钢、木挡板、围檩、支撑(或拉锚系统)组成。待地下结构作业完成后,可拔出“工”字钢经调直后重复使用;木挡板在基坑回填时如果安全允许应设法回收。 木挡板是直接承受侧向荷载的构件,厚度以7CM 左右为宜,木板的长度依据“工”字钢的间距而定。“工”字钢的间距一般采用0.8 米、 1.0 米、1.2 米、1.5 米、1.6 米等,间距过小则增加钢桩数量,过大则需要增大木挡板厚度。

钢板桩围堰设计与计算

船台及驳岸施工围堰设计与计算 1、工程概况 浙江舟山市六横岛位于舟山群岛的南部海域,在虾峙门国际航道 的西南侧,是舟山市的第三大岛,为舟山市重点扶持的三大岛之一, 占地约106。8 平方公里。厂址区域四周由穿山半岛和舟山群岛所环 抱,形成一个近封闭水域。本工程位于厂内八号、九号码头之间。 工程范围: 1. 船台二座:船台长250m,宽45m,水下段长60m,滑道坡度1:20,滑道底标高-3 。00m,顶标高12。40m; 2. 陆域独立吊车道: 600T 龙门起重机轨道一组:2x437m; 150T 门机轨道三组:6x303m; 3. 直立驳岸约230m。 为了确保船台及驳岸的干地施工,须在外海侧顺堤设围堰,从而 确保工程进度。本工程工作量大,施工时间相对较紧,施工工期:2008 年1 月1 日~6 月30 日,共 6 个月。 2、自然条件 2.1 水文资料 设计水位: 设计高水位:2.14m

设计低水位:-2.60m 下水水位:1.50m 2.2 地质资料 场地内地质构造活动较稳定,未见新构造运动及活动断裂,不存 在液化土层,故属基本稳定区。根据工程地质勘察报告,场地地层自 上而下分为:① 1 层杂色填土,为新近人工回填而成;① 2 层淤泥、② 1 层灰色淤泥质粉质粘土、④层粘土为软弱场地土;③1 层暗绿~灰黄色粉质粘土、⑤ 1 浅黄~灰绿色粉质粘土及⑤ 2 层粉质粘土夹砂砾、碎石为中硬场地土,⑥层强风化晶屑凝灰岩、⑦层中等风化晶屑凝灰岩为 坚硬场地土。 由于拟建场地20.0m 深度范围内无饱和砂性土及粉土存在,本场 地为不液化场地。场地内分布有较厚的软弱土。该区域由于拟建场地 周围无污染源存在,对钢结构具中等腐蚀性。 本次设计钢板桩插入② 1 层灰色淤泥质粉质粘土土层中,淤泥质粉质粘土的物力力学性质指标为:含水率42.6%,比重 2.74,重度3,固快粘聚力13.34kPa、内摩察角 12.5。17.4kN/m 其余参数详见地质勘探报告。 3、围堰方案比选 围堰是用于围护水工建筑施工场地的临时挡水建筑物。围堰具有不同于一般建筑物的施工和运行特点。其合理的结构应是断面简单、构筑和拆除方便,满足稳定、防冲蚀、防渗漏的要求。既不可以永久建筑物对待,又不可掉以轻心、马虎从事。

拉森钢板桩计算.

钢板桩设计 1.1 地质状况 本工程项目座落在张家港市北部长江南岸张家港化工保税区内。 厂区位于长江冲积平原的河漫滩地,地形平坦。原自然地坪标高较底,场地平均高程106.20m,现已采用吹砂回填,将厂区地坪标高提高。根据地质报告,本工程土质上层为吹填砂,以下分别为粉质粘土夹粉土;粉细砂夹粉土,土的抗压、抗剪强度均较低,且难以采取有效的降排水措施。目前厂区内地下水位较高,土质松软,地质情况较为复杂。 该区地质结构断面如下图所示: 1.2 电梯井形状 本工程结构形式如下。目前基坑结构长13.50米,宽10.35米,基坑底标高EL.98.55m,基坑深度7.65米。池壁每一侧考虑2.0米宽的工作面,则支护结构的尺寸为长17.50米,宽14.40米。

2 支撑式钢板桩挡土墙的构造 本工程采用内撑钢板桩挡土墙结构。其主要由钢板桩、支撑二部分组成,钢板桩起承受水平土压力防止土体沿滑动面滑动以及阻隔地下水的作用。它的稳定主要靠两道钢支撑使钢板桩保持垂直、稳定,并确保两侧土体不向基坑内发生位移,钢板桩应插入土体一定深度,防止土体滑动和基坑向上隆起。支撑式钢板桩支挡结构简单且便于施工,整个支挡系统均在基坑开挖过程中完成,作业(包括支撑和挖土)十分安全,施工质量容易保证,且较经济。3 钢板桩设计 其钢板桩和内钢支撑布置示意图如下: EL.105.700 EL.104.850 钢板桩钢支撑立体布置图 安全围栏 EL.103.250

EL.100.250 上下通道 2000 12m钢板桩 2000

4500 2000 钢板桩围檩及内支撑平面布置图 工字钢400×400围檩 φ377×10钢管支撑 φ630×12钢管支撑 4500 4500 本工程钢板桩采用Ⅳ型拉森钢板桩,长度为12m,宽度400mm。(即每2.5块1m)。钢板桩水平围檩采用40号工字钢,内支撑采用Φ630×12的直撑钢管和Φ377×10的斜撑钢管。 为此,共需12米长的钢板桩数量:

水中主墩钢板桩围堰力学计算

某某大桥6、7号墩 钢板桩围堰受力计算书 一、计算依据 1、《某某大桥6、7号墩承台钢板桩围堰设计图》; 2、《注册结构工程师专业考试应试指南》(2008年施岚青主编) 3、《路桥施工计算手册》 4、《钢结构设计规范》(GB-50017-2003) 5、《板桩法》中国水利出版社 6、《公路桥涵设计规范》人民交通出版社 二、基本资料: 1、Q235钢材的允许应力:[σ]Q235=145Mpa 2、钢材重度:78.5kN/m 3、素砼重度:24kN/m3、水重度:γw=10kN/m3 3、封底混凝土C30抗拉强度设计值 MPa f td 43 .1 = 4、混凝土与钢的粘结力[τ]=150Kpa 5、原装日本日铁SKSP-Ⅳ型拉森钢板桩参数 宽度B=400mm、高度h=185mm、厚度t=16.1mm、一根桩截面积A=94.2cm2、重量W=76.1kg/m、惯性矩Ix=5300cm4、截面模量W x=400cm3、每延米桩墙重量W=185kg/m、惯性矩Ix=41600cm4/m、截面模量W x=2250cm3/m。 三、水土压力计算 1、基本计算数据 6号墩地质柱状图(围堰标高范围内)数据如下: 3.25m~-0.54m为水,天然容重γ0为10KN/m3。 -0.54~-9.64m为淤泥(地质柱状图中为-3.0m,因下面的粉质粘土层作为嵌固端支点位置位于淤泥层以下,故取计算时取淤泥层底标高为-9.64m),淤泥层承载力为40KPa,其内摩擦角?1取5°,粘结力c1为10kPa,天然容重γ1为18KN/m3。 -10.3~-14.0m为粉质粘土,内摩擦角?2为20°,粘结力c2为20kPa,天然容重γ2为18KN/m3。

相关主题
文本预览
相关文档 最新文档