当前位置:文档之家› 6t中频感应炉筑炉工艺改进及维护

6t中频感应炉筑炉工艺改进及维护

6t中频感应炉筑炉工艺改进及维护
6t中频感应炉筑炉工艺改进及维护

 万方数据

 万方数据

 万方数据

 万方数据

中频炉冶炼工艺资料

中频冶炼工艺学习资料 一.原材料 1.废钢:一是厂内的返回废料,二是外来废料如废模、轧辊等。 (1)对废钢要求: 1)废钢表面应清洁少锈; 2)废钢中不得混有铝、锡、砷、锌、铜等有色金属; 3)废钢中不得混有密封容器、易燃物、爆炸物和有毒物; 4)废钢化学成分应明确,S、P含量不宜过高; 5)废钢外形尺寸不能过大。 (2)对废钢管理: 1)须按来源、化学成分、大小分类堆放,并作相应标记; 2)废钢中的密封容器,爆炸物、有毒物和泥砂等应予以清除和处理; 3)对大块料进行分割处理。 2.合金材料 (1)硅铁(Si--Fe):用于合金化,以增Si,也可作脱氧剂使用。Si—Fe多为含Si 45%和75%的两种。45%(中硅)Si—Fe比75%(高硅)Si—Fe价格低,在满足钢种质量要求的情况下,尽量使用中硅,但研究所常用约75%的高硅铁。含Si在50%--60%左右的Si—Fe极易粉化,并放出有害气体,一般都禁止使用这种中间成分的Si—Fe。 硅铁含氢量高,须烤红后使用,烘烤工艺为500℃烘烤约4小时,烘烤完后将其放于干燥处保存,超过一周未用的应重新烘烤。 (2)锰铁(Mn--Fe):用于合金化,也可作脱氧剂。根据含碳量可分为低碳、中碳、高碳锰三种,含Mn量均在50%--80%之间。Mn—Fe含碳量越低,P就越低,价格也就越贵,因此冶炼时尽量用高碳锰。 锰铁烘烤工艺Si—Fe烘烤工艺。 除一般锰铁外,也有使用电解锰。 (3)铬铁(Cr--Fe):用于合金化,调整合金含量。根据含碳量多少可分高碳Cr、低碳Cr等。除金属铬外,Cr—Fe中Cr含量都在50%--65%之间,研究所使用的约为63%。Cr—Fe的价格随C含量的降低而急剧升高。 铬铁的烘烤工艺为700—750℃烘烤不少于3小时,烘烤完同样放于干燥处保存。 (4)钨铁(W--Fe):用于合金化。W—Fe含W量在65%以上。W—Fe熔点高,密度大,在还原期补加时应尽早加入。W—Fe需经烘烤后使用,烘烤工艺同Cr—Fe. (5)钼铁(Mo--Fe):Mo—Fe含Mo量在55%--65%之间。Mo—Fe熔点高,表面易生锈,需经烘烤后使用,烘烤工艺同Cr—Fe烘烤工艺。 (6)钒铁(V—Fe):V—Fe含V量在45%--55%之间。V—Fe使用前的烘烤工艺同Si—Fe烘烤工艺。(7)镍(Ni):镍含量约99%。Ni中含H量很高,还原期补加的Ni需经高温烘烤,烘烤工艺同Cr—Fe。 3.造渣材料 (1)石灰:碱性炉炼钢的主要造渣材料。石灰极易受潮变成粉末,因此要注意防潮,用前应经烘烤,还原期用的石灰要在600℃高温下烘烤2小时以上。无特殊手段时,不允许使用石灰粉末,因为其极易吸水,影响钢的质量。 中频冶炼一般不用石灰石和没烧透的石灰,因为石灰石分解是吸热反应,会降低钢液温度,增加电力消耗,且不能及时造渣,对冶炼不利。 (2)萤石(CaF2):由萤石矿直接开采出来。主要作用是稀释炉渣,它能降低炉渣的熔点,提高炉渣的流动性而不降低炉渣的碱度。此外,萤石能与硫生成挥发性的化合物,因此它具有脱硫作用。但萤石稀释炉渣的作用持续时间不长随氟的挥发而逐渐消失。萤石的用量要适当,用量过多,渣子过稀会

筑炉工安全操作规程

筑炉工安全操作规程1.岗位危险源

2.适应范围 适用于锅炉筑炉工作业的操作。 2.作业前的检查和准备工作 3.1 筑炉工属于特种作业工种,从事特种作业的人员,必须进行身体检查,无妨碍本工种的疾病和具有相适应的文化程度。服从领导和安全检查人员的指挥,工作时思想集中,坚守作业岗位,未经许可,不得从事非本工种作业,严禁酒后作业。进入施工现场的作业人员,必须首先参加安全教育培训,未经培训不得上岗作业。 3.2 进入施工现场的人员必须正确戴好安全帽,系好下颏带;按照作业要求正确穿戴个人防护用品。施工前,应检查脚手架及所用工具,发现有碍安全作业应及时排除隐患。 3.作业中的操作和注意事项 4.1在脚手架脚手板上运料或砌筑作业时,不得奔跑或多人集聚。从砖垛上取砖时,应由上而下阶梯合拿取,不得一码取到底或由下面掏取,整砖或半砖应分别递送。 4.2在高处砍砖时,应面向墙的里侧,有的对着别人或面向外站直身体砍砖。跳板上碎砖杂物应随时清除。 4.3严禁站在墙上砍砖、钩缝、检查大角垂直度、清扫墙面或行走。上下脚手架时应走马道。在脚手架上作业时,严禁自行拆除脚手板及脚手杆。 4.4使用切砖机、磨砖机或用手加工砖板时,应戴手套和防护眼镜,并不得面对面进行作业。 4.5砌筑炉膛及烟道内衬,应有充足的照明和良好的通风。作业人员应戴安全帽。 4.6筑炉时,在炉体内施工应有联络信号,外面有人监护。炉子的钢骨架、炉管上不得直接悬挂电线。炉内使用的行灯电压不得超过36V。拱胎支架,必须牢固,炉窑拱顶必须对称砌筑。在拱胎上堆放砖和砂浆应均匀对称。 4.7大、中型的炉和半圆状的拱顶砌筑,应锁紧一环,再砌一环。拱砖放衬缝与水平夹角砌成30 度时,必须用金属钩子将拱砖固定。大中型耐火砖、耐火混凝土和石岩砖块吊装砌筑时,吊梁、索具、夹具必须牢固。 4.8进入烟道、烟囱内检查时,应有人监护。 4.9凡接触矿渣棉、玻璃棉、岩棉、陶瓷纤维、珍珠岩等绝缘材料的作业人员,均应穿戴作业用的防护用品,其衣袖、裤脚、领口应扎紧、围住。 4.10高空用的工具、材料应吊运和传递,严禁上下抛掷。接料人员应站在一侧,严禁垂直接料。 4.11扣件式钢管脚手架:按其搭设位置分为外脚手架、里脚手架;按立杆排数分为单排、双排脚手架;按高度分为一般、高层脚手架以及分为结构、装修脚手架,具体搭设的操作规定,其基本要求如下: 4.11.1脚手架应由立杆(冲天)、纵向水平杆(大横杆、顺水杆)、横向水平杆(小

中频计算公式

中频炉系列透热炉构造: 中频透热炉一般由感应器、中频电源、变压器、电容等组成。 中频透热炉特点: (1)加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本 由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。不必担心由于停电或设备故障引起的煤炉已加热坯料的浪费现象。由于该加热方式升温速度快,所以氧化极少,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克,其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um。 (2)工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能 感应加热炉与煤炉相比,,工人不会再受炎炎烈日下煤炉的烘烤与烟熏,更可达到环保部门的各项指标要求,同时树立公司外在形象与锻造业未来的发展趋势。感应加热是电加热炉中最节能的加热方式由室温加热到1100℃的吨锻件耗电量小于360度。 (3)加热均匀,芯表温差极小,温控精度高 中频透热炉功率估算公式: P=(C×G×T)/(0.24×t×∮) 公式说明:P—设备功率(KW);C—金属比热,其中钢铁比热系数是0.17 G—加热工件重量(kg);T—加热温度(℃);t—工作节拍(秒); ∮—设备综合热效率,一般可取0.5—0.7,异型件取0.4左右。 例如:某锻造厂有锻件坯料为Φ60×150mm,工作节拍为12秒/件(包括辅助时间),初锻温度以1200℃。则需要GTR中频电炉功率的计算如下:P=(0.17×3.3×1200)/(0.24×12×0.65)=359.61KW 根据以上计算,可以配置额定功率为400KW的GTR感应加热设备。感应加热其热量在工件内自身产生所以加热均匀,芯表温差极小。应用温控系统可实现对温度的精确控制提高产品质量和合格率。 中频炉加热装置具有体积小,重量轻、效率高、热加工质量优及有利环境等优点正迅速淘汰燃煤炉、燃气炉、燃油炉及普通电阻炉,是新一代的金属加热设备。 中频炉是铸造锻造及热处理车间的主要设备,其工作的稳定性、可靠性及安全性是流水作业的铸造锻造及热处理生产线正常稳定工作的保证。中频炉在热加工领域有着很好的发展前景如。国内专业的生产中频电炉的厂家东莞市正鑫中频电炉厂是这一领域佼

感应电炉筑炉(打结炉衬)方法及注意事项

感应电炉筑炉(打结炉衬)方法及注意事项 1、合理选择炉衬材料 筑炉应选择相对最合适,膨胀系数小,受热稳定的优质炉衬材料。炉衬材料有硅砂、镁砂、铬砂等,其企业型号为:TX-3耐火度﹥1800℃,适应高锰钢、合金钢;TX-4耐火度﹥2000℃,适应不锈钢、镍铬合金钢;TX-5耐火度﹥2000℃,适应铸钢、不锈钢及特殊钢;TX-6耐火度﹥1800℃,适应铸钢、铸铁、灰铸铁、球墨铸铁。 2、坩埚打结厚度 坩埚打结厚度要适当,坩埚炉衬厚度若不足,则散热严重,熱损增加,厚度过大则不利于磁场耦合,电效率及功率因数随之下降。1.5吨感应炉炉底厚度220mm左右,炉壁87—117mm左右。 3、砂配比(酸性炉) 1#砂——17% 2#砂——23% 4#砂——30% 石英粉——30% 硼酸(或无水硼酐)——1.7%(炉口——3.5%) 清水适量。 烧结剂要准确称量,严防结块硼酸加入。烧结剂使用得当能使烧结层、过渡层、松散层各约占炉衬厚度三分之一。烧结剂用量过大,会形成较厚的烧结层,减薄松散层,增加电炉的热损失,降低炉衬材料的耐火度,影响使用可靠性;烧结剂用量过少,则形成的烧结层太薄,炉衬抵抗不了金属液的冲刷与侵蚀,炉龄大大缩短。 4、安放坩埚模 安放坩埚模应使模中心严格固定在感应器的中心轴线上,以保证坩埚壁厚尽可能均匀,一般可采用木楔固定。为防止在打结炉衬时坩埚模松动,应在模内放一些铁块;为便于取出坩埚模,炉衬打结到一半时可先轻轻转动一下坩埚模,但千万注意不能碰伤刚打实的部分。 5、打结坩埚炉衬 炉衬捣打要坚实,打结工具钢叉、平锤、钢铲要保管好。打结炉衬时应将炉体外壳底部与地基之间垫平、垫实,以防外壳损坏。打结时采用薄加料方式,分层打结法。 1)打结坩埚底 通常坩埚底第一层铺料高度约80—100mm,以后每层40—50mm,最后应高出炉底20—30mm,加料时尽量低位倾料,并且料分散均匀铺开,不要成堆,以免料的大小颗粒分开。为避免分层,每次加料前应用划面叉划碎、划平刚打结的表面层。打结要垂直施锤,不能左右摇摆,同时注意打结时不能将隔热绝缘层碰坏,打结时先轻后重,落点均匀,用力一致,以保证打结致密。打结顺序是先边缘后中心,按次序逐排打结。用平锤打完后再把多余部分铲掉,并注意保持炉底水平。 2)打结坩埚壁 在坩埚底与坩埚壁交界处(即拐角处)是整个坩埚的薄弱环节,打结时要特别细心。 打结坩埚壁的操作与打结坩埚底的操作相同,仍是分层打结法,逐层打

中频炉控制电路原理

控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为 整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《控制电路原理图》。 1. 1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字 触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉 冲频率受移相控制电压Uk 的控制,Uk 降低,则振荡频率升高,而计数器的计数值是固 定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短, α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0 时开始计数。 现假设在某Uk 值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为 25KHZ,则在计数到256 个脉冲所需的时间为(1/25000)×256=10.2(ms)相当于约180 °电角度,该触发器的计数清零脉冲在同步电压〔线电压〕的30°处,这相当于三相 全控桥式整流电路β=30°位置, 从清零脉冲起,延时10.2ms 产生的输出触发脉冲, 也 即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的α=150° 触发脉冲, 可以略微调节一下电位器W4。显然有三套相同的触发电路,而压控振荡器和Uk 控制电压为公用,这样在一个周期中产生6 个相位差60°的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL 和CMOS 数字集成电路,可以有很强 的抗干扰能力。 IC16A 及其周围电路构成电压----频率转换器,其输出信号的周期随调节器的输出 电压Uk 而线性变化。W4 微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6、K2 从主回路的三相进线上取得, 由R23、C1、R63、C40、R102、C63 进行滤波、移相,经6 只光电耦合器进行电位隔离,获得6 个相位互差60°、占空比略小于50%的矩形同步信号。 IC3、IC8、IC12(4536 计数器)构成三路数字延时器。三相同步信号对计数器进行 复位后,对电压---频率转换器的输出脉冲每计数256 个脉冲便输出一个延时脉冲,因计 数脉冲的频率是受Uk 控制的, 换句话说Uk 控制了延时脉冲。 计数器输出的脉冲经隔离、微分后变成窄脉冲,送到后级的NE556,它既有同步分 频器功能,亦有定输出脉冲宽度的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶 体管放大,驱动脉冲变压器输出。具体时序图见附图。 1.2 调节器工作原理 调节器部分共有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角 调节器。 其中电压调节器、电流调节器组成常规的电压、电流双闭环系统。在启动和运行 的整个阶段,电流调节器始终参与工作,而电压环仅工作于运行阶段。另一阻抗调节器 从输入上看,它与电流调节器LT2 的输入完全是并联关系,区别仅在于阻抗调节器的负 反馈系数较电流调节器略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的 时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工 作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全 西是一个标准的电压、电流双闭环系统。另一种情况是直流电压巳经达到最大值,电流调节器开始限幅不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节

熔炼炉炉衬筑炉工艺

熔炼炉炉衬筑炉工艺 炉衬的高温性能主要取决于所用耐火材料的物理、化学性能及矿物组成,在原辅材料选定的前提下,烧结工艺是使炉衬获得良好显微组织结构以充分发挥其耐高温性能的的关键工序。炉衬烧结的致密化程度与耐火材料的化学组成、粒度配比、烧结工艺和烧结温度等因素有关。 筑炉工艺: 1.筑炉时去掉云母纸。 2.对筑炉用水晶石英砂进行如下处理: 2.1.手选:主要去除块状物及其它杂质 2.2.磁选:必须完全去除磁性杂质 2.3千式捣打料:必须进行缓慢烘干处理,烘干温度为200℃-300℃,保温4小时以上。 3.粘结剂的选用:用硼酐(B203)代替硼酸(H3BO3)作粘结剂,加入量为1.19%=1.5%。 4.筑炉材料的选用及配比: 4.1.筑炉材料的选用:应注意,不是所有SiO2≥99%的石英砂均可用作感应炉炉衬材料,重要的是石英晶粒大小,晶粒越粗大,晶格缺陷越少越好,(如水晶石英砂SiO2纯度高,外表洁白、透明。)炉子容量越大,对晶粒的要求越高 4.2.配比:炉衬用石英砂配比:6-8目10%-15%,10-20目25%-30%,20-40目25% 30%,270目25%-30%。 5.炉衬的打结:炉衬打结质量好坏直接关系到烧结质量。打结时砂粒粒度分布均匀不会产生偏析,打结后的砂层致密度高,烧结后产生裂纹的几率下降,有利于提高感应炉炉衬使用寿命。 5.1干式打结炉衬(以2t无芯感应炉为例):线圈绝缘胶泥的应用:2t无芯感应炉的感应圈涂覆有绝缘胶泥层。与感应路通常使用的绝缘材料云母、玻璃丝布等相比,使用线圈绝缘胶泥有如下好处第一,烘干后,厚度为8-15mm的线圈绝缘胶泥层具有良好的绝缘性能,完全可代替云母和玻璃丝布,充当线圈和炉衬之间的绝缘保护层;胶泥材料的导热系数较高,不必担心相对较厚的胶泥层会影响热面炉衬的三层结。第二,胶泥层位于线圈和保温层之间,正常情况下,环境温度很低(<300℃,偶尔有金属液接近其表面时胶泥层会释放出少量残余的水分,使绝缘电阻降低,系统提供早期报警。第三,利用胶泥本身高于1800℃的耐火度,当偶尔有金属液滲漏到其表面时,胶泥能给线圈提供一层保护屏障,当出现报警时,胶泥层可提供一定的事故处理时间。第四,对带有底顶出式的炉子而言,将胶泥制作成带有锥度的形状,避免了炉衬与线圈的摩擦,同时利用其强度对线圈进行固定,避免了线圈在使用和建、拆炉过程中的变形,延长了线圈的使用寿命。第五,线闘与胶泥层作为炉子的永火衬,虽一次性费用高,施工周期长,但其使用寿命可以与线圈相同,也可进行局部修补,因此就整体而言降低了筑炉成本。干式打结炉衬前,首先在炉子线圈绝缘层内铺设一层石棉板和一层玻璃丝布,铺设时除手工平整压实各层材料外,还要用弹簧圈上下绷紧,捣固石英砂时,自上而下。 5.2.打结炉底:炉底厚约280mm,分四次填砂,人工打结时防止各处密度不均,烘烤与烧结后的炉衬不致密。因此,必须严格控制加料厚度,一般填砂厚度不大于100m/每次,炉壁控制在60mm以内,多人分班操作,每班4-6人,每次打结30分钟换人,围绕炉子缓慢旋转换位,用力均匀,以免造成密度不均。

中频感应加热

ZD系列中频感应加热电源说明书 一、概述 ZD系列中频加热电源是江苏油田工程院的专利产品。(专利号为97220550. 0) ZD系列中频加热电源应用了现代电力电子技术,重量轻,效率高,具有过流、短路等自动保护功能,并且输出功率由温度控制传感器进行自动调节。采用该中频电源的电加热系统通过对输出电压和频率的调节,可以对最大加热长度范围内的任意长度的负载进行加热,具有使用寿命长,效率高,体积小、重量轻等优点。ZD系列中频加热电源可以应用于地面集输管线感应加热和井下空心抽油杆加热。 二、工作原理 中频电源首先将三相380V交流电整流成直流电,并滤波。然后再运用电力电子器件IGBT,把直流电逆变成频率和占空比连续可调的单相中频交流电。最后通过隔离变压器,将单相中频交流电输送给加热负载。 三、型号说明 Z D -□ 额定容量(kVA) 电源 中频 四、使用条件 1、环境温度:-15℃~+40℃ 2、空气相对湿度不大于90%

3、使用场所无严重的振动,周围环境无灰尘、腐蚀性气体 4、输入电压:三相四线交流电50Hz,380V±10%,机壳接零 五、技术数据(仅供参考) 型号 ZD-10 ZD-20 ZD-35 ZD-50 额定容量 10kVA 20kVA 35kVA 50kVA 输入电压 380V±10% 380V±10% 380V±10% 380V±10% 输入电流 5~15A 10~30A 15~55A 20~75A 输出电压 0~240V 0~300V 0~400V 0~500V 装置重量 50kg 80kg 110kg 150kg 加热长度<200米<400米<700米<1000米 六、安装方法 1、中频感应加热电源与油井的距离R≥15m,对轻烃气含量高的油井要求R≥20 m。 2、中频感应加热电源室内安装时,电源装置左右两侧对墙体的距离应≥1m,电源装置后面对墙体的距离应≥0.5m,不得倾斜。 3、中频感应加热电源室外安装时,应放置在一个相应的防雨外壳内,防雨外壳上下通风,不得倾斜,防雨外壳对其它设备的距离应≥1m。 4、中频电源上部接线柱用四芯铜电缆外接三相380V电网,电源装置机壳用接地线可靠接地; 5、中频电源下部的两个接线柱用单芯铜电缆分别引至加热负载; 中频电源型号四芯输入铜电缆规格接地线规格 相线零线 ZD-10 4 mm2 2.5 mm2 2.5 mm2 ZD-20 6 mm2 4 mm2 4 mm2 ZD-35 10 mm2 6 mm2 6 mm2 ZD-50 16 mm2 10 mm2 10 mm2

1吨串联中频炉原理技术与分析

1吨串联中频炉原理技术与分析(1吨串联可控硅中频炉原理技术与分析)1吨串联中频炉是串联逆变中频电炉,是中频炉感应加热炉,如果配一台中频炉炉体熔炼称为单台1吨串联中频炉。串联逆变中频炉电源工作原理 串联逆变电源为电压源供电,串联逆变电源主回路原理图所示。 1吨串联中频炉逆变电源原理说明 电源由三相桥式整流桥和可控硅半桥逆变电路组成,运行时整流桥可控硅全导通,满电压工作。逆变器主电路由二组可控硅桥臂和二组谐振电容器及电炉线圈组成,半桥逆变电路适用于大功率低频率恒压源逆变器。 逆变桥臂上两个SCR交替导通,任何一只SCR导通一定要在串联负载电流过零之后,即大于SCR关闭时间TOT之后,触发导通,如图5,6所示逆变器负载波形图,当SCR电

流过零后,与其并联的反向二极管导通,其反向压降把SCR关闭,之后另一臂SCR才能触发导通,逆变器的输出工作频率为300—400Hz, 工作频率越高,输出功率越大。 图5为逆变器触发脉冲和负载波形图,把可控硅视为理想开关,瞬时导通和关断,电感L和电阻R串联,等效于炉体的负载,触发脉冲频率略低于负载谐振频率f。半桥逆变器工作电流流动路经的描述逆变运行时,电流通过逆变器和炉体线圈L的路径,逆变器的工作波形如图7所示,逆变工作前恒定直流电压Ud为电容C1、C2均分,各充电至1/2Ud,均为上正下负电压,当t=to时SCRl被触发导通,电容C1电荷通过SCRl-Lf-Rf -C1下端放电,另一路是使C2充电,+Ud由CF上端-SCRl-Lf-Rf-C2-CF下端,这二路都是同一谐振电路的一部份,由于C1=C2,因而两路的工作频率相同,等于C=C1+C2,Lf-Rf

中频炉和电弧炉区别讲课稿

中频感应炉和普通电弧炉比较,在精炼能力、适应能力等方面具有下列特点。 1、在精炼能力方面的特点 电弧炉在去除磷、硫和脱氧能力方面比感应炉强。感应炉是冷渣,炉渣温度由钢液提供热量来维持。电弧炉是热渣,炉渣由电弧加热,通过炉渣可以完成脱磷和脱硫任务,通过炉渣充分进行扩散脱氧。因此,电弧炉的去除磷、硫和脱氧能力优于感应炉。 电弧炉冶炼钢中含氮量高于感应炉。这是因为在电弧高温区空气中氮分子被电离成原子后被钢液吸收。感应炉冶炼合金含氮量低于电弧炉,含氧量则高于电弧炉,合金的快速寿命值高于电弧炉。 2、冶炼合金的元素收得率高 感应炉冶炼合金元素的收得率高于电弧炉。在电弧高温下元素的挥发、氧化损失大。 感应炉冶炼时合金元素的烧损率低于电弧炉。特别是随炉装入的返回料中合金元素的烧损率,电弧炉远高于感应炉。 感应炉冶炼时,可以有效回收返回料中的合金元素。电弧炉冶炼时返回料中合金元素先氧化进入渣中,然后再从渣中还原回钢液,其烧损率明显升高。 返回料冶炼时,感应炉的合金元素收得率明显高于电弧炉。例如,钼的收得率感应炉为92%-96%,电弧炉为85%-90%,钨的收得率感应炉为90%-94%,电弧炉为85%-90%。合金元素在电弧的高温下挥发损失很大,感应炉通过感应加热熔化合金元素损失较少。 3、冶炼过程钢液增碳量低 感应炉是依靠感应加热原理使金属炉料熔化,不会发生钢液增碳。电弧炉是依靠石墨电极通过电弧加热炉料。熔化后钢液会发生增碳。通常条件下,在冶炼高合金镍铬钢时,电弧炉冶炼最低含碳量为0.06%,感应炉冶炼时可以达到0.020%。电弧炉冶炼过程增碳量为0.020%,感应炉为0.010%。 非真空中频感应炉适合冶炼低碳高合金钢和合金。 4、电磁搅拌钢液改善炼钢过程的热力学和动力学条件 感应炉内钢液的运动条件优于电弧炉。电弧炉为此必须安装低频电磁搅拌器,其效果仍不如感应炉。 感应炉内的电磁搅拌作用,改善于反应动力学条件,促进了钢液温度和成分的均匀化,但过度搅拌会不利于夹杂物去除和有损炉衬。 5、冶炼过程的工艺参数便于调控 感应炉冶炼时调控温度、精炼时间、搅拌强度及保持恒温等都比电弧炉方便,可以随时进行。 由于感应炉具有上述特点,在高合金钢和合金的冶炼方面战友比较重要的位置。它可以独立生产产品,还可以同电渣重熔、真空自耗等二次精炼组成双联工艺进行生产。因此,非真空中频感应炉冶炼已成为高速钢、耐热钢、不锈钢、电热合金、精密合金、高温合金等特种钢与合金生产的重要冶炼方法,并得到了广泛的应用

10吨中频炉筑炉工艺及相关参数的确定

10吨中频炉筑炉工艺及相关参数的确定 一、新型绿色10吨中频炉线圈涂抹层的施工相关参数的确定 1.中频炉的待抹线圈胶泥的感应线圈须清整掉粘贴在上的浮灰、油漆渣,用钢丝刷清理。顶圈耐火砖必须用硬物填充紧固,炉盖板紧固螺丝拧紧。感应圈固定加强(很重要)。 2.混和水应为可饮用水质。理想的水温在5-25℃之间。加水量应严格控制在说明书指明的范围15-22升/100公斤料。可以以16公斤/100公斤料加入。过量加入水,将导致强度降低,增加凝固时间和收缩而产生裂纹。 3.线圈胶泥在混和时,确保所有的设备和工具是清洁的,决不能在裸露的地面上混料。在没有搅拌机的现场可用手工搅拌,应保证搅拌均匀。混和好的料应在混和后30分钟内施工完(在环境5-25℃)。 4.线圈涂层涂抹施工时,应先在中频炉:https://www.doczj.com/doc/d813263043.html,中心挂一根铅垂线,检查线圈的安装位置是否与炉子同心。 5.线圈涂抹施工时,要注意使涂抹料嵌进线圈的匝间,涂层厚度约为6mm左右。表面应光滑平整。当采用推出机构拆除旧中频炉衬时,涂层应作成上大下小的倒锥状光滑平整的内表面。下部涂层厚度可为10-12mm。 6.尽量减小线圈底部/顶部匝圈与相应的中频炉底部/上部支承结构(如浇注口)之间的间隙或突出物尺寸。其目的是使线圈涂料层与中频炉底部/上部的支承结构形成一个整体的平滑圆柱面,使炉衬受热膨胀或冷却时可在其光滑的表面上自由伸缩,以防炉衬伸缩时与上述

的突出物或间隙之间产生巨大的应力,导致炉衬裂纹的产生。 7.涂抹层完成后,用钢丝刷将涂抹层表面拉毛,以利于干燥。 8.新的线圈抹层或较大面积的线圈涂抹层的修补层至少需经24小时的自然干燥。小范围的也需经至少6小时的自然干燥期。自然风干后进行外加热源烘烤,烘烤温度在200-250℃之间。可用红外线灯作烘干工具,也可用坩埚模放进中频炉炉内作为被加热体,使用小功率将它加热,藉此来均匀烘烤线圈涂抹层。(炉体水冷不停。) 9.线圈泥至少在打筑新炉衬前2天完成。 10.线圈涂料干料每炉约需500公斤左右。 二、10吨中频炉浇注口(槽)的砌筑施工相关参数的确定 1.开始捣筑炉衬前,先砌筑好浇注口(槽)。 这一筑炉程序可以使以后在浇注口(槽)附近的炉衬垂直方向形成一个耐材-耐材的接合面,有利于防止或减少熔融金属液窜透浇注口(槽)下方形成的横向裂纹的可能性;同时也在该处保持耐火材料纵向滑动面的连续性。 2.采用气硬型或热固型的可塑料捣筑浇注口(槽)。浇注口(槽)的耐火材料应直接与线圈涂抹料接触,之间不允许夹有侧壁背衬材料。背衬材料在干震料打到离浇注口(槽)100mm时切除。 3.完工后在表面打Ф4-Ф5mm透气孔。 4.用煤气或其他小火预先对浇注口(槽)进行烘烤。 三、10吨中频感应加热炉侧壁背衬材相关参数的确定和安装

如何提高中频炉炉衬寿命的筑炉工艺技术

?如何提高中频炉炉衬寿命的筑炉工艺技术 一.前言: 中频无芯感应炉炉衬的高温性能主要取决于所用耐火材料的物理、化学性能及矿物组成,在原辅材料选定的前提下,烧结工艺是使炉衬获得良好显微组织结构以充分发挥其耐高温性能的的关键工序。炉衬烧结的致密化程度与耐火材料的化学组成、粒度配比、烧结工艺和烧结温度等因素有关。我厂通过二十多年的不断摸索和生产试验,总结出了合理的筑炉打结工艺和烘烤烧结工艺,使炉龄大幅度上升,2T中频炉干式打结炉衬的炉龄(经一次中修)高达1157炉次,取得了显着的经济效益。 二.筑炉工艺: 2.1筑炉时去掉云母纸。 2.2对筑炉用水晶石英砂进行如下处理: 2.2.1手选:主要去除块状物及其它杂质; 2.2.2磁选:必须完全去除磁性杂质; 2.2.3干式捣打料:必须进行缓慢烘干处理,烘干温度为200℃-300℃,保温4小时以上。 2.3粘结剂的选用:用硼酐(B2O3)代替硼酸(H3BO3)作粘结剂,加入量为1.1%-1.5%。 2.4筑炉材料的选用及配比: 2.4.1筑炉材料的选用:应注意,不是所有SiO2≥99%的石英砂均可用作感应炉炉衬材料,重要的是石英晶粒大小,晶粒越粗大,晶格缺陷越少越好,(如水晶石英砂SiO2纯度高,外表洁白、透明。)炉子容量越大,对晶粒的要求越高。 2.4.2配比:炉衬用石英砂配比:6-8目10%-15%,10-20目25%-30%,20-40目25%-30%,270目25%-30%。

2.5炉衬的打结:炉衬打结质量好坏直接关系到烧结质量。打结时砂粒粒度分布均匀不会产生偏析,打结后的砂层致密度高,烧结后产生裂纹的几率下降,有利于提高感应炉炉衬使用寿命。 2.5.1干式打结炉衬(以2t中频无芯感应炉为例):线圈绝缘胶泥的应用:2t中频无芯感应炉的感应圈涂覆有绝缘胶泥层。与感应路通常使用的绝缘材料云母、玻璃丝布等相比,使用线圈绝缘胶泥有如下好处:第一,烘干后,厚度为8-15mm的线圈绝缘胶泥层具有良好的绝缘性能,完全可代替云母和玻璃丝布,充当线圈和炉衬之间的绝缘保护层;胶泥材料的导热系数较高,不必担心相对较厚的胶泥层会影响热面炉衬的三层结。第二,胶泥层位于线圈和保温层之间,正常情况下,环境温度很低(<300℃,偶尔有金属液接近其表面时胶泥层会释放出少量残余的水分,使绝缘电阻降低,系统提供早期报警。第三,利用胶泥本身高于1800℃的耐火度,当偶尔有金属液渗漏到其表面时,胶泥能给线圈提供一层保护屏障,当出现报警时,胶泥层可提供一定的事故处理时间。第四,对带有底顶出式的炉子而言,将胶泥制作成带有锥度的形状,避免了炉衬与线圈的摩擦,同时利用其强度对线圈进行固定,避免了线圈在使用和建、拆炉过程中的变形,延长了线圈的使用寿命。第五,线圈与胶泥层作为炉子的永火衬,虽一次性费用高,施工周期长,但其使用寿命可以与线圈相同,也可进行局部修补,因此就整体而言降低了筑炉成本。 干式打结炉衬前,首先在炉子线圈绝缘层内铺设一层石棉板和一层玻璃丝布,铺设时除手工平整压实各层材料外,还要用弹簧圈上下绷紧,捣固石英砂时,自上而下逐个移动弹簧圈,直至炉衬打结完毕。 2.5.2打结炉底:炉底厚约280mm,分四次填砂,人工打结时防止各处密度不均,烘烤与烧结后的炉衬不致密。因此,必须严格控制加料厚度,一般填砂厚度不大于100mm/每次,炉壁控制在60mm以内,多人分班操作,每班4-6人,每次打结30分钟换人,围绕炉子缓慢旋转换位,用力均匀,以免造成密度不均。 炉底打结达到所需高度时刮平,即可放置坩埚模。对此,应注意保证坩埚模与感应圈同心,上下调整垂直,模样尽量与所筑炉底紧密结合,调整周边间隙相等后用三个木楔卡紧,中间吊重物压上,避免炉壁打结时石英砂产生位移。

电弧炉与中频炉炼钢工艺及成本分析

电弧炉与中频炉炼钢工艺及成本分析

电弧炉与中频炉工艺及成本分析 ——关于地条钢泛滥的思考 目前生产螺纹钢常用的方法有几种,最普遍的是被称作长流程的“高炉+转炉+连铸”工艺,以及被称作短流程的“电弧炉+连铸”和“中频炉+连铸”工艺。这里暂不讨论长流程工艺,单说短流程工艺,即电弧炉和中频炉生产建筑用材工艺,看看这二者之间有什么区别,并借此聊一聊地条钢。 一、炼钢工艺简介 炼钢是严格的“熔化+精炼”过程,不是简单的“化铁水”,炼钢工艺及实际操作是保证成品钢材质量的关键,通过吹氧脱碳、造渣精炼、钢液脱氧、吹氩搅拌乃至真空脱气等手段,进行脱碳、脱磷、脱硫、去除气体和夹杂,调整成分和温度,保证钢材质量。 1、电弧炉炼钢 电弧炉炼钢是利用三相电极向炉内输送电能,通过电极端部与炉料之间的高温电弧形成3000℃以上的高温来熔化炉料。现在的超高功率电弧炉还配备有炉壁氧枪和炉门氧枪,为炉膛冷区提供辅助热源,进一步提高供热强度,加速熔化。一些有条件的工厂用高温铁水代替部分废钢,或利用余热对入炉废钢进行预热,提高入炉料温度,以加快熔炼速度,节能降耗。 传统电弧炉熔炼工艺有以下几个过程:装料→熔化→氧化→脱氧合金化→出钢→铸坯(锭),这种方法冶炼时间长,设备利用率不高,不能够确保生产节奏,现代电弧炉炼钢都把脱氧合金化工作放到炉后的钢包精炼炉进

行,并且在熔化炉料的过程中,通过提前造渣、大量用氧以及吹氧搅动熔池等,通过氧化脱碳和流渣换渣操作,迅速降低钢中的磷和气体、夹杂物含量,缩短冶炼时间。过去普通功率电弧炉熔炼时间多在4小时以上,而现在的超高功率电弧炉整个冶炼周期仅为70-90min。 电弧炉初炼出的钢液,含氧量很高,而且成分、温度都不符合要求,需要通过钢包精炼来脱氧、调整化学成分和温度,以及尽可能多地去除钢中的非金属夹杂物。钢包精炼炉简称LF炉,也是通过三相电极向钢包内的钢液通电加热,并且在钢包底部配有透气芯,可向钢液底部通入惰性气体氩气。通过补加合金调整化学成分,通过沉淀脱氧和造还原渣扩散脱氧不断地降低钢液含氧量和含硫量。连续的底部吹氩,可促进钢液内部的非金属夹杂上浮去除。 电弧炉和钢包炉所用炉衬材料都是碱性耐火材料,耐浸蚀性好,被卷入钢中形成夹杂物的数量也少。所以“电弧炉+钢包炉+连铸”(简称EBT+LF+CC)工艺生产的钢产品质量好,且稳定可靠。 电弧炉(EBT)和钢包精炼炉(LF)熔炼示意见图1、图2。

筑炉工程培训资料

筑炉工程培训资料 一、窑炉工程简介 1窑炉工程分类 窑炉工程一般分为锅炉砌筑工程、连续式直立炉砌筑工程焦炉砌筑工程、转化炉和裂解炉砌筑工程、玻璃熔窑砌筑工程、铝电解槽砌筑工程、煅烧炉、高炉砌筑工程、热风炉砌筑工程、均热炉、加热炉和热处理炉砌筑工程、以及回转窑和隧道窑砌筑工程等。每种炉的用途、作用、构造虽然不尽相同,但筑炉砌筑工艺原理基本相似。

1、筑炉工具 切砖机 磨砖机 灰浆机 泥刀 开凿 铁锤 木槌 钢凿 勾缝刀 灰槽 2、筑炉量具 水准仪 经纬仪 水平尺 线锤 托线板 卷尺 塞尺 测角器 三、筑炉施工工艺 1筑炉程序 筑炉大棚---土建、工艺设备安装中间交接验收---搭材料棚---选砖—预砌—确定灰缝厚度—立批数杆——砌筑 2炉体结构构造 焦炉结构:

蓄热室、炭化室、斜道、炉顶、烟道 锅炉结构: 落灰斗、燃烧室、前后拱及各类拱门、折焰墙、炉顶、省煤 气墙 转化炉结构: 烟道、对流段、过渡段、辐射段 (1) 一段转化炉是大型合成氨生产装置的关键设备之一。 传统的筑炉施工中,一般都统一用耐火砖和耐火浇注料作为内衬材料,近几年炉体衬里结构型式发生了较大的变化,尤其是辐射段,不再使用传统的保温板和高铝隔热耐火砖的复合结构,而统一使用陶瓷纤维模块作为衬里层。 (2) 与一段转化炉一样,二段转化炉也是大型合成氨生产 装置中的重要设备。其型式为立式圆筒形容器,由筒体、颈部、连接接头,底部支承拱等三部分组成。通常选用耐火度高、组织致密均匀、线变化小、化学稳定性好的低硅纯铝酸钙水泥耐火浇注料作为衬里材料。 一段转化炉平面 烟道 对流段 过渡段 辐射段 二段炉 输气总管

中频加热炉

中频加热炉的控制电源是一种将工频50HZ交流电转变为中频(300HZ以上至20K HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。这种涡流同样具有中频电流的一些性质,即,金属自身的自由电子在有电阻的金属体里流动要产生热量。比如说,把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。如果圆柱体放在线圈中心,那么圆柱体周边的温度是一样的,圆柱体加热和熔化也没有产生有害气体、强光污染环境。中频电炉广泛用于有色金属的熔炼[主要用在熔炼钢、合金钢、特种钢、铸铁等黑色金属材料以及不锈钢、锌等有色金属材料的熔炼,也可用于铜、铝等有色金属的熔炼和升温,保温,并能和高炉进行双联运行。]、锻造加热[用于棒料、圆钢,方钢,钢板的透热,补温,兰淬下料在线加热,局部加热,金属材料在线锻造(如齿轮、半轴连杆、轴承等精锻)、挤压、热轧、剪切前的加热、喷涂加热、热装配以及金属材料整体的调质、退火、回火等。]热处理[主要供轴类(直轴、变径轴,凸轮轴、曲轴、齿轮轴等);齿轮类;套、圈、盘类;机床丝杠;导轨;平面;球头;五金工具等多种机械(汽车、摩托车)零件的表面热处理及金属材料整体的调质、退火、回火等。

设备优势 中频加热炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。中频炉加热速度快、中频炉生产效率高、中频炉氧化脱炭少、中频炉延长模具寿命、中频炉工作环境优越、中频炉提高工人劳动环境和公司形象、中频炉无污染、中频炉低耗能、中频炉熔炼速度快、中频炉节电效果好、烧损少、能耗低、中频炉自搅拌功能、熔炼温度及金属成分均匀、中频炉电加热作业环境好、中频炉启动性能好,空炉、满炉均可达到100%启动。 应用领域 1、焊接:刃具、钻具、刀具、木工刀具、车刀、钎头、钎焊、铰刀、铣刀、钻头、锯片锯齿、眼镜行业的镜架、钢管、铜管的焊接、截齿焊接、同种异种金属的焊接、压缩机、压力表、继电器接触点、不锈钢锅底不同材料的复合焊接、变压器绕组铜线的焊接、贮藏(气灌嘴的焊接、不锈钢餐、厨具的焊接)。

中频炉的相关特点和工作原理

中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感 应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。 中频炉 这种涡流同样具有中频电流的一些性质,即,金属自身的自由电子在有电阻的金属体里流动要产生热量。例如,把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱 体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。如果圆 柱体放在线圈中心,那么圆柱体周边的温度是一样的,圆柱体加热和熔化也没有产生有害气体、强光污染环境。国内知名生产商河北恒远电炉制造有限公司生产的中频炉广泛用于 有色金属的熔炼[主要用在熔炼钢、合金钢、特种钢、铸铁等黑色金属材料以及不锈钢、锌等有色金属材料的熔炼,也可用于铜、铝等有色金属的熔炼和升温,保温,并能和高炉 进行双联运行。]、锻造加热[用于棒料、圆钢,方钢,钢板的透热,补温,兰淬下料在线加热,局部加热,金属材料在线锻造(如齿轮、半轴连杆、轴承等精锻)、挤压、热轧 、剪切前的加热、喷涂加热、热装配以及金属材料整体的调质、退火、回火等。]热处理调质生产线[主要供轴类(直轴、变径轴,凸轮轴、曲轴、齿轮轴等);齿轮类;套、圈 、盘类;机床丝杠;导轨;平面;球头;五金工具等多种机械(汽车、摩托车)零件的表面热处理及金属材料整体的调质、退火、回火]等。 中频炉系列透热炉特点 节约特点 ●加热速度快、生产效率高、氧化脱炭少、节省材料与成本、延长模具寿命由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后 十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加 热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极 小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um工艺节能,中频加热比重油加热节能31.5%~54.3%,比煤气加热节能5%~40%。加热质量好, 可降低废品率1.5%,提高生产率10%~30%,延长模具寿命10%~15%。 环保特点

AOD精炼炉和中频炉的区别

AOD精炼炉和中频炉的区别 一般人对目前民营不锈钢厂的冶炼可能没太在意,认为能控制元素含量就够了,确实,随着不锈钢的发展,以前滥充材质用201代替304,或者不足8个镍的当304的事情越来越少了,但做过不锈钢压延料的可能对不锈钢的冶炼深有体会,里面的门道也是很多的,笔者仅对自己知道的一些情况拿来跟大家一起分享,希望能起到抛砖引玉的效果。 目前,民营钢厂所使用的冶炼炉一般有AOD精炼炉和中频炉: AOD精炼法是氩氧脱碳法(argon oxygen decarburization)的简称。在精炼不锈钢时,它是在标准大气压力下向钢水吹氧的同时,吹入惰性气体(Ar,N2),通过降低CO分压,达到假真空的效果,从而使碳含量降到很低的水平,并且抑制钢中铬的氧化。适合生产低碳和超低碳不锈钢,易于将特殊钢中S含量控制在0.005%以下,AOD精炼炉可以进行二次炼钢,以达到精炼目的一般可以灵活添加或者减少相关元素;在冶炼过程中一般采用废铁和铁砂进行炼钢。产品质量相对较高,延展性能较好,做深冲的制品一般都采用精炼炉冶炼。 中频炉是利用交流电流产生交变磁场,处在交变磁场中的金属内部则产生交变的感应电势与感应电流,而感应电流的方向与炉子感应线圈中的电流方向相反。在感应电动势作用下,被加热的金属产生感应电流,电流通过时,为克服金属的电阻作功产生热量。中频炉利用此热量使金属加热熔化,从而达到熔化的目的。中频炉只能进行一次炼钢,特别是在原材料方面不能灵活控制。所以冶炼时候一般采用不锈钢废钢和铁砂等进行冶炼。这种冶炼法不能控制某种元素的含量,因此产品质量相对也略逊一筹,一般不会用做深加工等制品行业。 所以,用中频炉炼钢对原料要求高,而且成分不易控制,首先体现在含碳量的控制上,因为不能形成AOD似的真空状况,即便原料能控制到极致,中频炉的含碳量也很难控制在0.03%以下,另外,没有脱硫除磷的工艺,一般也不能将原料中的硫磷等有害元素清除。所以,当选择304L、316L时,中频炉是排除在外的,特别是在做出口产品时,中频炉出来的扁钢、圆钢都会存在一些P、S超标的问题,只是有的地方明显,有的地方不那么明显。在做下一步加工的时候,中频炉的这一缺陷显得更为明显,同一炉钢水出来的钢锭经过锻打、酸洗后经常会发现有些地方的材质会有细微的区别,这也难怪,因为中频炉不具备除渣的功能,所以出来的东西做一些表面加工时会进一步的暴露问题:沙眼、裂痕、起皮等。虽然,中频炉的东西是那么的不尽人意,可有一点是受到了大家的欢迎:价格。中频炉出来的比精炼炉的便宜800-1000不等。主要是中频炉的设备实在太便宜了,一般几万块即可,有些转让的更便宜,如果能在电价上享受到优惠则炼钢的成本更低。但随着规模经济效应的体现和政府的控制,相信,在不久的将来,中频炉会退出历史的舞台。

相关主题
文本预览
相关文档 最新文档