当前位置:文档之家› 第二届全国大学生混凝土设计大赛与 (2012 南京)-中国混凝土与

第二届全国大学生混凝土设计大赛与 (2012 南京)-中国混凝土与

第二届全国大学生混凝土设计大赛与 (2012 南京)-中国混凝土与
第二届全国大学生混凝土设计大赛与 (2012 南京)-中国混凝土与

全国大学生结构设计竞赛赛题

第六届全国大学生结构设计竞赛赛题 1.命题背景 吊脚楼是我国传统山地民居中的典型形式。这种建筑依山就势,因地制宜,在今天仍然具有极强的适应性和顽强的生命力。这些建筑既是我中华民族久远历史文化传承的象征,也是我们的先辈们巧夺天工的聪明智慧和经验技能的充分体现。 重庆地区位于三峡库区,旧式民居中吊脚楼建筑比比皆是。近年来的工程实践和科学研究表明,这类建筑易于遭受到地震、大雨诱发泥石流、滑坡等地质灾害而发生破坏。自然灾害是这种建筑的天敌。 相对于地震、火灾等灾害而言,重庆地区由于地形地貌特征的影响,出现泥石流、滑坡等地质灾害的频率更大。因此,如何提高吊脚楼建筑抵抗这些地质灾害的能力,是工程师们应该想方设法去解决的问题。本次结构设计竞赛以吊脚楼建筑抵抗泥石流、滑坡等地质灾害为题目,具有重要的现实意义和工程针对性。 2.赛题概述 本次竞赛的题目考虑到可操作性,以质量球模拟泥石流或山体滑坡,撞击一个四层的吊脚楼框架结构模型的一层楼面,如图2.1所示。四层吊脚楼框架结构模型由参赛各队在规定的时间内现场完成。模型各层楼面系统承受的竖向荷载由附加配重钢板实现。主办方提供器材将模型与加载装置连接固定(加载台座倾角均为o 30θ=),并提供统一的测量工具对模型的性能进行测试。 图2.1.第六届全国大学生结构设计竞赛赛题简图 配重1M 配重2M 配重2M 后固定板 前撞击板 螺杆 钢底座 钢架A 钢架B 不锈钢半圆滑槽 模型部分(含部分加载装置) 加载台座 θ θ 加速度传感器 螺杆 硬橡胶

3.模型要求 图3.1.模型要求示意图 图 3.1模型设计参数取值表 q o 30 0L 20cm > —— H 1cm 99± L < 24cm —— q 配重1M 配重2M 配重2M 前撞击板 后固定板 底板 模型平面尺寸要求示意图 要求平整,且与前撞击板端头有效接触面积不小于22cm 要求平整,且与后固定板端头有效接触面积不小于22cm 底板示意图 允许固定区域 硬橡胶

沥青混凝土配合比优化设计

沥青混凝土配合比优化设计 摘要:随着公路建设的快速发展,有关部门制定了新的《公路沥青路面施工技术规范》,完善了沥青混合料配合比设计方法,本文根据新《规范》的要求,提出了沥青混合料配合比的优化设计,分别从三个方面进行:目标设计、生产设计和生产验证,分析了矿料间隙率对沥青混合料性能的影响规律,针对不同情况的空隙率和稳定度,提出了相应的调整方法,并通过马歇尔实验,来加以检验。关键词:沥青混合料配合比马歇尔试验生产配合比 一、前言 近年来,沥青混凝土路面应用越来越广泛,沥青混凝土配合比直接影响路面的质量,关系到路面的使用寿命。同时,还关系到行车舒适性和安全性。保证路面的质量,从施工的全过程加以控制管理,尤其对沥青混凝土配合比足够重视、认真对待、精心研究、优化设计,最终达到经济、科学、可行、便于施工。如何进行沥青混凝土配合比优化设计是道路技术人员亟待解决的难题。 二、沥青混合料配合比优化设计 《沥青混合料配合规范》规定采用三个阶段进行沥青混合料的配比设计,这三个阶段分别是:目标配合比设计;生产配合比设计和生产配合比的验证。该配比方法可以使配比过程程序化、深入化,有助于设计结果更符合生产需求,充分指导施工过程。 (一)目标配合比设计

目标配合比设计是整个过程的开始,结合施工文件要求,选择相应的材料,计算矿料级配比,选择最佳状态的配合比。在计算过程中,通常使试配结果尽量靠近级配范围的中间值,根据《规范》中推荐的,结合实践经验固定一个最佳沥青含量的范围,设计出不同油石比的配置的5到6组材料试件,每组间隔是0.5%,然后分别进行马歇尔稳定度、空隙率、试件密度、流值、沥青最佳沥青用量oac,然后再按最佳沥青用量oac制件,做水稳定性检验和高温稳定性检验。最后,判定实验结果,如果达不到设计文件要求则另选材料、调整配合比或者采用其他方法继续做试验,直到符合要求,确定理想的目标配合比。 在目标配合比设计过程中,必须重视两个重要指标:混合料空隙率和稳定度。沥青混合料的空隙率是反映沥青路面泛油、松散、裂纹、车辙等病害的最重要指标,矿料间隙率是综合反映沥青混合料质量状况的核心指标,对沥青混合料设计、生产的质量控制有重要作用。这两个指标对调整混合料稳定性和耐久性特别重要, 下面是对他们之间的关系的分析,并根据存在的不同的状态,提出了相应的处理措施。 (1)空隙率低,稳定度低。当空隙率低时,可以选择多种方法来增加空隙率:首先,调整矿料的级配,在规定允许的范围之内,适当增加粗集料的比例,同时减小细集料的比例;如果沥青混合料的油石比高于正常量,并且不能被矿料吸收时,可以适当的降低油

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

第二届“中联杯”全国大学生建筑设计方案竞赛获奖结果公告

第二届“中联杯”全国大学生建筑设计方案竞赛获奖结果公告为了繁荣建筑创作,提高建筑专业大学生的设计能力和综合素质,促进青年人才的成长,中国建筑学会与全国高等学校建筑学专业指导委员会、中国联合工程公司在去年成功举办第一届“中联一等奖 杯”全国大学生建筑设计方案竞赛的基础上,今年举办的第二届“中联杯”全国大学生建筑设计方案竞赛又创出佳绩。本次竞赛至2010年10月20日截稿之日,共收到包括香港地区在内的全国26个省、自治区、直辖市100多所高校报送的746项作品,创近年来新高。 第二届中联杯评选工作于2010年12月23日在杭州进行,评审委员会由中国工程院院士何镜堂,全国建筑设计大师韩光宗、何玉如、郭明卓,中国建筑学会秘书长周畅,全国高校建筑学科专业指导委员会主任仲德崑,以及清华大学、同济大学、哈尔滨工业大学、天津大学、重庆大学、西安建筑科技大学等著名院校建筑学院的院长、副院长等十三位专家组成,何镜堂院士任评审工作委员会主任。评审工作自始至终坚持“公开、公正和公平”的评选原则,通过评委会多轮的投票筛选,共选出107项入围作品,其中包括一等奖2项,二等奖5项,三等奖10项以及优秀奖90项。对于此次参赛作品的综合水平,评委们给予了极高的评价,不论是从参赛数量还是作品质量,相对于去年都有了一个较大的提升。以“我的城市,我的明天”为主题的746份作品,以不同的创作手段,不同的表现方式,体现出年轻设计者对中国城市发展中的焦点问题的关注,同时也具有一定的探索未来的意义。对于今年部分作品中体现的环保与绿色建筑的思想,也反映了我国建筑教育的一大进步。对于“中联杯”的两次成功举办,评委们给予了很高的肯定与期望,希望它能成为建筑学大学生的一个“品牌”,成为学生放飞思想、释放创意的一个良好平台,为推动建筑学的发展做出贡献。 获奖人员及项目名单详见附件。 附件:第二届“中联杯”全国大学生建筑设计方案竞赛获奖结果 中国建筑学会 中国联合工程公司011年1月30日

C语言程序设计竞赛题及其答案

数学与统计学院 第三届计算机程序设计竞赛题 竞赛需知: 1、答案必须写在答题纸上。 2、程序采用C/JAVA/VB/VFP语言实现均可。 3、考虑到各种因素,程序的键盘输入和结果输出可以用伪代码或者自然语言表示。但是必 须说明输入变量和输出变量。 4、题目最好能用完整、正确的语言程序来解决问题,如确实无法编写完整语言程序的,可 以写出程序主要框架和流程,必要时可以用伪代码或者自然语言描述算法(程序)。 一、玫瑰花数(20分) 如果一个四位数等于它的每一位数的4次方之和,则称为玫瑰花数。例如: + + 1634+ =, 4^4 4^3 4^6 4^1 编程输出所有的玫瑰花数。 #include void main() { int i,j,k,l,m; for(i=999;i<=9999;i++) { j=i/1000; k=i%10; l=i/100-10*j; m=i/10-100*j-10*l; if(i==j*j*j*j+k*k*k*k+l*l*l*l+m*m*m*m) printf("%d\n",i); } } 二、菱形图案(20分) 对给定的奇数n,编程打印菱形图案。 输入样例: 7 输出样例: * *** ***** ******* ***** *** * #include #include void main() {

int i,j,k; int n; scanf("%d",&n); for(i=0;i #include void main() { int i,j,x,y; float r; int a,b,count=0; printf("请输入矩阵的行列i,j:"); scanf("%d%d",&i,&j); printf("请输入圆心的坐标点及半径x,y,r:"); scanf("%d%d%f",&x,&y,&r); for(a=0;a

第十届全国大学生结构设计竞赛赛题

第十届全国大学生结构设计竞赛赛题 大跨度屋盖结构 随着国民经济的高速发展和综合国力的提高,我国大跨度结构的技术水平也得到了长足的进步,正在赶超国际先进水平。改革开放以来,大跨度结构的社会 需求和工程应用逐年增加,在各种大型体育场馆、剧院、会议展览中心、机场候机楼、铁路旅客站及各类工业厂房等建筑中得到了广泛的应用。借北京成功举办2008奥运会、申办2022冬奥会等国家重大活动的契机,我国已经或即将建成一大 批高标准、高规格的体育场馆、会议展览馆、机场航站楼等社会公共建筑,这给我国大跨度结构的进一步发展带来了良好的契机,同时也对我国大跨度结构技术水平提出了更高的要求。 2总体模型 总体模型由承台板、支承结构、屋盖三部分组成(图-1) 加载区域 图-1模型三维透视示意简图 2.1承台板 承台板采用优质竹集成板材,标准尺寸1200mm>800mm,厚度16mm,柱 底平面轴网尺寸为900mm>600mm,板面刻设各限定尺寸的界限:

(1)内框线:平面净尺寸界限,850mr> 550mm;

(2) 中框线:柱底平面轴网(屋盖最小边界投影)尺寸, (3) 外框线:屋盖最大边界投影尺寸, 1050mm X750mm 承台板板面标高定义为土 0.00。 2.2支承结构 仅允许在4个柱位处设柱(图-2中阴影区域),其余位置不得设柱。柱的任 何部分(包括柱脚、肋等)必须在平面净尺寸(850mmx 550mm )之外,且满足 空间检测要求。(即要求柱设置于四角175mm 125mm 范围内。) 柱顶标高不超过+0.425 (允许误差+5mm ),柱轴线间范围内+0.300标高以 下不能设置支撑,柱脚与承台板的连接采用胶水粘结。 2.3屋盖结构 屋盖结构的具体形式不限,屋盖结构的总高度不大于 125mm (允许误差 +5mm ),即其最低处标高不得低于0.300m ,最高处标高不超过0.425m (允许误 差 +5mm )。 平面净尺寸范围(850mmx 550mm )内屋盖净空不低于300mm ,屋盖结构 覆盖面积(水平投影面积)不小于900X300mm ,也不大于1050X750mm ,见图-3。 不需制作屋面。 屋盖结 构覆盖面积(水平投 影面积)不小于900>600mm ,也不大于 1050X750m m 。但不限定屋盖平面尺寸是矩形,也不限定边界是直线。 屋盖结构中心点(轴网900X300mm 的中心)为挠度测量点。 2.4剖面尺寸要求 模型高度方向的尺寸以承台板面标高为基准,尺寸详见图 -4、5。 900mm >600mm ; (I ; ② 图-2承台板平面尺寸图 、柱脚内界 口 g □ Trfrii?尺寸范应 (85Gi550} 〔柱脚不睜进入谀范 柱位 12UW

混凝土配合比设计计算实例JGJ55-2011

混凝土配合比设计计算实例(JGJ/T55-2011) 一、已知:某现浇钢筋混凝土梁,混凝土设计强度等级C30,施工要求坍落度为75~90mm, 使用环境为室内正常环境使用。施工单位混凝土强度标准差σ取5.0MPa。所用的原材料情况如下: 1.水泥:4 2.5级普通水泥,实测28d抗压强度f ce为46.0MPa,密度ρc=3100kg/m3; 2.砂:级配合格,μf=2.7的中砂,表观密度ρs=2650kg/m3;砂率βs取33%; 3.石子:5~20mm的卵石,表观密度ρg=2720 kg/m3;回归系数αa取0.49、αb取0.13; 4. 拌合及养护用水:饮用水; 试求:(一)该混凝土的设计配合比(试验室配合比)。 (二)如果此砼采用泵送施工,施工要求坍落度为120~150mm,砂率βs取36%,外加剂选用UNF-FK高效减水剂,掺量0.8%,实测减水率20%,试确定该混凝土的设计配合比(假定砼容重2400 kg/m3)。

解:(一) 1、确定砼配制强度 f cu , 0 =f cuk+1.645σ=30+1.645×5 = 38.2MPa 2.计算水胶比: f b = γf γs f ce =1×1×46=46 MPa W/B = 0.49×46/(38.2+0.49×0.13×46)= 0.55 求出水胶比以后复核耐久性(为了使混凝土耐久性符合要求,按强度要求计的水灰比值不得超过规定的最大水灰比值,否则混凝土耐久性不合格,此时取规定的最大水灰比值作为混凝土的水灰比值。) 0.55小于0.60,此配合比W/B 采用计算值0.55; 3、计算用水量(查表选用) 查表用水量取m w0 =195Kg /m 3 4.计算胶凝材料用量 m c0 = 195 / 0.55 =355Kg 5.选定砂率(查表或给定) 砂率 βs 取33; 6. 计算砂、石用量(据已知采用体积法) 355/3100+ m s0/2650+ m g0/2720+195/1000+0.11×1=1 a b cu,0a b b /f W B f f ααα= +

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。

黄祖慰-第五届全国大学生结构设计竞赛总结(技术版)

第五届全国大学生结构设计竞赛总结 (技术版) 黄祖慰20080537 5th国赛的作品,是总结了4th国赛的失败教训,以降低模型量为重点的模型设计和制作成果。我们通过不懈努力,终于到达了目标。在这次比赛中,我们研究出了一些先进的模型设计和制作技巧和积累了更多的设计和制作的经验。在此,我将通过模型从无到有的整个过程进行具体的介绍。 一、研读赛题 读懂题目在结构设计竞赛中是一个最基本的要求,要做到对赛题的点点滴滴熟记于心,并且从规则中发掘模型设计的切入点。 要想获得大奖,就要对题目认真分析;努力寻找漏洞显得相当重要,是一条迈向成功的捷径。在本次结构设计竞赛模型中,整体铁块,虚悬挑梁等都是针对题目漏洞而设计的,为模型重量的减轻做出了重要贡献。 二、准备制作工具 所谓公欲善其事必先利其器,要想做好一个模型,一套好的工具是必须的。在制作模型初期,选手可以采用非比赛指定工具来制作模型。虽然赛题中已经明确规定了制作工具,但是由于提供工具的局限性,有些很好的想法不能够在模型上做出来。我的建议是,先使用的工具,把想法尽可能表现出来,等到模型初步定型后,再使用比赛指定工具,寻求达到同样效果的模型的制作

方法。为了提高制作精度,画线笔可采用0.38mm的水笔。 三、研究材料特性 所谓知自知彼方能百战不殆,在制作模型之前,必须先对材料进行分析,了解材料的特性,由此得知材料的实际力学性质和可加工性质。下面我就罗列我对本次比赛的复压竹皮、竹制底板和502胶水的性质研究的一些心得: 1、复压竹皮在顺纹路方向存在连续纤维,利于受拉。但是顺 纹容易被撕裂。 2、规格为0.2mm的竹皮为单层竹皮,应注意竹皮上存在的 竹节的薄弱点,应尽量避开;此种竹皮,一面为光面,一面为 毛面,粘贴时,光面的粘接速度要快于毛面,但是最终粘接紧 密性毛面为优。使用单层竹皮作为拉杆,存在风险,北京交通

隧道二次衬砌混凝土配合比的优化设计

隧道二次衬砌混凝土配合比的优化设计 摘要:介绍了采用粉煤灰和高效减水剂,同时运用正交试验设计方法,并利用正交试验结果,采用综合平衡法分析水泥混凝土各组成材料用量对混凝土各项指标的影响。分析了掺粉煤灰和高效减水剂的大流动度泵送砼的社会效益和经济效益。 关键词:大流动度泵送砼,粉煤灰,正交试验设计 大流动度砼以其优越的流动性和良好的和易性,被广泛的用于泵送施工,在泉州晋石高速隧道二次衬砌中应用大流动度防水砼,最初设计的防水砼配合比为:水泥325 kg、水178 kg、砂767 kg、石1059 kg、粉煤灰71 kg、外加剂7.92 kg(萘系)。由于材料消耗量大,从而造成施工成本上升,减少企业利润空间。经过研究,决定采用掺粉煤灰和高效减水剂(聚羧酸)的技术对混凝土配合比进行优化设计。 1原材料选用和技术性能 1)粉煤灰:厦门华金龙建材有限公司F类II级粉煤灰。 2)水泥:选用漳平红狮水泥有限公司生产的P.O42.5普通硅酸盐水泥。 3)粗集料:选用当地华表山隧道洞渣加工的4.75~31.5mm合成级配碎石。经计算,掺配比例为16~31.5mm占30%、9.5~16mm占60%、4.75~9.5mm占10%,其中针片状含量5.9%、含泥量0.8%、压碎值10.8%。 4)细集料:选用华山砂场天然河砂。细度模数2.68,中砂,Ⅱ区级配。含泥量1.6%。 5)外加剂:为提高混凝土和易性.提高密实度和早期强度,选用湖北强达有限公司生产的QD高效减水剂,减水率≥ 25%。 2 试验方案 影响混凝土性能的因素较多,如混凝土的水胶比、粉煤灰掺率、水泥用量、粗集料的最大粒径、砂率、以及混凝土搅拌工艺和浇筑方法等。 2.1 因素与水平表 大流动度防水混凝土配合比设计应满足设计要求的抗压强度和施工要求的均匀性、和易性及抗渗等级。 根据工程的要求和材料现状.经过初步分析计算,选择粉煤灰掺率、砂率及

北京大学生建筑结构设计竞赛

第七届北京市大学生建筑结构设计竞赛 B组赛组(桥梁方向) 一.题目 北京市自行车专用路跨京藏高速高架桥设计 二.设计资料 (一)工程概况 1.具体交通需求 为解决回龙观地区非机动车出行不便问题,北京市拟建一条自行车专用路。该专用路与京藏高速相交,采用立体交叉形式上跨京藏高速。在京藏高速东西两侧辅路设有人行梯道,保障拟建自行车专用路与现况京藏高速辅路非机动车系统及行人道实现交通跨越。 沿着京藏高速路纵向240米范围内,共有5座跨京藏高速路的高架桥(2座已建,2座待建,1座本桥),跨京藏高架桥作为此区域从北向进京的第一座桥,形成标志。 图2-1-1 拟建高架桥平面图

图2-1-2 拟建高架桥道路纵断面 2.跨越线路需求-京藏高速 京藏高速主路按高速公路标准建设,计算车速为100km/h,双幅路形式,三上三下六车道,中间分隔带宽度2.5m,西侧主路横断面形式为:0.5m路缘带+3×3.75m车行道+3m硬路肩(含0.5m路缘带)+0.75m土路肩,宽度为15.5m。京藏高速辅路在主路两侧布置,为单向3车道,横断面形式为1.0m检修步道+0.25m路缘带+3×3.25m机动车道+2.5m非机动车道 +1.5m人行道。 道路等级、规划红线、规划断面、节点形式等见下表:

图2 拟跨越线路具体情况 (二)拟建场地工程地质条件 1 地形、地貌及地物概述 本工程场地地貌属温榆河冲洪积扇的中部。地形较平坦,钻孔地面标高在 42.64~44.88m 之间。 根据本次钻探野外描述、原位测试及室内土工试验成果,按土的岩性及工程特性将地层划分为 11 大层,其中①层土为人工填土层,②~?层土为第四纪沉积土层。 现自上而下分述如下: 2.2.1 人工填土层 a.素填土①:黄褐色,稍湿~湿,稍密,具中压缩性。主要成分为粉质黏土、粉土,含少量砖渣、碎石。本层厚度为 0.70~4.00m,层底标高为 40.71~43.21m。 b.杂填土①1:杂色,稍湿,松散~稍密。主要由砖块、灰渣、碎石等组成。本层厚度为 0.30~4.00m。 2.2.2 第四纪沉积土层 a.粉土②:褐黄色,稍湿~湿,中密~密实。含云母片、氧化铁条纹,夹粉质黏土②1、黏土②2 薄层或透镜体。本层厚度为 2.00~6.20m,层底标高为 36.57~ 39.89m。 b.粉质黏土②1:褐黄色,可塑,具中压缩性~高压缩性。含氧化铁条纹。本层厚度为 0.40~2.70m。 c.黏土②2:褐黄色,可塑,局部软塑,具中压缩性~高压缩性。含氧化铁条纹。本层厚

高抗硫酸盐混凝土配合比优化设计

高抗硫酸盐混凝土配合比优化设计 摘要:某工程引水隧洞地下水中SO42-总磷含量超标,对混凝土有强结晶型腐蚀和污染引水水体的风险。因此在混凝土施工前,对该引水隧洞混凝土进行抗硫酸盐侵蚀性试验。本文介绍了硫酸盐对混凝土的侵蚀影响,高抗硫酸盐混凝土原材料的选择,及通过掺粉煤灰的方式对高抗硫酸盐混凝土配合比进行优化设计。 关键词:配合比设计;抗腐蚀性;高抗硫酸盐混凝土 1.引言 某工程引水隧洞附近有一些化工企业,其中某集团磷石膏渣场距引水隧洞约1km,而该洞段位于岩溶极发育区域,存在有机物渗透对工程及水质带来较大危害的风险。根据对该区段地表和地下水体抽样检测,地下水中SO42-总磷等含量超标,因此对该区段采取有针对性的防渗和防腐处理措施。故进行混凝土抗硫酸盐侵蚀性试验,以确保工程质量。 2.混凝土受硫酸盐侵蚀的影响因素 硫酸盐对混凝土侵蚀作用非常复杂,其中包括物理方面和化学方面的侵蚀。受硫酸盐侵蚀的影响因素也有很多,主要体现在内部因素和外部因素。内部侵蚀是由于混凝土组分本身带有的硫酸盐引起,主要体现在混凝土自身的性质包括水泥、活性掺合料和水胶比,施工质量水平等;外部侵蚀是环境中的硫酸盐对混凝土的侵蚀,包括硫酸根离子浓度和环境PH值、混凝土的工作环境条件等。 3.原材料选用 3.1 水泥 水泥对混凝土的抗腐蚀性能起决定性的作用,混凝土中的硅酸三钙的含量过高,易于受到硫酸盐的侵蚀生成石膏。如果混凝土中铝酸三钙过多,则易于生成过多的钙矾石,在侵蚀环境下导致膨胀破坏。根据工程设计要求,结合高抗硫酸盐水泥的特性,本次试验混凝土选用P?HSR 42.5高抗硫酸盐水泥。 依据GB748标准要求,对高抗硫酸盐水泥进行标准稠度用水量、凝结时间、安定性、比表面积、密度、抗压强度、抗折强度、铝酸三钙(C3A)含量、抗硫酸盐性等指标检测,试验结果均满足标准要求,抗硫酸盐性14d≤0.04%。试验结果见表3.1。 4.混凝土配合比设计及试验方法 4.1 配合比基本参数选择试验 在配合比设计过程中充分利用粉煤灰对降低混凝土水化热和后期强度的贡献,以及对混凝土抗侵蚀的作用,选出粉煤灰的合理掺量,全面考虑合理的骨料级配对混凝土工作性和可泵性的影响和耐久性抗侵蚀能力。通过对减水剂不同掺量下的混凝土性能试验,泵送剂的最优掺量为1.0%、对石子级配组合进行容重试验,并结合工程经验,选用二级配粒径为 5mm~20mm:20mm~40mm比例为45:55。 4.2 水胶比与强度关系 当混凝土原材料、生产工艺以及工序既定的情况下,混凝土的性能主要取决于水胶比的大小。水胶比越大混凝土的强度越低,水胶比越小混凝土的强度越高,抗侵蚀能力就越强。配合比设计过程中首先进行基准用水量与砂率试验,然后进行水胶比与强度关系试验,对水胶比与强度统计计算回归方程,利用设计强度等级计算配制强度,将配制强度带入回归方程

首届全国中医药院校大学生程序设计竞赛试题

Problem A: 序列的混乱程度 Time limit:1s Memory limit:128MB Description 有一个长度为n的正整数序列,一个序列的混乱程度定义为这个序列的最大值和最小值之差。请编写一个程序,计算一个序列的混乱程度。 Input 输入的第一行为一个正整数T(T<=1000),表示一共有T组测试数据。 每组测试数据的第一行为一个正整数n(1<=n<=1000),代表这个序列的长度。第二行为n 个正整数,代表这个序列。序列中元素的大小不会超过1000。 Output 对于每个测试数据,输出一行包含一个正整数,代表对应序列的混乱程度。 Sample Input 2 5 1 2 3 4 5 5 1 9 2 4 8 Sample Output 4 8

Problem B: 随机数 Time limit:1s Memory limit:128MB Description 有一个rand(n)的函数,它的作用是产生一个在[0,n)的随机整数。现在有另外一个函数,它的代码如下: int random(int n,int m) { return rand(n)+m; } 显而易见的是函数random(n,m)可以产生任意范围的随机数。现在问题来了,如果我想要产生范围在[a,b)内的一个随机数,那么对应的n,m分别为多少? Input 输入的第一行为一个正整数T(T<=1000),表示一共有T组测试数据。 对于每组测试数据包含两个整数a,b(a<=b)。 Output 对于每组测试数据,输出一行包含两个整数n和m,两个整数中间有一个空格分隔。 Sample Input 2 0 5 1 4 Sample Output 5 0 3 1

普通混凝土配合比设计总结

普通混凝土配合比设计 总结 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

普通混凝土配合比设计(新规范) 一、术语、符号 普通混凝土 干表观密度为 2000kg/m3~2800kg/m3的混凝土。 (在建工行业,普通混凝土简称混凝土,是指水泥混凝土) 干硬性混凝土 拌合物坍落度小于10mm且须用维勃稠度(s)表示其稠度的混凝土。 (维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。) 塑性混凝土 拌合物坍落度为10mm~90mm的混凝土。 流动性混凝土 拌合物坍落度为100mm~150mm的混凝土。 大流动性混凝土 拌合物坍落度不低于160mm的混凝土。 胶凝材料 混凝土中水泥和矿物掺合料的总称。 胶凝材料用量 混凝土中水泥用量和矿物掺合料用量之和。

水胶比 混凝土中用水量与胶凝材料用量的质量比。(代替水灰比) (胶凝材料和胶凝材料用量的术语和定义在混凝土工程技术领域已被广泛接受)二、设计方法、步骤及相关规定 基本参数 (1)水胶比W/B; (2)每立方米砼用水量m w; (3)每立方米砼胶凝材料用量m b; (4)每立方米砼水泥用量m C; (5)每立方米砼矿物掺合料用量m f; (6)砂率βS:砂与骨料总量的重量比; (7)每立方米砼砂用量m S; (8)每立方米砼石用量m g。 理论配合比(计算配合比)的设计与计算 基本步骤: ?混凝土配制强度的确定; ?计算水胶比; ?确定每立方米混凝土用水量; ?计算每立方米混凝土胶凝材料、矿物掺合料和水泥用量; ?确定混凝土砂率; ?计算粗骨料和细骨料用量。

《普通混凝土配合比设计规程》配合比计算案例-C30

《普通混凝土配合比设计规程》 配合比计算案例 某高层办公楼的基础底板设计使用C30等级混凝土,采用泵送施工工艺。根据《普通混凝土配合比设计规程》(以下简称《规程》)JGJ 55的规定,其配合比计算步骤如下: 1、原材料选择 结合设计和施工要求,选择原材料并检测其主要性能指标如下: (1)水泥 选用P.O 42.5级水泥,28d胶砂抗压强度48.6MPa,安定性合格。 (2)矿物掺合料 选用F类II级粉煤灰,细度18.2%,需水量比101%,烧失量7.2%。 选用S95级矿粉,比表面积428m2/kg,流动度比98%,28d活性指数99%。 (3)粗骨料 选用最大公称粒径为25mm的粗骨料,连续级配,含泥量 1.2%,泥块含量0.5%,针片状颗粒含量8.9%。 (4)细骨料 采用当地产天然河砂,细度模数 2.70,级配II区,含泥量 2.0%,泥块含量0.6%。 (5)外加剂 选用北京某公司生产A型聚羧酸减水剂,减水率为25%,含固量为20%。 (6)水 选用自来水。 2、计算配制强度 由于缺乏强度标准差统计资料,因此根据《规程》表4.0.2选择强度标准差σ为5.0MPa。 表4.0.2 标准差σ值(MPa) 混凝土强度标准值≤C20C25~C45 C50~ C55 Σ 4.0 5.0 6.0 采用《规程》中公式4.0.1-1计算配制强度如下: (4.0.1- 1)式中:f cu,0——混凝土配制强度(MPa);

f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值(MPa); σ——混凝土强度标准差(MPa)。 计算结果:C30混凝土配制强度不小于38.3MPa。 3、确定水胶比 (1)矿物掺合料掺量选择(可确定3种情况,比较技术经济) 应根据《规程》中表3.0.5-1的规定,并考虑混凝土原材料、应用部位和施工工艺等因素来确定粉煤灰掺量。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 注:1 采用其它通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料; 2 复合掺合料各组分的掺量不宜超过单掺时的最大掺量; 3 在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合 表中复合掺合料的规定。 综合考虑:方案1为C30混凝土的粉煤灰掺量30%。 方案2为C30混凝土的粉煤灰掺量30%,矿粉掺量10%。 方案3为C30混凝土的粉煤灰掺量25%,矿粉掺量20%。 (2)胶凝材料胶砂强度 胶凝材料胶砂强度试验应按现行国家标准《水泥胶砂强度检验方法(ISO 法)》GB/T 17671规定执行,对3个胶凝材料进行胶砂强度试验。也可从《规程》中表5.1.3选取所选3个方案的粉煤灰或矿粉的影响系数,计算f b。

第三届全国大学生结构设计竞赛

第三届全国大学生结构设计竞赛 赛题 第三届全国大学生结构设计竞赛委员会 2009.9.24

一、竞赛模型 定向木结构风力发电塔(如图),塔身高800mm,叶片(数量不限)组成的 A A-A 二、模型介绍 1.塔身 塔身为竞赛主结构,需满足以下要求: (1)塔身高800mm,顶点高度实际误差不大于±3mm。塔身外形不影响叶轮运转,塔身水平截面的外轮廓为正多边形或圆形; (2)具有足够的承载能力; (3)具有规定的刚度; (4)与塔顶标准发电机底座连接可靠; (5)与塔底标准底座连接可靠。 2.叶片和叶轮 安装完成后,叶轮外轮廓直径不得大于800mm。 三、装置说明 1.发电机

发电机采用CFX-03型标准发电机,质量4470g,底板及立面详见附图。2.风叶连接件 连接件质量300g,详见附图。 3.发电功率测量系统 发电功率测量系统由导线、负载、功率计组成。导线所受风力不能传递到塔身,由支架承受。 4.鼓风机 相关参数见下表 名称新型节能低噪声轴流风机 型号SF7-4 厂家上海金蓝机电设备成套有限公司 功率3kW 转速1400n/min 风量2500m3/h 风速23m/s 全压力340Pa 经实测,风叶连接件(距鼓风机1m处)的风速参考值如下: 档位风速(m/s) W1 4.0 W2 6.8 W3 9.0 5.塔架安装底盘详见附图。 6.塔脚与安装底盘连接螺栓:重量2g/套。 四、材料及制作工具 1.木材 (1)尺寸:长度1000mm,截面有50mm×1mm、2mm×2mm、2mm×6mm、6mm×6mm; (2)性能参考值:顺纹弹性模量1.0×104MPa,顺纹抗拉强度30MPa。2.胶水:502。

普通混凝土配合比设计及试配

普通混凝土配合比设计及试配 发表时间:2009-11-20T11:00:29.903Z 来源:《中小企业管理与科技》2009年5月下旬刊供稿作者:宋波[导读] 配合比设计是实现预拌混凝土性能的一个重要过程,也是保证预拌混凝土质量的重要环节宋波(江苏固鼎股份有限公司)摘要:针对预拌混凝土企业确定混凝土配比时“重设计、轻试配”的现状,结合配合比设计的条件要素,从混凝土配合比设计、试配、调整三 个方面,系统阐述预拌混凝土配合比设计的全过程,突出强调了试配的重要性,进一步明确预拌混凝土配合比设计是在经验、理论指导下的实践性过程。关键词:预拌混凝土配合比设计适配调整 0 引言 配合比设计是实现预拌混凝土性能的一个重要过程,也是保证预拌混凝土质量的重要环节。目前,市场上有不少预拌混凝土生产企业配合比的确定比较随意,表现在对试配工作的重视程度不够,不经试验确定配合比,纯凭经验确定配合比,想当然确定配合比,不能够根据原材料变化情况和用户要求确定混凝土配合比。本文针对上述状况,结合本人实践经验,系统阐述预拌混凝土配合比设计并重点讲述混凝土试配过程。 1 配合比设计的条件要素 混凝土配合比设计的条件要素包括:工程信息资料、工程技术要求、原材料质量情况、环境条件、搅拌站的生产数据和经验积累等。 1.1 任何预拌混凝土都是为工程及工程施工服务的,配合比的设计必须满足工程要求。除满足强度要求外,还必须满足工作性的要求。此外,为保证混凝土工程的安全性、耐久性,还必须满足相应技术规程、规范、标准的要求。 1.2 目前预拌混凝土市场发展迅速,市场上原材料供应紧张,原材料来源复杂,混凝土配合比的设计必须针对原材料实际状况而确定,并能根据原材料波动情况及时作出配合比调整。 1.3 环境因素一般包括温度、湿度、交通状况等。不同的环境条件对配合比设计的要求不同,如夏季施工,由于气温较高,混凝土表面水蒸发速度较快,应考虑防止预拌混凝土干缩裂缝和混凝土坍损过大,这就要求在配合比设计时适当降低砂率,降低砂率可加快现浇混凝土表面水析出速度,以平衡混凝土表面水蒸发速度,防止干缩裂缝。同时,降低砂率还有利于减少坍损。 1.4 建立企业质量数据库配合比设计计算是整个预拌混凝土配合比设计的第一步,配合比设计计算,就是在掌握资料的基础上,根据一些理论、规范经验等选取一些参数,计算各种成分的用量。所以从设计计算的概念上,我们就可以看出经验数据积累的重要性。任何参数的选都取都是以经验积累为参照的,同时,计算出来的配合比经过试配后,配合比的调整乃至最终确定,也必定依据经验积累的数据为参照。 2 试配应采用工程中实际使用的原材料 混凝土配合比的设计一般经历三个阶段,即设计计算、试配、调整。混凝土配合比的设计计算在《普通混凝土配合比设计规程》(JGJ/T55-96)中有详细的表述,这里不加阐述。在《普通混混凝土配合比设计规程》中有关试配、调整的内容表述得较少,而试配又是混凝土配合比设计中最重要的环节。这就要求试配所用原材料一定要有代表性,为保证试配结果对实际生产的指导意义,试配所用原材料必须要有代表性,则试配所用原材料的取样必须要有代表性。 2.1 取样的代表性在料堆上取样,因为影响取样代表性的因素太多,(例如:料堆的大小、堆料的方向、自然环境因素、人为因素),个人比较赞成试配所需材料最好在输送过程中连续均衡取样。 2.2 样品取好后,应根据需要进行制样制样必须注意两点,一是样品能真正代表原材料,二是样品必须具有高度均匀性。常用的制样方法为四分法。 2.3 所有原材料,都必须严格根据国家标准检验后,才能根据检验结果计算配合比,进行试配。当然,在实际工作中,可能来不及等所有原材料检验结果出来以后,就要进行试配,那么,作为试配方案确定的人员,就要注意收集原材料统计数据,着重做好下面的工作: 2. 3.1 日常收集原材料供应商的检验、试验报告。 2.3.2 建立企业自身对原材料检验的数据库,对各供应商供应的原材料要建立独立的分析台帐,并根据统计、分析结果,定期评价供应商检验报告的可靠性和准确程度,供应商检验报告长期可靠、准确的在混凝土配合比设计计算时,报告结果可直接应用。 2.3.3 对定点供应的水泥,要掌握水泥的强度增长规律,并能用回归分析法依据水泥早期强度推定水泥的28天强度。 3 试配前的调整 在混凝土强度试验的配合比确定过程中,必须根据混凝土配合比设计条件要素,正确选取水灰比,砂率、用水量等,称之为试配前调整。 3.1 根据原材料状况选择合适的参数,进行配合比设计在《普通混凝土配合比设计规程》中,就参数的选取,有一些规定,这些规定,也是根据生产实践中的经验得来的,可直接使用,例如:在用水量的确定上,采用细砂时,每立方米混凝土用水量可增加5-10kg,采用粗砂时,则可减少5-10kg,对流动性、大流动性混凝土的用水量,以坍落度90mm的用水量为基础,按坍落度每增大20mm,用水量增加5㎏.对砂率的选取有下列规定:①对细沙或粗砂,可相应地减小或增大砂率。②对单粒级粗骨料配制混凝土时,砂率应适当增大。③对薄璧构件,砂率取偏大值。 上述内容,均为规程中根据原材料状况,对配合比设计参数的选择进行确定,日常生产中碰到的情况,往往要复杂的多,这就要求我们根据原材料检验结果,综合考虑各方面因素,做好设计参数的选择,对能够根据原材料检验结果来确定的参数,一定要先检验后确定参数,以确保配合比计算结果的可靠性。 3.2 日常做好影响混凝土性能(包括强度)的敏感因素分析当原材料质量特性发生变化时,要分析其对混凝土性能有无影响,影响大小。对影响较大的因素,可采用回归分析法,确定原材料特性值的变化对混凝土性能的影响,具体到混凝土配合比设计计算时,就是原材料质量特性值对设计参数选取时的影响。以设计参数为因变量,原材料某一质量特性值为自变量(假设其它因素相对稳定情况下),建立相应函数关系。无明显函数关系或找不出函数关系,但对混凝土性能影响较大的特性值,其与设计参数的关系也可用数据列表的形式表示。

相关主题
文本预览
相关文档 最新文档