当前位置:文档之家› 电磁场与电磁波演示验证实验1

电磁场与电磁波演示验证实验1

基于有限差分法的二维边值问题的数值分析

一、实验目的

1.掌握简单二维边值问题的分离变量求解方法;

2.通过有限差分法的实现来熟悉数值法的求解过程。

二、实验内容及步骤

b

y

具体参数为:盖板电位U=100V ,其余三面电位=0,尺寸a=10,

b=10; 求解矩形槽内电位函数分布

1. 在matlab 中分析基于分离变量法的解析解:

长度(m )

电压(V )

解析法沿一半宽度处电压随长度的变化

宽度(m )

电压(V )

解析法沿一半长度处电压随宽度的变化

2. 利用简单迭代法求解,与解析法结论对比,分析求解结果的精确度。分析过

程至少包括:在网格尺寸为0.1和1两种条件下,两次迭代差值最大为10-10

时的分析结论;

长度(m )

电压(V )

沿一半宽度处电压随长度的变化

宽度(m )

电压(V )

沿一半长度处电压随宽度的变化

结论: 1.当网格尺寸为0.1时,可从上图中观察到电位函数分布基本与解析解

一致;

2.当网格尺寸为1时,可从上图对比中看出与解析函数有较大误差;

3.尺寸取得越小,有限差分法取得的函数解越接近于解析解,可计算量会相应增大

3.利用超松弛迭代法分析,选择松弛因子,分析其对收敛速度(即迭代次数)的影响,并确定最优值。分析过程至少包括:在网格尺寸为0.1和1两种条件下,

两次迭代差值最大为10-10时,松弛因子随迭代次数的变化,得到对应的最优松弛因子。

迭代次数

超松弛因子

4

迭代次数

超松弛因子

根据最佳收敛因子公式:α=2/(1+sin(pi/(p-1))),可求得网格尺寸为1时αopt1=1.5279;当网格尺寸为0.1时,αopt2=1.9391

结论: 1.当α取最佳收敛因子时,迭代次数最小,收敛速度最快. α越靠近最

佳收敛因子,收敛速度越快.

三.附录

1.解析法程序: for k=1:length(n)

for i=1:length(X) for j=1:length(Y)

s(i,j)=z*sinh(n(k)*pi*Y(j)/a)*sin(n(k)*pi*X(i)/a)/n(k)/sinh(n(k)*pi*b

/a);

end end

phai=phai+s;

end %循环求解电位函数解析解

2.简单迭代法程序:

g ridsize=0.1;%%网格尺寸

nodenumx=a/gridsize;nodenumy=b/gridsize; %离散节点数

jingdu=10^(-10); %%求解精度

num=0; %%迭代次数初始化

%%%%?赋初值

v1=zeros(nodenumy+1,nodenumx+1);v1(nodenumy+1,:)=ones(1,nodenumx+1)*U;v2=v1;

%%前后两次迭代值

r=zeros(nodenumy-1,nodenumx-1); %迭代差值

d=3; %求解精度初始化可以赋值任意大于精度的值while(d>jingdu)

num=num+1;

v1=v2;

for I=2:nodenumy

for J=2:nodenumx

v2(I,J)=(v1(I,J+1)+v1(I+1,J)+v1(I-1,J)+v1(I,J-1))/4;%%简单迭代

r(I,J)=abs(v2(I,J)-v1(I,J));

end

end

d=max(max(r));

end

3.超松弛迭代法程序:

for i=2:M

for j=2:M+1

x(i,j)=j-1;

end

end

y=x; %赋初值

flag=1;N=[ 0 0 0 0 0 0 0 0 0 0 0]; %迭代次数赋初值

for z=1:11

while flag==1

for i=2:M

for j=2:M

b=0.25*(y(i-1,j)+x(i+1,j)+y(i,j-1)+x(i,j+1));

y(i,j)=x(i,j)+a1(z)*(b-x(i,j));

end

end %循环迭代

if max(abs(x-y))

flag=0; %跳出循环

end

x=y;

N(z)=N(z)+1; %迭代次数加1

end

flag=1;

for i=2:M

for j=2:M+1

x(i,j)=j-1;

end

end

y=x; %切记再赋初值end

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 00 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

3 静电场基本知识点 (1)基本方程 00 22=?==?- =?=?=??=?=?????A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电 位方程(注意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计 算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 :

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

雷诺实验(参考内容)

雷诺实验实验报告姓名:史亮 班级:9131011403 学号:913101140327

第4章 雷诺实验 4.1 实验目的 1) 观察层流、紊流的流态及流体由层流变紊流、紊流变层流时的水利特征。 2) 测定临界雷诺数,掌握园管流态判别准则。 3) 学习应用量纲分析法进行实验研究的方法,了解其实用意义。 4.2 实验装置 雷诺实验装置见图4.1。 图4.1 雷诺实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道、有色水及水管、实验台、流量调节阀等组成,有色水经有色水管注入实验管道中心,随管道中流动的水一起流动,观察有色水线形态判别流态。专用有色水可自行消色。 4.3 实验原理 流体流动存在层流和紊流两种不同的流态,二者的阻力性质不相同。当流量调节阀旋到一定位置后,实验管道内的水流以流速v 流动,观察有色水形态,如果有色水形态是稳定直线,则圆管内流态是层流,如果有色水完全散开,则圆管内流态是紊流。而定量判别流体的流态可依据雷诺数的大小来判定。经典雷诺实验得到的下临界值为2320,工程实际中可依据雷诺数是否小于2000来判定流动是否处于层流状态。圆管流动雷诺数: e R KQ d Q vd vd ==== ν πνμρ4 (4.1) 式中:ρ──流体密度,kg/cm 3; v ──流体在管道中的平均流速,cm/s ; d ──管道内径,cm ; μ──动力粘度,Pa ?s ;

ν──运动粘度,ρ μ ν= ,cm 2/s ; Q ──流量,cm 3/s ; K ──常数,ν πd K 4 = ,s/cm 3。 4.4 实验方法与步骤 1) 记录及计算有关常数。 管径 d = 1.37 cm, 水温 t = 14.8 ℃ 水的运动粘度 ν=2 000221.00337.0101775 .0t t ++= 0.01147 cm 2/s 常数 ν πd K 4 = = 81.03 s/cm 3 2) 观察两种流态。 滚动有色水塑料管上止水夹滚轮,使有色水流出,同时,打开水箱开关,使水箱充满水至溢流,待实验管道充满水后,反复开启流量调节阀,使管道内气泡排净后开始观察两种流态。关小流量调节阀,直到有色水成一直线 (接近直线时应微调后等待几分钟),此时,管内水流的流态是层流,之后逐渐开大调节阀,通过有色水线形态的变化观察层流转变到紊流的水力特征,当有色水完全散开时,管内水流的流态是紊流。再逐渐关小流量调节阀,观察由紊流转变为层流的水力特征。 3) 测定下临界雷诺数。 I 、 将调节阀打开,使管中水流呈紊流(有色水完全散开),之后关小调节阀,使流量减小。当有色水线摆动或略弯曲时应微调流量调节阀,且微调后应等待稳定几分钟,观察有色线是否为直线,当流量调节到使有色水在全管中刚好呈现出一条稳定的直线时,即为下临界状态;停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算下临界雷诺数。将数据填入表4.1中。 II 、 测完一组数据后重复上述步骤测定另外2组数据。测定下一组数据前一定要确保开始状态为紊流流态,且调节流量时只能逐步关小而不能回调。测定临界雷诺数必须在刚好呈现出一条稳定直线时测定。为了观察到临界状态,调节流量时幅度要小,每调节阀门一次,均须等待稳定时间几分钟。 4) 测定上临界雷诺数。 当流态是层流时,逐渐开启阀门,使管中水流由层流过度到紊流,当有色水线刚好完全散开时即为上临界状态。停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算上临界雷诺数。测定上临界雷诺数1-2次。 ★操作要领与注意事项:①、测定下临界雷诺数时,务必先增大流量,确保流态处于紊流状态。之后逐渐减小阀门开度,当有色线摆动时,应停止调节阀门开度,等待1分钟后,观察有色线形态,之后继续微调再等待1分钟,直到有色线刚好为直线时,才是紊流变到层流的下临界状态。注意等待时间要足够,微调幅度要小,否则,测不到临界值。②、只能单一方向调节阀门,不能回调,错过临界点必须重做。③、实验时,不要触碰实验台,以免流动受到外界扰动影响。 4.5 实验成果与分析 记录及计算数据至下表中: 实验次数 有色 水线 形态 体积法测流量 雷诺数R e 阀门开度 备注 水体积V (cm 3 ) 时间T (s ) 流量Q (cm 3 /s ) 1 稳定 900 45.26 19.89 1612 1547测下临界值测定下

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(???????? ?????? ???? ??ρ 本构关系: E J H B E D ? ???? ?σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000?????????????ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-??????????? ???((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-?==-?==-?==-?????????? ???((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ ???????? 本构关系: E D ? ?ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

雷诺实验带数据处理

雷诺实验 一、实验目的 1. 观察层流和紊流的流态及其转换特征。 2. 通过临界雷诺数,掌握圆管流态判别准则。 3. 掌握误差分析在实验数据处理中的应用。 二、实验原理 1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有,如图1所示。 2、圆管中恒定流动的流态转化取决于雷诺数。雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则 4Re Q D πυ = 式中 Q ——流体断面平均流量 , L s D ——圆管直径 , mm υ——流体的运动粘度 , 2m 在本实验中,流体是水。水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算 36((0.58510(T 12)0.03361)(T 12) 1.2350)10υ--=??--?-+? 式中 υ——水在t C ?时的运动粘度,2m s ; T ——水的温度,C ?。 3、判别流体流动状态的关键因素是临界速度。临界速度随流体的粘度、密度以及流道的尺寸不同而改变。流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。 4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应

于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。而且极不稳定,只要稍有干扰,流态即发生变化。上临界雷诺数常随实验环境、流动的起始状态不同有所不同。因此,上临界雷诺数在工程技术中没有实用意义。有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。通常均以它作为判别流动状态的准则,即 Re < 2320 时,层流 Re > 2320 时,紊流 该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。 5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。针对圆管中定常流动的情况,容易理解:减小 D ,减小 ,加大v 三种途径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。 6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比,如图2所示。 7 图1 图2 三种流态曲线

雷诺实验实验报告

实验一雷诺实验 一、实验目的 1、观察流体流动时各种流动型态; 2、观察层流状态下管路中流体速度分布状态; 3、测定流动型态与雷诺数Re之间的关系及临界雷诺数值。 二、实验原理概述 流体在流动过程中有两种截然不同的流动状态,即层流和湍流。它取决于流体流动时雷诺数Re值的大小。 雷诺数:Re=duρ/μ 式中:d-管子内径,m u-流体流速,m/s ρ-流体密度,kg/m3 μ-流体粘度,kg/(m·s) 实验证明,流体在直管内流动时,当Re≤2000时属层流;Re≤4000时属湍流;当Re在两者之间时,可能为层流,也可能为湍流。 流体于某一温度下在某一管径的圆管内流动时,Re值只与流速有关。本实验中,水在一定管径的水平或垂直管内流动,若改变流速,即可观察到流体的流动型态及其变化情况,并可确定层流与湍流的临界雷诺数值。 三、装置和流程 本实验装置和流程图如右图。 水由高位槽1,流径管2,阀5,流量 计6,然后排入地沟。示踪物(墨水)由墨水 瓶3经阀4、管2至地沟。 其中,1为水槽 2为玻璃管 3为墨水瓶 4、5为阀 6为转子流量计

四、操作步骤 1、打开水管阀门 2、慢慢打开调节阀5,使水徐徐流过玻璃管 3、打开墨水阀 4、微调阀5,使墨水成一条稳定的直线,并记录流量计的读数。 5、逐渐加大水量,观察玻璃管内水流状态,并记录墨水线开始波动以及墨水 与清水全部混合时的流量计读数。 6、再将水量由大变小,重复以上观察,并记录各转折点处的流量计读数。 7、先关闭阀4、5,使玻璃管内的水停止流动。再开墨水阀,让墨水流出1~ 2cm距离再关闭阀4。 8、慢慢打开阀5,使管内流体作层流流动,可观察到此时的速度分布曲线呈 抛物线状态。 五、实验数据记录和处理 表1 雷诺实验数据记录

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总 结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ω e =εE 2/2 或者电容(C=Q/φ)。 (3)典型问题 导体球(包括实心球、空心球、多层介质)的电场、电位计算; 长直导体柱的电场、电位计算; 平行导体板(包括双导体板、单导体板)的电场、电位计算; 电荷导线环的电场、电位计算; 电容和能量的计算。 例: a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

雷诺实验指导

实验一 雷诺实验 一、实验目的 1、观察液体流动时的层流和紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。 2、测定管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。 二、实验原理 1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 液体运动的层流和紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断: Re=Vd/ν Re 称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。 在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。 2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知: f 2 222221111h g 2V a p z g 2V a p z ++γ+=+γ+ 因为管径不变V 1=V 2 ∴=γ +-γ+ =)p z ()p z (h 2211f △h 所以,压差计两测压管水面高差△h 即为1-1和1-2两断面间的沿程水头损失,用重量 法或体积法测出流量,并由实测的流量值求得断面平均流速A Q V = ,作为lgh f 和lgv 关系曲线,如下图所示,曲线上EC 段和BD 段均可用直线关系式表示,由斜截式方程得: lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线的斜率 式中:1 2f f v l g v lg h lg h lg tg m 1 2 --= θ= 实验结果表明EC=1,θ=45°,说明沿程水头损失与流速的一次方成正比例关系,为层流区。BD 段为紊流区,沿程水头损失与流速的1.75~2次方成比例,即m=1.75~2.0,其中AB 段即为层流向紊流转变的过渡区,BC 段为紊流向层流转变的过渡区,C 点为紊流向层流转变的临界点,C 点所对应流速为下临界流速,C 点所对应的雷诺数为下监界雷诺数。A 点为层流向紊流转变的临界点,A 点所对应流速为上临界流速,A 点所对应的雷诺数为上临界雷诺数。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

实验四 雷诺实验

实验四 流动状态实验----雷诺实验 一、实验目的 1. 观察层流和紊流的流态及其转换特征; 2. 通过临界雷诺数,掌握圆管流态判别准则; 3. 学习在流体力学中应用无量纲参数进行试验研究的方法,并了解其使用意义。 二、实验原理 1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有,如图1所示。 2、圆管中恒定流动的流态转化取决于雷诺数。雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则 Re d υγ = 式中 υ——流体断面平均流速 , s cm d ——圆管直径 , cm γ——流体的运动粘度 , s cm 2 在本实验中,流体是水。水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算 2 0.0178 10.03370.000221t t γ= ++ 式中 γ——水在t C ?时的运动粘度,cm 2; t ——水的温度,C ?。 3、判别流体流动状态的关键因素是临界速度。临界速度随流体的粘度、密度以及流道的尺寸不同而改变。流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。 4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应

于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。而且极不稳定,只要稍有干扰,流态即发生变化。上临界雷诺数常随实验环境、流动的起始状态不同有所不同。因此,上临界雷诺数在工程技术中没有实用意义。有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。通常均以它作为判别流动状态的准则,即 Re < 2320 时,层流 Re > 2320 时,紊流 该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。 5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。针对圆管中定常流动的情况,容易理解:减小 d ,减小v ,加大v 三种途径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。 6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比,如图2所示。 7 图1 图2 三种流态曲线

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

哈工大电磁场与电磁波课程总结

电磁场与电磁波课程总结 时代背景 麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。它揭示出电磁相互作用的完美统一,而这个理论被广泛地应用到技术领域。 1831年,法拉第发现了电磁感应现象,揭示了电与磁之间的重要联系,为电磁场完整方程组的建立打下了基础。截止到1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培-毕奥-萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。场是一种看不见摸不着而又确实存在的东西,它可以用来描述空间中的物体分布情况,进而用空间函数来表征。“场”概念的提出,使得人们从牛顿力学的束缚中摆脱出来,从而对微观以及高速状态等人类无法用肉眼观测的世界,有了更加深入的认识。1864年,麦克斯韦集以往电磁学研究之大成,创立了电磁场的完整方程组。1868年,麦克斯韦发表了《关于光的电磁理论》这篇短小而重要的论文,明确地将光概括到电磁理论中,创立了“光的电磁波学说”。这样,原来相互独立发展的电、磁和光就被巧妙地统一在电磁场这一优美而严整的理论体系中,实现了物理学的又一次大综合。 德国物理学家赫兹深入研究了麦克斯韦电磁场理论,决定用实验来验证它。通过多年的实验探索,于1886年首先发现了“电磁共振”现象,紧接着在1888年发表了《论动电效应的传播速度》一文,以确凿的实验事实证实了麦克斯韦关于电磁波的预言和光的电磁理论的正确性,到此,麦克斯

化工原理实验:雷诺实验

雷诺实验 一. 实验装置的特点: 能定性并且直观地观察到层流、过渡流、湍流等各种流型。清晰地观察到流体在圆管内流动过程的速度分布。同时可以进行孔板流量计标定实验。 二. 装置的主要技术数据及计算方法: 实验管道有效长度: L=600 mm 外径: Do=30 mm 内径: Di=23.5mm 孔板流量计孔板内径: do=9.0 mm 三. 实验装置流程和实验方法 实验装置流程如图一所示。 1. 实验前的准备工作 (1) 必要时调整红水细管4的位置,使它处于实验管道6的中心线上。 (2) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。 (3) 关闭流量调节阀7,打开进水阀3,使自来水充满水槽,?并使其有一定的溢 流量。 (4) 轻轻打开阀门7,让流体水缓慢流过实验管道。使红水全部充满细管道中。 2. 雷诺实验的过程 (1) 同上面的三.1.(3)。 (2) 同上面的三.1.(4)。 (3) 调节进水阀,维持尽可能小的溢流量。 (4) 缓慢地适当打开红水流量调节夹 ,即可看到当前水流量下实验管内水的 流动状况(层流流动如下图二示)。用量筒和秒表可测得流体的流量并 计算出雷诺准数。 图二、层流流动示意图 (5) 因进水和溢流造成的震动,有时会使实验管道中的红水流束偏离管的中 心线,或发生不同程度的左右摆动. 为此, 可突然暂时关闭进水阀3, 过

一会儿之后即可看到实验管道中出现的与管中心线重合的红色直线。 (6) 增大进水阀3 的开度,在维持尽可能小的溢流量的情况下提高水的流量。 并同时根据实际情况适当调整红水流量,即可观测其他各种流量下实验 管内的流动状况。为部分消除进水和溢流造成的震动的影响,在滞流和过 渡流状况的每一种流量下均可采用四. 2.(5)中讲的方法,突然暂时关闭 进口阀 3 ,然后观察管内水的流动状况(过渡流、湍流流动如图三示)。 用秒表、量筒可测得流体的流量并计算出雷诺准数。 3.流体在圆管内作流体速度分布演示实验 (1)首先将进口阀 3打开,关闭出口阀门7。 (2)将红水流量调节夹打开,使红水滴落在不流动的实验管路 图三、过渡流、湍流流动示意图 (3)突然打开出口阀门7,在实验管路中可以清晰地看到红水流动所形成的如 图四所示速度分布。 图四、流速分布示意图 4.流量计校核实验 关闭流量调节阀7,打开进水阀3,使自来水充满水槽,?并使其有一定的溢流。逐步打开流量调节阀7,流体从管道流过并经过孔板流量计产生压强差,用量筒和秒表可测得流体的流量,读取孔板流量计两端的压强差同时记录流体的温度。改变流量调节阀7的开度,分别测定出压强差和流量,这样可以得出流量和压差的关系。 5. 实验结束时的操作 (1)关闭红水流量调节夹,使红水停止流动。 (2)关闭进水阀 3,使自来水停止流入水槽。 (3)待实验管道的红色消失时,关闭阀门 7。 (4)若日后较长时间不用,请将装置内各处的存水放净。 四. 实验注意事项: 做滞流时,为了使滞流状况能较快地形成,而且能够保持稳定,第一, 水槽的溢流应尽可能的小.因为溢流大时,上水的流量也大,上水和溢流两者造成的震动都比较大,影响实验结果。第二,应尽量不要人为地使实验架产生任何的震动.为减小震动,若条件允许,可对实验架的底面进行固定。

相关主题
相关文档 最新文档