当前位置:文档之家› 离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案
离散数学-第二章命题逻辑等值演算习题及答案

第二章作业

评分要求:

1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分

2. 给出每小题得分(注意: 写出扣分理由)

3. 总得分在采分点1处正确设置.

一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):

说明

1. p ?(p ∧q)∨(p ∧?q)

解逻辑方程法

设 p ?((p ∧q)∨(p ∧?q)) =0, 分两种情况讨论:

???=?∧∨∧=0

)()(1)1(q p q p p 或者 ?

??=?∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ?(p ∧q)∨(p ∧?q)无成假赋值, 为永真式.

等值演算法

(p ∧q)∨(p ∧?q)

? p ∧(q ∨?q)

∧对∨的分配率

? p ∧1 排中律

? p 同一律

真值表法

2. (p→q)∧(p→r)?p→(q∧r)

等值演算法

(p→q)∧(p→r)

?(?p∨q)∧(?p∨r)蕴含等值式

??p∨(q∧r)析取对合取的分配律

?p→(q∧r)蕴含等值式

3. ?(p?q)?(p∨q)∧?(p∧q)

等值演算法

?(p?q)

??( (p→q)∧(q→p) )等价等值式

??( (?p∨q)∧(?q∨p) )蕴含等值式

??( (?p∧?q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律

?(p∨q)∧?(p∧q)德摩根律

4. (p∧?q)∨(?p∧q)?(p∨q)∧?(p∧q)

等值演算法

(p∧?q)∨(?p∧q)

?(p∨q)∧?(p∧q)析取对合取分配律, 排中律, 同一律

说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.

等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.

二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):

1.

2.

3.

4.

1. (?p→q)→(?q∨p)

(?p→q)→(?q∨p)

?(p∨q)→(?q∨p)蕴含等值式

?(?p∧?q)∨(?q∨p)蕴含等值式, 德摩根律

?(?p∧?q)∨?q ∨p结合律

?p∨?q吸收律, 交换律

?M1

因此, 该式的主析取范式为m0∨m2∨m3

2. (?p→q)∧(q∧r)

解逻辑方程法

设(?p→q)∧(q∧r) =1, 则?p→q=1且q∧r=1,

解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6

等值演算法

(?p→q)∧(q∧r)

? (p∨q)∧(q∧r) 蕴含等值式

? (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律

? (p∧q∧r) ∨ (p∧q∧r)∨(?p∧q∧r) 同一律, 矛盾律, ∧对∨分配律

?m7∨ m3

主合取范式为M0∧M1∧M2∧M4∧M5∧M6

3. (p?q)→r

解逻辑方程法

设(p?q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7

等值演算法

(p?q)→r

? ((p→q)∧(q→p))→r 等价等值式

??((p→q)∧(q→p))∨r 蕴含等值式

? (p∧?q)∨(q∧?p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)

? (p∨q∨r)∧(?q∨?p∨r) ∨对∧分配律, 矛盾律, 同一律

?M0∧ M6

主析取范式为m1∨m2∨m3∨m4∨m5∨m7

4. (p→q)∧(q→r)

等值演算法

(p→q)∧(q→r)

? (?p∨q)∧(?q∨r) 蕴含等值式

? (?p∧?q)∨(?p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律

? (?p∧?q∧r)∨(?p∧?q∧?r) ∨ (?p∧q∧r)∨(?p∧?q∧r) ∨ (p∧q∧r)∨(?p∧q∧r)

?m1∨ m0∨ m3∨ m7

主合取范式为M2∧ M4∧ M5∧ M6.

解逻辑方程法

设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.

前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.

后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.

综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.

真值表法

公式(p → q) ∧ (q

从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案 一、 填空 10% (每小题 2分) 1、 若P ,Q 为二命题,Q P ?真值为1,当且仅当 。 2、 对公式),()),(),((y x xR z x zQ y x yP ?∨?∧?中自由变元进行代入的 公 式 为 。 3、 )) (()(x xG x xF ??∧?的 前 束 范 式为 。 4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的, 则 被称为全称量词消去规则,记为US 。 5、 与非门的逻辑网络为 。 二、 选择 30% (每小题 3分) 1、 下列各符号串,不是合式公式的有( )。 A 、R Q P ?∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨?))((。 2、 下列语句是命题的有( )。 A 、2是素数; B 、x+5 > 6; C 、地球外的星球上也有人; D 、这朵花多好看呀!。 3、 下列公式是重言式的有( )。 A 、)(Q P ??; B 、Q Q P →∧)(; C 、P P Q ∧→?)(; D 、P Q P ?→)( 4、 下列问题成立的有( )。 A 、 若C B C A ∨?∨,则B A ?; B 、若C B C A ∧?∧,则B A ?; C 、若B A ???,则B A ?; D 、若B A ?,则B A ???。 5、 命题逻辑演绎的CP 规则为( )。 A 、 在推演过程中可随便使用前提; B 、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果; C 、如果要演绎出的公式为C B →形式,那么将B 作为前提,设法演绎出C ;

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A ∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) (3) (C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) (5) (C∨D)→(R∨S) (6) C∨D

(7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍 证明设 1 a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数 只能是0,1,…,m-1,由抽屉原理可知, 1 a,2a,…,1+m a这m+1个整 数中至少存在两个数 s a和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈ A-(B∪C)? x∈ A∧x?(B∪C)? x∈ A∧(x?B∧x?C)?(x∈ A∧x?B)∧(x∈ A∧x?C)? x∈(A-B)∧x∈(A-C)? x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,y∈N∧y=x2},S={| x,y∈N∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分) 解:R-1={| x,y∈N∧y=x2},R*S={| x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数

离散数学 第2章 习题解答

第2章习题解答 2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x (是鸟 x F:) (会飞翔. G:) x x 命题符号化为 x F ?. G x→ ) ( )) ( (x (2)令x x (为人. F:) (爱吃糖 G:) x x 命题符号化为 x F x→ G ?? )) ( ) ( (x 或者 F x? x ∧ ? ) )) ( ( (x G (3)令x x (为人. F:) G:) (爱看小说. x x 命题符号化为 x F ?. G x∧ (x ( )) ( ) (4) x (为人. x F:) (爱看电视. G:) x x 命题符号化为 F x? ∧ ??. x G ( ) ( )) (x 分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。(1)-(4)中的) F都是特性谓词。 (x 2°初学者经常犯的错误是,将类似于(1)中的命题符号化为 F x ? G x∧ ( )) ( ) (x

即用合取联结词取代蕴含联结词,这是万万不可的。将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。”因而符号化应该使用联结词→而不能使用∧。若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。”这显然改变了原命题的意义。 3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。 2.2 (1)d (a),(b),(c)中均符号化为 )(x xF ? 其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。 (2) 在)(),(),(c b a 中均符号化为 )(x xG ? 其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。 (3)在)(),(),(c b a 中均符号化为 )(x xH ? 其中.15:)(=x x H 此命题在)(),(b a 中均为假命题,在(c)中为真命题。 分析 1°命题的真值与个体域有关。 2° 有的命题在不同个体域中,符号化的形式不同,考虑命题 “人都呼吸”。 在个体域为人类集合时,应符号化为 )(x xF ? 这里,x x F :)(呼吸,没有引入特性谓词。 在个体域为全总个体域时,应符号化为 ))()((x G x F x →? 这里,x x F :)(为人,且)(x F 为特性谓词。x x G :)(呼吸。 2.3 因题目中未给出个体域,因而应采用全总个体域。

离散数学习题

第一章习题 1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。(1)2是无理数。 (2)5能被2整除。 (3)现在开会吗? (4)x+5>0 (5)这朵花真是好看! (6)2是素数当且仅当三角形有三条边。 (7)雪是黑色的当且仅当太阳是从东方升起。 (8)2000年10月1日天气晴好。 (9)太阳系以外的星球上有生物。 (10)小李在宿舍里。 (11)全体起立。 (12)4是2的倍数或是3的倍数。 (13)4是偶数且是奇数。 (14)李明和王华是同学。 (15)蓝色和黄色可以调配成绿色。 1..2 将上题中的命题符号化,并讨论他们的真值。 1.3判断下列各命题的真值。 (1)若2+2=4,则3+3=6; (2)若2+2=4,则3+3≠6; (3)若2+2≠=4,则3+3=6; (4)若2+2≠=4,则3+3≠=6; (5)2+2=4,当且仅当3+3=6; (6)2+2=4,当且仅当3+3≠6; (7)2+2≠4,当且仅当3+3=6; (8)2+2≠4,当且仅当3+3≠6; 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号; (2)如果今天是1号,则明天是3号; 1.5将下列命题符号化。 (1)2是偶数不是素数; (2)小王不但聪明而且用功; (3)虽然天气冷。老王还是来了; (4)他一边吃饭,一边看电视; (5)如果天下大雨,他就乘公交汽车来; (6)只有天下大雨,他才乘公交汽车来; (7)除非天下大雨,否则他不乘公交汽车来; (8)不经一事,不长一智; 1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。(1)p∨(q∧r);

《离散数学》试题及答案

一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 2 2n. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 . 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是(P∧?Q∧R) 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B={4} ; A?B={1,2,3,4}; A-B={1,2} . 7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0) 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则 R1?R2 ={(1,3),(2,2),(3,1)} , R2?R1 = {(2,4),(3,3),(4,2)} _ R12 ={(2,2),(3,3). 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = . 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} , A∩B ={x | 0≤x≤1, x∈R} , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为 {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} . 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是?x(?P(x)∨Q(x)) . 15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。(完全图的边 数 2)1 (- n n ,树的边数为n-1) 16.设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_ (R(a)∧R(b))→(S(a)∨S(b)) _. 17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。则

离散数学课后习题答案_屈婉玲(高等教育出版社)

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

离散数学例题整理

第一章 定律证明: (1) A?B=B?A (交换律) 证?x x∈A?B ? x∈A 或x∈B, 自然有x∈B 或x∈A ? x∈B?A 得证A?B?B?A. 同理可证B?A?A?B. (2) A?(B?C)=(A?B)?(A?C) (分配律) 证?x x∈A?(B?C) ? x∈A或(x∈B且x∈C ) ?(x∈A或x∈B)且(x∈A或x∈C) ?x∈(A?B)?(A?C) 得证A?(B?C)?(A?B)?(A?C). 类似可证(A?B)?(A?C)?A?(B?C). (3) A?E=E (零律) 证根据并的定义, 有E?A?E. 根据全集的定义, 又有A? E?E. (4) A?E=A (同一律) 证根据交的定义, 有A?E?A. 又, ?x x∈A, 根据全集E的定义, x∈E, 从而x∈A且x∈E, ?x∈A?E 得证A?A?E. 例4 证明A?(A?B)=A(吸收律) 证利用例3证明的4条等式证明 A?(A?B) = (A?E)?(A?B) (同一律) = A?(E?B) (分配律) = A?(B?E) (交换律) = A?E (零律) = A (同一律) 例5 证明(A-B)-C=(A-C)-(B-C) 证(A-C)-(B-C) = (A ?~C) ? ~(B ? ~C) (补交转换律) = (A ?~C) ? (~B ? ~~C) (德摩根律) = (A ?~C) ? (~B ? C) (双重否定律) = (A ?~C? ~B)?(A ?~C? C) (分配律) = (A ?~C? ~B)?(A ??) (矛盾律) = A ?~C? ~B (零律,同一律) = (A ?~B) ? ~C (交换律,结合律)

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不就是命题的( A )。 (A) 您打算考硕士研究生不? (B) 太阳系以外的星球上有生物。 (C) 离散数学就是计算机系的一门必修课。 (D) 雪就是黑色的。 ?命题公式P→(P∨?P)的类型就是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A就是重言式,那么A的否定式就是( A ) A、矛盾式 B、重言式 C、可满足式 D、不能确定 ?以下命题公式中,为永假式的就是( C ) A、p→(p∨q∨r) B、(p→┐p)→┐p C、┐(q→q)∧p D、┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值就是( D ) A、 00,11 B、 00,01,11 C、10,11 D、 10 ?谓词公式) x xP∧ ?中,变元x就是 ( B ) R , ( x ) (y A、自由变元 B、既就是自由变元也就是约束变元 C、约束变元 D、既不就是自由变元也不就是约束变元 ?命题公式P→(Q∨?Q)的类型就是( A )。 (A) 永真式 (B) 矛盾式 (C) 非永真式的可满足式 (D) 析取范式 ?设B不含变元x,) x x→ ?等值于( A ) A ) ( (B A、B (D、B x xA→ x ?) ( ( ?C、B x∧ A ?) (B、) ?) xA→ x ) ( A x (B x∨ ?下列语句中就是真命题的就是( D )。 A.您就是杰克不? B.凡石头都可练成金。 C.如果2+2=4,那么雪就是黑的。 D.如果1+2=4,那么雪就是黑的。 ?从集合分类的角度瞧,命题公式可分为( B ) A、永真式、矛盾式 B、永真式、可满足式、矛盾式 C、可满足式、矛盾式 D、永真式、可满足式 ?命题公式﹁p∨﹁q等价于( D )。 A、﹁p∨q B、﹁(p∨q) C、﹁p∧q D、 p→﹁q ?一个公式在等价意义下,下面写法唯一的就是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ?下列含有命题p,q,r的公式中,就是主析取范式的就是( D )。

【离散数学】知识点及典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

离散数学 第2章 习题解答

习题 2.1 1.将下列命题符号化。 (1) 4不是奇数。 解:设A(x):x是奇数。a:4。 “4不是奇数。”符号化为:?A(a) (2) 2是偶数且是质数。 解:设A(x):x是偶数。B(x):x是质数。a:2。 “2是偶数且是质数。”符号化为:A(a)∧B(a) (3) 老王是山东人或河北人。 解:设A(x):x是山东人。B(x):x是河北人。a:老王。 “老王是山东人或河北人。”符号化为:A(a)∨B(a) (4) 2与3都是偶数。 解:设A(x):x是偶数。a:2,b:3。 “2与3都是偶数。”符号化为:A(a)∧A(b) (5) 5大于3。 解:设G(x,y):x大于y。a:5。b:3。 “5大于3。”符号化为:G(a,b) (6) 若m是奇数,则2m不是奇数。 解:设A(x):x是奇数。a:m。b:2m。 “若m是奇数,则2m不是奇数。”符号化为:A(a)→A(b) (7) 直线A平行于直线B当且仅当直线A不相交于直线B。 解:设C(x,y):直线x平行于直线y。设D(x,y):直线x相交于直线y。a:直线A。b:直线B。 “直线A平行于直线B当且仅当直线A不相交于直线B。”符号化为:C(a,b)??D(x,y) (8) 小王既聪明又用功,但身体不好。 解:设A(x):x聪明。B(x):x用功。C(x):x身体好。a:小王。 “小王既聪明又用功,但身体不好。”符号化为:A(a)∧B(a)∧?C(a) (9) 秦岭隔开了渭水和汉水。 解:设A(x,y,z):x隔开了y和z。a:秦岭。b:渭水。c:汉水。 “秦岭隔开了渭水和汉水。”符号化为:A(a,b,c) (10) 除非小李是东北人,否则她一定怕冷。 解:设A(x):x是东北人。B(x):x怕冷。a:小李。 “除非小李是东北人,否则她一定怕冷。”符号化为:B(a)→?A(a) 2.将下列命题符号化。并讨论它们的真值。 (1) 有些实数是有理数。 解:设R(x):x是实数。Q(x):x是有理数。 “有些实数是有理数。”符号化为:(?x)(R(x)∧Q(x))

离散数学题目大汇总

离散数学试题一(A 卷答案) 一、(10分)证明(A ∨B )(P ∨Q ),P ,(B A )∨P A 。 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4 种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误为什么给出正确的推理形式。 (1)x (P (x ) Q (x )) P (2)P (y )Q (y ) T (1),US (3)xP (x ) P (4)P (y ) T (3),ES (5)Q (y ) T (2)(4),I (6)xQ (x ) T (5),EG 四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、 五、(15分)设函数g :A →B ,f :B →C , (1)若f o g 是满射,则f 是满射。 (2)若f o g 是单射,则g 是单射。 六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得T R 且R ,证明T 是一个等价关系。 七、(15分)若是群,H 是G 的非空子集,则的子群对任意的a 、b ∈H 有 a * b -1∈H 。 八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。 (2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗 离散数学试题一(B 卷答案) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。设F 表示灯亮。 u v w

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学习题答案

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ? ∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理

离散数学答案第二章习题解答

习题与解答 1. 将下列命题符号化: (1) 所有的火车都比某些汽车快。 (2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。 解 (1) 取论域为所有交通工具的集合。令 x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。 “所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。 (2) 取论域为所有物质的集合。令 x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。 “任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧?→?。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。 (4) 取论域为所有事物的集合。令 x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。 “每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→? (5)论域和谓词与(4)同。“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。 2. 取论域为正整数集,用函数+(加法),?(乘法)和谓词<,=将下列命题符号化: (1) 没有既是奇数,又是偶数的正整数。 (2) 任何两个正整数都有最小公倍数。 (3) 没有最大的素数。 (4) 并非所有的素数都不是偶数。 解 先引进一些谓词如下: x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。 x x J :)(是奇数,)(x J 可表示为)2(x v v =???。 x x E :)(是偶数,)(x E 可表示为)2(x v v =??。 x x P :)(是素数,)(x P 可表示为)1)(()1(x u u x u v v u x =∨=?=???∧=?。

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: )()(Q P Q P Q P ?∧?∨∧??Q)P (Q)(P P) (Q P)P (Q)(Q Q)P (P) Q)P ((Q)Q)P (P)Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)()()(R P Q P ∨∧∧?

5. 构造下列推理的论证:p ∨q, p →?r, s →t, ?s →r, ?t ? q 答案: ①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →(?(r ∧s)→?q), p, ?s ? ?q ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??))(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨

7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F( x ):x 是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x 。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: 令P(x):x 是人 Q(y): y 是课外活动 S(x,y):x 参加y )))()((())()((x C x M x x C x M x →??∧∧?)),()()((y x S y P x P y x →∧??))(),()((y Q y x S x P y x ∧→??

离散数学练习题

离散数学练习题 一、填空题 1. 命题Q →P 的真值为0,当且仅当 。 2. 构造公式S R S R →∨∧)(的真值表 。 3. 仅用∧和┐写出下列表达式的等价形式 a) R Q P ?→∨?? b) P Q ∨? 4. 仅用∨和┐写出下列表达式的等价形式 a) )()(D C B A ∨→∨? 。 b) )(E D A ?→→?? 5. 公式A 有三个命题变元P 、Q 、R 组成,其主析取范式为A 6531m m m m ∨∨∨?,则其主合取 范式为: 6. 公式A 有三个命题变元P 、Q 、R 组成,其主合取范式为A ?65310M M M M M ∧∧∧∧,则 其主析取范式为: 。 7. 设解释I 如下: D={n ,m} P(n ,n) P(n ,m) P(m ,n) P(m ,m) 1 1 0 0 8. 确定下列各式的真值: ),(m x xP ? ___ ___; ),(y n yP ? __ ___; ),(y x yP x ??) __ ___。 ),(n x xP ? ___ ___; ),(y m yP ? __ ___; ),(y x yP x ??) __ ___。 9. 谓词合式公式)()(x xQ x xP ?→?的前束范式为 。 10. 某集合有101个元素,则有 个子集的元素为奇数。 11. 某班有32个学生,其中14个人选择艺术,7个人选择生物,6个人选择音乐,三门课都选的有 2人,问这三门课都没选的至少有 人? 12. 设全集U={1,2,3,4,5,6,7,8,9,10}, A={1,2,3,5,6}, B={2,4,6,8,9}, 则:A ∩B= , B ⊕A= , B A ?= ; (A ∪B)-B = , (A ∪B)-(B ∩C)= 13. =Φ=)(},,a {A A ρ 。 14. B A b a B A ×==2},,{},1{= =×B A )(ρ

离散数学答案(尹宝林版)第二章习题解答

第二章 谓词逻辑 习题与解答 1. 将下列命题符号化: (1) 所有的火车都比某些汽车快。 (2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。 解 (1) 取论域为所有交通工具的集合。令 x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。 “所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。 (2) 取论域为所有物质的集合。令 x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。 “任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧?→?。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。 (4) 取论域为所有事物的集合。令 x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。 “每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→? (5)论域和谓词与(4)同。“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。 2. 取论域为正整数集,用函数+(加法),?(乘法)和谓词<,=将下列命题符号化: (1) 没有既是奇数,又是偶数的正整数。 (2) 任何两个正整数都有最小公倍数。 (3) 没有最大的素数。 (4) 并非所有的素数都不是偶数。 解 先引进一些谓词如下: x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。 x x J :)(是奇数,)(x J 可表示为)2(x v v =???。 x x E :)(是偶数,)(x E 可表示为)2(x v v =??。

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P :你努力,Q :你失败。 2、 “除非你努力,否则你将失败”符号化为 ; “虽然你努力了,但还是失败了”符号化为 。 2、论域D={1,2},指定谓词P 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不是对称的又不是反对称的关系 R= ;A 上既是对称的又是反对称的关系R= 。 5、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 6、4阶群必是 群或 群。 7、下面偏序格是分配格的是 。

8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 二、选择 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生 的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A .自反性、对称性、传递性; B .反自反性、反对称性; C .反自反性、反对称性、传递性; D .自反性 。

最新离散数学练习题(含答案)

离散数学试题 第一部分选择题 一、单项选择题 1.下列是两个命题变元p,q的小项是( C ) A.p∧┐p∧q B.┐p∨q C.┐p∧q D.┐p∨p∨q 2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐q C.p∧q D.p∧┐q 3.下列语句中是命题的只有( A ) A.1+1=10 B.x+y=10 C.sinx+siny<0 D.x mod 3=2 4.下列等值式不正确的是( C ) A.┐(?x)A?(?x)┐A B.(?x)(B→A(x))?B→(?x)A(x) 02324# 离散数学试题第1 页共4页

C.(?x)(A(x)∧B(x))?(?x)A(x)∧(?x)B(x) D.(?x)(?y)(A(x)→B(y))?(?x)A(x)→(?y)B(y) 5.谓词公式(?x)P(x,y)∧(?x)(Q(x,z)→(?x)(?y)R(x,y,z)中量词?x的辖域是( C )A.(?x)Q(x,z)→(?x)(?y)R(x,y,z)) B.Q(x,z)→(?y)R(x,y,z) C.Q(x,z)→(?x)(?y)R(x,y,z) D.Q(x,z) 6.设A={a,b,c,d},A上的等价关系R={,,,}∪I A,则对应于R的A的划分是( D ) A.{{a},{b,c},{d}} B.{{a,b},{c},{d}} C.{{a},{b},{c},{d}} D.{{a,b},{c,d}} 7.设A={?},B=P(P(A)),以下正确的式子是( A ) A.{?,{?}}∈B B.{{?,?}}∈B C.{{?},{{?}}}∈B D.{?,{{?}}}∈B 8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A ) A.(X-Y)-Z=X-(Y∩Z) 02324# 离散数学试题第2 页共4页

相关主题
文本预览
相关文档 最新文档