当前位置:文档之家› 集成电路 双电源四运算放大器 utc324e

集成电路 双电源四运算放大器 utc324e

集成电路 双电源四运算放大器 utc324e
集成电路 双电源四运算放大器 utc324e

精心收集:单电源供电时的运算放大器应用大全

单电源运算放大器应用集锦 (一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC -引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

运放双电源供电改为单电源供电及其之间的区别

运放双电源供电改为单电源供电及其之间的区别 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/ 2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。

图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl 十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。 思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输出特性如图4 所示);(2)图5是单电源差分放大器。若输入电压为50Hz交流电压,V1=1V,V2=O.4V,它的输出电压该是多少呢?

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

运算放大器组成的比较器

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。 2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。在这儿有必要重复展现运放开环电压传输特性。见图8.2.1,请注意横、纵坐标标度的不同 (1) 从途中可化称 (2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区 时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。 (3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。 (4) 若用正反馈使Aod↑,则可缩短状态的转换时间。 3. 分类: (1) 单限比较器

(2) 迟滞比较器(Schmitt) (3) 双限比较器(窗口比较器) 二. 单限比较器 1. U i与U R分别接运放两输入端的开环串接比较器,见图8. 2.2 ΔU i>U R Uo=+Uom ΔU i

运算放大器单电源供基本电路大全

运算放大器单电源供基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

第四章集成运算放大器解析

电子电路基础习题册答案(第三版)全国中等职业技术第四章集成运算 放大器 2012-01-22 14:15:52| 分类:电子电路习题交流| 标签:|字号大中小订阅全国中等职业技术(电子类)专业通用教材、第四章一、二、三、四、五节习题答案 第四章集成运算放大器的应用 §4-1 集成运放的主要参数和工作点 1、理想集成运放的开环差模电压放大倍数为Aud=∞,共模抑制比为K CMR= ∞,开环差模输 入电阻为ri= ∞,差模输出电阻为r0=0 ,频带宽度为Fbw=∞。 2、集成运放根据用途不同,可分为通用型、高输入阻抗型、高精度型和低功 耗型等。 3、集成运放的应用主要分为线性区和非线性区在分析电路工作原理时,都可以当作理想运 放对待。 4、集成运放在线性应用时工作在负反馈状态,这时输出电压与差模输入电压满足关系;在 非线性应用时工作在开环或正反馈状态,这时输出电压只有两种情况; +U0m 或-U0m 。 5、理想集成运放工作在线性区的两个特点:(1)up=uN ,净输入电压为零这一特性成为虚短, (2)ip=iN,净输入电流为零这一特性称为虚断。 6、在图4-1-1理想运放中,设Ui=25v,R=1.5KΩ,U0=-0.67V,则流过二极管的电流为10 mA ,二极 管正向压降为0.67 v。 7、在图4-1-2所示电路中,集成运放是理想的,稳压管的稳压值为7.5V,Rf=2R1则U0= -15 V。

二、判断题 1、反相输入比例运算放大器是电压串联负反馈。(×) 2、同相输入比例运算放大器是电压并联正反馈。(×) 3、同相输入比例运算放大器的闭环电压放大倍数一定大于或等于1。(√) 4、电压比较器“虚断”的概念不再成立,“虚短”的概念依然成立。(√) 5、理想集成运放线性应用时,其输入端存在着“虚断”和“虚短”的特点。(√) 6、反相输入比例运算器中,当Rf=R1,它就成了跟随器。(×) 7、同相输入比例运算器中,当Rf=∞,R1=0,它就成了跟随器。(×) 三、选择题 1、反比例运算电路的反馈类型是(B )。 A.电压串联负反馈 B.电压并联负反馈 C.电流串联负反馈 2、通向比例运算电路的反馈类型是(A )。 A.电压串联负反馈 B.电压并联负反馈 C.电压串联正反馈 3、在图4-1-3所示电路中,设集成运放是理想的,则电路存在如下关系(B )。 A.uN=0 B.un=ui C.up=ui-i1R2 4、图4-1-4所示的集成运算放大电路中,输出电压u0等于(A )。 A.3ui B.-2ui C.-3ui D.2ui 5、图4-1-5所示的集成运算放大电路中,输出电压u0等于(B )。 A.-ui B. ui C.3ui D.-2ui

单电源运算放大器滤波电路

单电源运算放大器电路应用图集(三):滤波电路(上) 这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

模电第四章答案

第4章 集成运算放大电路 自测题 一、选择合适答案填入空内。 (1)集成运放电路采用直接耦合方式是因为( C )。 A.可获得很大的放大倍数 B.可使温漂小 C.集成工艺难于制造大容量电容 (2)通用型集成运放适用于放大( B )。 A.高频信号 B.低频信号 C.任何频率信号 (3)集成运放制造工艺使得同类半导体管的( C )。 A.指标参数准确 B.参数不受温度影响 C.参数一直性好 (4)集成运放的输入级采用差分放大电路是因为可以( A )。 A.减小温漂 B.增大放大倍数 C.提高输入电阻 (5)为增大电压放大倍数,集成运放的中间级多采用( A )。 A.共射放大电路 B.共集放大电路 C.共基放大电路 二、判断下列说法是否正确,用“√”和“×”表示判断结果。 (1)运放的输入失调电压U IO 是两输入端电位之差。( × ) (2)运放的输入失调电流I IO 是两输入端电流之差。( √ ) (3)运放的共模抑制比c d CMR A A K = 。( √ ) (4)有源负载可以增大放大电路的输出电流。( √ ) (5)在输入信号作用时,偏置电路改变了各放大管的动态电流。( × ) 三、电路如图T4.3 所示,已知β1=β2=β3= 100 。各管的U BE 均为0.7V , 试求I C 2的值。 解:分析估算如下: 21 100CC BE BE R V U U I A R μ--= = 00202211B B B B I I I I ββ ββ ++= =++; 020 2( )1R B B B I I I I β βββ+=+=++ 图T4.3 22021C B B I I I β ββ β +==?+。比较上两式,得 2(2) 1002(1) C R R I I I A ββμβββ+= ?≈=+++ 四、电路如图T4.4所示。

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

单电源运算放大器的设计考虑

单电源运算放大器的设计考虑 2007-07-10 11:10:37 来源:Maxim Integrated Products 关键字:Maxim Integrated Products 运算放大器MAX4122 通常,单电源工作与低压工作相同,将电源由±15V或±5V变为单5V或3V,缩小了可用信号范围。因此,其共模输入范围、输出电压摆幅、CMRR、噪声及其它运算放大器的限制变得非常重要。在所有工程设计中,常常需要牺牲系统在某方面的性能,以改善另一方面的性能。下面关于单电源运算放大器指标的折中讨论也说明了这些低压放大器与传统高压产品的不同。 输入级考虑 输入共模电压范围是设计人员在确定单电源运算放大器时应该考虑的首要问题,需要强调的是满摆幅输入能力可以解决这一问题,然而,真正的满摆幅工作又会付出其它代价。 Maxim公司的大多数低压运算放大器能够允许的共模电压输入范围包含负电源电压(表1),但也只有一部分器件允许扩展到正电源电压。一般情况下,所允许的输入电压只能达到正电源电压的1V或2V以内。允许信号达到负电源电压的运算放大器称为地感应放大器,允许信号达到正、负电源电压的运算放大器称作满摆幅输入放大器。 表1. Maxim的低压运算放大器

V OS和I B的考虑 很多应用中,放大器能够为以地为参考的信号提供+2V/V或更高的增益。这些情况下,地感应放大器足以处理信号的共模范围,对于这种应用,可以获得比满摆幅输入运算放大器更好的性能。典型的满摆幅输入级使用两个差分对输入,而不是一个(图1)。

图1. (a)满摆幅输入级有两个差分对,(b)标准的地感应输入级只有一个差分对。 随着输入信号从一个电源摆幅移向另一个电源摆幅,放大器也从一个输入差分对移向另一个输入差分对。在交越点,这样的移动会引起输入偏置电流和失调电压的改变,影响这些参数的幅值和极性。失调电压的变化通常会降低满摆幅放大器(与地感应放大器相比)的失真性能和精度指标。为了将失调电压的变化减至最小,实现从一个输入差分对到另一个输入差分对的平稳转换,Maxim在其满摆幅放大器共模输入范围的高端和低端都对失调进行了调理。 为减小输入偏置电流引起的失调电压,设计人员应保持运算放大器同相端和反相端的阻抗匹配。因为输入偏置电流通常比输入失调电流大,所以,不仅对于满摆幅输入放大器,对其它所有放大器来说,阻抗匹配都是一个好的解决办法。 为减小输入偏置电流引起的失调电压,设计人员应保持运算放大器同相端和反相端的阻抗匹配。因为输入偏置电流通常比输入失调电流大,所以,不仅对于满摆幅输入放大器,对其它所有放大器来说,阻抗匹配都是一个好的解决办法。 为说明这一点,图2给出了MAX4122-MAX4129系列运算放大器(输入、输出均可达到满摆幅)的输入偏置电流随共模电压变化的曲线。随着共模输入电压从0V缓慢上升至5V,输入偏置电流绝对变化量为85nA (从-45nA至+40nA)。而技术指标中的输入失调电流仅为±1nA。因此,尽管偏置电流的大小、极性变化很大,但反相和同相输入的曲线图彼此很靠近(输入失调电流)。通过保持同相端和反相端的阻抗匹配,可以将输入偏置电流变化所引起的失调电压降至最小。

单电源运算放大器的设计考虑

单电源运算放大器的设计考虑 电源系统及时提供和分析有关整流/滤波、线性转换与控制、开关..:: 单电源运算放大器的设计考虑 (2007-07-10) 新日本无线新推双通道J-FET输入运算放大器,具低失调温度漂移 (2007-07-09) 奥地利微电子新推运算放大器,具高输出驱动能力 (2007-07-06) 单电源运放图集(2007-07-06) ST发布运算放大 .powersystems.eetchina./ARTRELATED__8800470798__1.HTM 电源系统及时提供和分析有关整流/滤波、线性转换与控制、开关..:: TI发布零交越运算放大器OPA369,面向便携式应用 (2007-08-31) TI推出单电源运算放大器OPA376,具有e-Trim修整技术和低噪声 (2007-08-14) 建立比较器的外部滞回电压 (2007-08-08) 单电源运算放大器的设计考虑 (2007-07-10) 比较 .powersystems.eetchina./ARTRELATED__8800427705__1.HTM 单电源运算放大器的设计考虑通常,单电源工作与低压工作相同,将电源由±15V或±5V变为单5V 或3V,缩小了可用信号围。因此,其共模输入围、输出电压摆幅、CMRR、噪声及其它运算放大器的限制变得非常重要。在所有工程设计中,常常需要牺牲系统在某方面的性能,以改善另一方面的性能。下面关于单电源运算放大器指标的折中讨论也说明了这些低压放大器与传统高压产品的不同。 输入级考虑 输入共模电压围是设计人员在确定单电源运算放大器时应该考虑的首要问题,需要强调的是满摆幅输入能力可以解决这一问题,然而,真正的满摆幅工作又会付出其它代价。 Maxim公司的大多数低压运算放大器能够允许的共模电压输入围包含负电源电压(表1),但也只有一部分器件允许扩展到正电源电压。一般情况下,所允许的输入电压只能达到正电源电压的1V或2V以。允许信号达到负电源电压的运算放大器称为地感应放大器,允许信号达到正、负电源电压的运算放大器称作满摆幅输入放大器。 表1. Maxim的低压运算放大器

第4章集成运算放大器习题解答

页脚 . 第四章习题参考答案 4-1 什么叫“虚短”和“虚断”? 答 虚短:由于理想集成运放的开环电压放大倍数无穷大,使得两输入端之间的电压近似相等,即-+≈u u 。 虚断:由于理想集成运放的开环输入电阻无穷大,流入理想集成运放的两个输入端的电流近似等于零,即0≈=-+i i 。 4-2 理想运放工作在线性区和非线性区时各有什么特点?分析方法有何不同? 答 理想运放工作在线性区,通常输出与输入之间引入深度负反馈,输入电压与输出电压成线性关系,且这种线性关系只取决于外部电路的连接,而与运放本身的参数没有直接关系。此时,利用运放“虚短”和“虚断”的特点分析电路。 理想运放工作在非线性去(饱和区),放大器通常处于开环状态,两个输入端之间只要有很小的差值电压,输出电压就接近正、负电压饱和值,此时,运放仍具有“虚断”的特点。 4-3 要使运算放大器工作在线性区,为什么通常要引入负反馈? 答 由于理想运放开环电压放大倍数∞=uo A ,只有引入深度负反馈,才能使闭环电压放大倍数F A 1 u = ,保证输出电压与输入电压成线性关系,即运放工作在线性区。 4-4 已知F007运算放大器的开环放大倍数dB A uo 100=,差模输入电阻Ω=M r id 2,最大输出电压V U sat o 12)(±=。为了保证工作在线性区,试求:(1)+u 和-u 的最大允许值;(2)输入端电流的最大允许值。 解 (1)由运放的传输特性 5o uo 1012=== + +u u u A 则V 102.1101245 --+?== =u u (2)输入端电流的最大允许值为 A 10610 2102.1116 4id --+?=??==r u I 4-5 图4-29所示电路,设集成运放为理想元件。试计算电路的输出电压o u 和平衡电阻R 的值。

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

使用单电源的运放交流放大电路

使用单电源的运放交流放大电路 在采用电容耦合的交流放大电路中,静态时,当集成运放输出端的直流电压不为零时,由于输出耦合电容的隔直流作用,放大电路输出的电压仍为零。所以不需要集成运放满足零输入时零输出的要求。因此,集成运放可以采用单电源供电,其-VEE端接"地"(即直流电源负极),集成运放的+Vcc端接直流电源正极,这时,运放输出端的电压V0只能在0~+Vcc之间变化。在单电源供电的运放交流放大电路中,为了不使放大后的交流信号产生失真,静态时,一般要将运放输出端的电压V0设置在0至+Vcc值的中间,即V0=+Vcc/2。这样能够得到较大的动态范围;动态时,V0在+Vcc/2值的基础上,上增至接近+Vcc值,下降至接近0V,输出电压uo的幅值近似为Vcc/2。图3请见原稿 1.2.1 单电源同相输入式交流放大电路 图3是使用单电源的同相输入式交流放大电路。电源Vcc通过R1和R2分压,使运放同相输入端电位由于C 隔直流,使RF引入直流全负反馈。所以,静态时运放输出端的电压V0=V-≈V+=+Vcc/2;C通交流,使RF引入交流部分负反馈,是电压串联负反馈。放大电路的电压增益为 放大电路的输入电阻Ri=R1/R2/rif≈R1/R2, 放大电路的输出电阻R0=r0f≈0。 1.2.2 单电源反相输入式交流放大电路 图4是使用单电源的反相输入式交流放大电路。电源V cc通过R1和R 2分压,使运放同相输入端电位 为了避免电源的纹波电压对V+电位的干扰,可以在R2两端并联滤波电容C3,消除谐振;由于C1隔直流,使RF引入直流全负反馈。所以,静态时,运放输出端的电压V0=V-≈V+=+Vcc/2;C1通交流,使RF引入交流部分负反馈,是电压并联负反馈。放大电路的电压增益为

集成运放 单电源问题

标签:集成运放单电源 集成运放单电源问题 集成运放 单电源供电交流放大电路的问与答 1、问:双电源运放改单电源,为什么要取其中点电压供电? 答:一般运放以双电源工作时是以((V+)+(V-))/2=0V 作为参考电压的,运放工作在中 间的线性区。运放若以单电源供电,则应将电压参考点设置在V+/2 处。若是反相放大器,应 当将同相输入端的参考电压设为V+/2,反相输入端的输入信号也应当以V+/2 作为参考点。因 为一般的运算放大器是用来对交流信号作放大作用的,交流信号在经过运放时如果只是和地电 平做比较的话,将会把交流信号的下半部分“吞噬”掉。而采用电源的中点电压作比较的话, 负半周的交流信号可以几乎没有损耗的被放大。这也就是大家常说的抬高交流信号的直流电平。 此时输入和输出信号都需要加交流耦合电容。采用单电源供电是要付出一定代价,一些输出参 数势必会变差,当输入信号接近0V 或V+时,会使运放工作在非线性区,放大器输出会出现饱 和失真或截止失真。 2、问:什么情况下可以不取中点电压供电 答:如果只是对直流信号放大(正电压),则可以不加中点。如果电源电压远远大于输出要 求电压,也可不必将中点电位抬到一半,根据输出要求不同,中点电位只要在两电压之间就可 以,因为中点电位和上下电源的差值决定了最大不失真输出的大小。 单电源的中点电位是针对运放的所有输入和输出脚的,要求高点的场合还要求相位不能偏 移(如高档的低音炮等),此时用电容隔直还满足不了要求。如果运放的ICMR (input common mode voltage range)参数,允许输入范围很宽比如rail-to-rail,则必须将输入钳制在中点电压。 3、问:为什么单电源供电时输入和输出都必须加电容耦合 答:电容耦合是隔离直流分量的,避免直流分量对前后级之间产生干扰。 4、问:双电源运放在接成单电源电路时,作为偏置的直流电压是用电阻分压好还是接参考电 压源好? 答:一般来讲,双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种

电子电路基础习题册参考答案-第四章

第四章集成运算放大器的应用 §4-1 集成运放的主要参数和工作点 = 1、理想集成运放的开环差模电压放大倍数为 Aud=∞,共模抑制比为 K CMR ∞,开环差模输入电阻为 ri= ∞,差模输出电阻为 r0=0 ,频带宽度为 Fbw=∞。 2、集成运放根据用途不同,可分为通用型、高输入阻抗型、高精度型和低功耗型等。 3、集成运放的应用主要分为线性区和非线性区在分析电路工作原理时,都可以当作理想运放对待。 4、集成运放在线性应用时工作在负反馈状态,这时输出电压与差模输入电压满足关系;在非线性应用时工作在开环或正反馈状态,这时输出电压只有两种情况; +U0m 或 -U0m 。 5、理想集成运放工作在线性区的两个特点:(1) up=uN ,净输入电压为零这一特性成为虚短, (2) ip=iN,净输入电流为零这一特性称为虚断。 6、在图4-1-1理想运放中,设Ui=25v,R=Ω,U0=,则流过二极管的电流为 10 mA ,二极管正向压降为 v。 7、在图4-1-2所示电路中,集成运放是理想的,稳压管的稳压值为,Rf=2R1则 U0= -15 V。 二、判断题

1、反相输入比例运算放大器是电压串联负反馈。(×) 2、同相输入比例运算放大器是电压并联正反馈。(×) 3、同相输入比例运算放大器的闭环电压放大倍数一定大于或等于1。(√) 4、电压比较器“虚断”的概念不再成立,“虚短”的概念依然成立。(√) 5、理想集成运放线性应用时,其输入端存在着“虚断”和“虚短”的特点。(√) 6、反相输入比例运算器中,当Rf=R1,它就成了跟随器。(×) 7、同相输入比例运算器中,当Rf=∞,R1=0,它就成了跟随器。(×) 三、选择题 1、反比例运算电路的反馈类型是(B )。 A.电压串联负反馈 B.电压并联负反馈 C.电流串联负反馈 2、通向比例运算电路的反馈类型是(A )。 A.电压串联负反馈 B.电压并联负反馈 C.电压串联正反馈 3、在图4-1-3所示电路中,设集成运放是理想的,则电路存在如下关系( B )。=0 =ui =ui-i1R2 4、图4-1-4所示的集成运算放大电路中,输出电压u0等于( A )。 5、图4-1-5所示的集成运算放大电路中,输出电压u0等于( B )。 B. ui 6、按工作状态呈现的特点,集成运放的应用有( C )。 A.线性应用 B.非线性应用 C.线性应用和非线性应用 7、电路如图4-1-6所示,电压表指示为5V,则被测电阻Rx的阻值为( A )。 2R1 8、关于理想集成运放的错误叙述是( A )。 A.输入阻抗为零,输出阻抗也为零 B.输入信号为零时输出处于零电位

单电源对运算放大器的影响

单电源对运算放大器的影响 运放分为单电源运放和双电源运放,具体要求请查看在运放的datasheet。 随着电池供电的移动设备等要求,单电源供电芯片发展迅速。 在对电路进行理论分析时,我们为了方便经常使用双电源供电。但在实际使用时,多半使用单电源供电。 区别是: 双电源供电时,一般情况下,运放的正负电压,大小相等,符号相反,中间值接地(地是+VCC,和-VCC和的一半),当输入信号是以地参考时,运放的输出是以地进行参考的,尽管一般情况下,运放电源本身并不接地,(有些芯片有REF引脚可以接地)。 而且单电源工作时,加上运放的非理想性,如果将运放其中一个脚接成地,从双电源的角度来看的话,相当于接到了较低电源电压端,而运放要想输出0V地,也就是达到较低的电源power rail,这对运放的轨输出能力output voltage swing 提高了要求。而且运放无法输出超过电源范围的电平,当使用正电源和地单电源供电时,运放无法输出负电压。 单电源供电对运放最大的影响是: 影响了输入输出电压范围,进而限制了电路的动态范围,导致信号失真。 具体使用方式如下: 1:在放大直流信号时,如果采用双电源运放,则只能选择正负双电源供电,否则无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作; 2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作; 3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。 要采用单电源,就需要所谓的“偏置”。而偏置的结果是把供电所采用的单电源相对的变成“双电源”。偏置方法有: 1电阻分压法

常用运放电路

LFC2 高增益运算放大器 LFC3 中增益运算放大器 LFC4 低功耗运算放大器 LFC54 低功耗运算放大器 LFC75 低功耗运算放大器 F003 通用Ⅱ型运算放大器 F004(5G23) 中增益运算放大器 F005 中增益运算放大器 F006 通用Ⅱ型运算放大器 F007(5G24) 通用Ⅲ型运算放大器F010 低功耗运算放大器 F011 低功耗运算放大器 F1550 射频放大器 F1490 宽频带放大器 F1590 宽频带放大器 F157/A 通用型运算放大器 F253 低功耗运算放大器 F741(F007) 通用Ⅲ型运算放大器F741A 通用型运算放大器 F747 双运算放大器 OP-07 超低失调运算放大器 OP111A 低噪声运算放大器 F4741 通用型四运算放大器 F101A/201A 通用型运算放大器 F301A 通用型运算放大器 F108 通用型运算放大器 F308 通用型运算放大器 F110/210 电压跟随器 F310 电压跟随器 F118/218 高速运算放大器 F441 低功耗JEET输入运算放大器F318 高速运算放大器 F124/224 四运算放大器 F324 四运算放大器 F148 通用型四运算放大器 F248/348 通用型四运算放大器 F158/258 单电源双运算放大器 F358 单电源双运算放大器 F1558 通用型双运算放大器 F4558 双运算放大器 LF791 单块集成功率运算放大器LF4136 高性能四运算放大器 FD37/FD38 运算放大器 FD46 高速运送放大器

LF082 高输入阻抗运送放大器 LFOP37 超低噪声精密放大器 LF3140 高输入阻抗双运送放大器 LF7650 斩波自稳零运送放大器 LZ1606 积分放大器 LZ19001 挠性石英表伺服电路变换放大器LBMZ1901 热电偶温度变换器 LM741 运算放大器 LM747 双运算放大器 OP-07 超低失调运算放大器 LM101/201 通用型运算放大器 LM301 通用型运算放大器 LM108/208 通用型运算放大器 LM308 通用型运算放大器 LM110 电压跟随器 LM310 电压跟随器 LM118/218 高速运算放大器 LM318 高速运算放大器 LM124/224 四运算放大器 LM324 四运算放大器 LM148 四741运算放大器 LM248/348 四741运算放大器 LM158/258 单电源双运算放大器 LM358 单电源双运算放大器 LM1558 双运算放大器 OP-27CP 低噪声运算放大器 TL062 低功耗JEET运算放大器 TL072 低噪声JEET输入型运算放大器TL081 通用JEET输入型运算放大器 TL082 四高阻运算放大器(JEET) TL084 四高阻运算放大器(JEET) MC1458 双运放(内补偿) LF147/347 JEET输入型运算放大器 LF156/256/356 JEET输入型运算放大器LF107/307 运算放大器 LF351 宽带运算放大器 LF353 双高阻运算放大器 LF155/355 JEET输入型运算放大器 LF157/357 JEET输入型运算放大器 LM359 双运放(GB=400MC) LM381 双前置放大器 CA3080 跨导运算放大器 CA3100 宽频带运算放大器 CA3130 BiMOS运算放大器

相关主题
文本预览
相关文档 最新文档