当前位置:文档之家› CMOS图像传感器--传感器原理结课论文

CMOS图像传感器--传感器原理结课论文

CMOS图像传感器简介

随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其集成度高、功耗低、体积小、工艺简单、成本低且开发周期较短等优势,目前在诸多领域得到了广泛的应用,特别是数码产品如数码相机、照相手机的图像传感器应用方面,市场前景广泛,因此对CMOS图像传感器的研究与开发有着非常高的市场价值。

一、CMOS图像传感器的发展历史

70年代初CMOS传感器在NASA的Jet Propulsion Laboratory (JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功,1997年英国爱丁堡 VLSI Version公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的 CMOS-APS已成为开发超微型CMOS摄像机的主流产品。

二、CMOS图像传感器的工作原理

1、下图为CMOS图像传感器的功能框图:

首先,外界光照射像素阵列,发生光电效应,在像素单元内产生相应的电荷。行选择逻辑单元根据需要,选通相应的行像素单元。行像素单元内的图像信号通过各自所在列的信号总线传输到对应的模拟信号处理单元以及A/D转换器,转换成数字图像信号输出。其中的行选择逻辑单元可以对像素阵列逐行扫描也可隔行扫描。行选择逻辑单元与

列选择逻辑单元配合使用可以实现图像的窗口提取功能。模拟信号处理单元的主要功能是对信号进行放大处理,并且提高信噪比。另外,为了获得质量合格的实用摄像头,芯片中必须包含各种控制电路,如曝光时间控制、自动增益控制等。为了使芯片中各部分电路按规定的节拍动作,必须使用多个时序控制信号。为了便于摄像头的应用,还要求该芯片能输出一些时序信号,如同步信号、行起始信号、场起始信号等。

2、象素阵列工作原理:

图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将像素单元分为无源像素单元PPS(passive pixel schematic),有源像素单元APS(active pixel schematic)和对数式像素单元,有源像素单元APS又可分为光敏二极管型APS、光栅型APS。

以上各种象素阵列单元各有特点,但是他们有着基本相同的工作原理。以下先介绍它们基本的工作原理,像素阵列中的每个像素电路如图2所示

在图2中,像素阵列中的单个像素工作过程如下:(1)首先进入“复位状态”,此时打开门管M,电容被充电至V r,二极管处于反向状态;(2)然后进入“取样状态”。这时关闭门管M,在光照下二极管产生光电流,使电容上存贮的电荷放电,经过一个固定时间间隔后,电容C上存留的电荷量就与光照成正比例,这时就将一幅图像摄入到了敏感元件阵列之中了;(3)最后进入“读出状态”。这时再打开门管M,逐个读取各像素中电容C上存贮的电荷电压。

三、CMOS图像传感器的优缺点

1、与 CCD 传感器相比,CMOS图像传感器具有的优点:CMOS图像传感器可在单芯片内集成A/D转换、信号处理、自动增益控制、精密放大和存储等功能,大大减小了系统复杂性,降低了成本,因而显示出强劲的发展势头。此外,它还具有低功耗、单电源、低工作电压(3V~5V)、集成度高、成品率高、可对局部像元随机访问以及价格低廉、体积小和使用方便等突出优点。

2、CMOS图像传感器的缺点:

(1)噪声

这是CMOS传感器受到制约的首要问题。这种噪声包括固定图形噪声FPN(Fixed

pattern noise)、暗电流噪声、热噪声等。固定图形噪声产生的原因是一束同样的光照射到两个不同的象素上产生的输出信号不完全相同。噪声正是这样被引入的。

(2)暗电流

物理器件不可能是理想的,如同亚阈值效应一样,由于杂质、受热等其他原因的影响,即使没有光照射到象素,象素单元也会产生电荷,这些电荷产生了暗电流。暗电流与光照产生的电荷很难进行区分。暗电流在像素阵列各处也不完全相同,它会导致固定图形噪声。对于含有积分功能的像素单元来说,暗电流所造成的固定图形噪声与积分时间成正比。暗电流的产生也是一个随机过程,它是散弹噪声的一个来源。因此,热噪声元件所产生的暗电流大小等于像素单元中的暗电流电子数的平方根。当长时间的积分单元被采用时,这种类型的噪声就变成了影响图像信号质量的主要因素,对于昏暗物体,长时间的积分是必要的,并且像素单元电容容量是有限的,于是暗电流电子的积累限制了积分的最长时间。

(3)象素的饱和与溢出模糊

类似于放大器由于线性区的范围有限而存在一个输入上限,对于CMOS图像传感芯片来说,它也有一个输入的上限。输入光信号若超过此上限,像素单元将饱和而不能进行光电转换。对于含有积分功能的像素单元来说,此上限由光电子积分单元的容量大小决定:对于不含积分功能的像素单元,该上限由流过光电二极管或三极管的最大电流决定。在输入光信号饱和时,溢出模糊就发生了。溢出模糊是由于像素单元的光电子饱和进而流出到邻近的像素单元上。溢出模糊反映到图像上就是一片特别亮的区域。这有些类似于照片上的曝光过度。溢出模糊可通过在像素单元内加入自动泄放管来克服,泄放管可以有效地将过剩电荷排出。但是,这只是限制了溢出,却不能使象素能真实还原出图像了。

四、CMOS图像传感器的应用

1、数字摄像机

现在市场上数字摄像机的品种已经很多了,多数使用CMOS彩色图像传感器制成,可以是线型图像传感器,也可以是面型图像传感器。其结构图如图3-1所示。

图3-1 数字摄像机基本结构

我们知道,对变化的外界景物连续拍摄图片,只要拍摄速度超过24幅/s,再按

同样的速度播放这些图片,可以重现变化的外界景物,这是利用了人眼的视觉暂留原理。外界景物通过镜头照射到COMS彩色图像传感器上,CMOS彩色图像传感器在扫描电路的控制下,可将变化的外界景物以25幅/s图像的速度转换为串行模拟脉冲信号输出。该串行模拟脉冲信号经A/D转换器转换为数字信号,由于信号量很大,所以还要进行信号数据压缩。压缩后的信号数据可存储在存储卡上,日本松下最新推出的P2存储卡容量可达64GB,也可以存储在专用的数码录像磁带上。数字摄像机使用2/3in 57万像素(摄像区域为33万像素)的高精度CMOS彩色图像传感器芯片。

2、数码相机

数码相机的结构与数字摄像机相似,只不过数码相机拍摄的是静止图像。数码相机的基本结构如图3-2所示。

图3-2 数码相机基本结构

变化的外界景物通过镜头照射到CMOS彩色图像传感器上,当使用者感到图像满意时,可由取景器电路发出信号锁定,再由CMOS彩色图像传感器转换为串行模拟脉冲信号输出。该串行模拟脉冲信号由放大器放大,再由A/D转换器转换为数字信号,存储在PCMCIA卡(个人电脑存储卡国际接口标准)上。该存储卡上的图像数据可送微型计算机显示和保存。A/D转换器输出的数字图像信号也可由串行口直接送微型计算机显示和保存。数码相机通常被划分为高端(400万像素以上)、中端(330万像素、210万像素)与低端(百万像素以下)三种产品。中端数码相机使用l/2in 330万像素(有效像素为2048×1536)的CMOS彩色图像传感器,芯片面积为35mm胶片的1/5.35。现在已有中、高端数码相机使用的CMOS彩色图像传感器推出。2/3in CMOS芯片830万像素(有效像素为3264×2448),可输如300dpi(每英寸点数)的l .88in x8.16in幅面的相片现。在已有1400万像素的高端数码相机。

3、彩信手机

彩信手机也叫拍照手机。目前大都采用CMOS彩色图像传感器。彩信手机的照相机功照由相机模组(摄像头)实现。相机模组组成如图3-2所示。

图3-2 彩信手机相机模组组成框图

相机模组属于有彩信功能的手机的基本配置,镜头和闪光灯安放在翻盖表面上。开启面板上的照相功能键后,就可进行拍照。被摄景物通过镜头照射到CMOS彩色图像传感器上。CMOS彩色图像传感器将图像转换,为串行模拟脉冲信号,经A/D转换,送DSP 数字信号处理器处理。处理后的数字图像信号以YUV422的亮度和色度信号比例,送液晶屏显示。用(OK)按键选定并拍照,图像数据存入存储器。按(发送)键,该图像数据输送到手机的基带信号电路,与语音信号一样,调制到射频频率上发送到对方手机。CMOS 传感器被认为是拍照手机的理想解决方案,它的优点是制造成本I较CCD更低,功耗也低得多(手机可接受的功耗为80。lOOmW),速度快。只是CMOS摄像头对光源的要求要高一些,也无法达到CCD那样高的分辨率,但对640×480像素分辨率(35万像素)的手机摄像头来说,CMOS已足以应付。

五、CMOS图像传感器的未来发展趋势

目前 CMOS 图像传感器的研究热点主要有以下几个方面:

(1)多功能、智能化。传统的图像传感器仅局限于获取被摄对象的图像, 图像的传输和处理需要单独的硬件和软件来完成。由于 CMOS 图像传感器在系统集成上的优点, 可以从系统级水平来设计芯片。如可以在芯片内集成相应的功能部件应用于特定领域, 如Transchip公司开发的高质量手机用摄像机,内部集成了ISP, 并整合了 JPEG 图像压缩功能。也可以从通用角度考虑, 在芯片内部集成通用微处理器。为了消除数字图像传输的瓶颈, 还可以将高速图像传输技术集成到同一块芯片上,形成片上系统型数字相机和智能 CMOS 图像传感器。斯坦福大学的 PDC研究小组和一些专业厂商合作, 在新的图像处理算法、体系结构、电路设计以及单片 PDC的研究方面取了一些令人瞩目的果。

(2)高帧速率。由于 CMOS 图像传感器具有访问灵活的优点, 所以可以通过只读出感光面上感兴趣的很小区域来提高帧速率。同时, CMOS 图像传感器本身在动态范围和光敏感度上的提高也有利于帧速率的提高。国家半导体公司生产的LM9630可达到600帧/s 的速度;斯坦福大学 PDC研究小组开发的单片PDC, 在 352×288 分辨率下, 其扫描速度可达 10 000 帧/s; Dalsa公司宣称其生产的 CMOS 图像传感器扫描速度最高可达 20 000 帧/s; Micron公司的MT9M413C36ST在1280×1024分辨率下可以达到0~500帧/s 的帧速率,部分扫描时可达10 000帧/s。

(3)宽动态范围。以色列工业大学(Israel Instituteof Technology) 的 VLSI 系统研究中心将用于 CCD 的自适应敏感技术用于 CMOS 传感器中, 使 CMOS 传感器的整个动态范围可达 84 dB, 并在一个 64×64的芯片上进行了实验。NASA 的 JPL 实验室也致力于将 CCD 的工作模式用于 CMOS 图像传感器中。

(4)高分辨率。目前 CMOS 图像传感器最高分辨率可达 3 170×2 120 像素, 约 616 万像素。

(5)低噪声技术。目前用于科学研究的高性能CCD 能达到的噪声水平为 3~5 个电子, 而 CMOS 图像传感器则为 300~500 个电子。JPL 实验室采用APS 技术的图像传感器能达到 14 个电子。

(6)模块化、低功耗。由于 CMOS 图像传感器便于小型化和系统集成, 所以可以根据特定应用场合, 将相关的功能集成在一起, 并通过优化设计进一步降低功耗。如 Fujitsu 公司生产的 MB86S02A 成像模块, 在每秒拍摄15幅画面的情况下, 功耗仅为15 mW。六、个人对CMOS图像传感器的看法

CMOS 图像传感器正在向高灵敏度、高分辨率、高动态范围、集成化、数字化、智能化的“片上相机”解决方案方向发展。芯片加工工艺不断发展, 从 0.5 μm→0.35 μm→0.25 μm→0.18 μm, 接口电压也在不断降低, 从 5 V→3.3 V→2.5 V/3.3 V→1.8 V/3.3 V。研究人员致力于提高 CMOS 图像传感器的综合性能, 缩小单元尺寸, 调整CMOS 工艺参数, 将数字信号处理电路、图像压缩、通讯等电路集成在一起, 并制作滤色片和微透镜阵列, 以实现低成本、低功耗、低噪声、高度集成的单芯片成像微系统。随着数字电视、可视通讯产品的增加,CMOS 图象传感器的应用前景一定会更加广阔。关于CMOS图像传感器,已经形成了国际标准,而在各国的各个领域中,对CMOS图像传感器的应用也是十分的广泛,所以在CMOS图像传感器方面是很有发展前途的。

[1] 陈杰,黄鸿.传感器与检测技术.北京:高等教育出版社,2002:8(2012重印)

[2] 王庆有.图像传感器应用技术.北京:电子工业出版社,2003:1-3.

[3] 金发庆.传感器技术及其工程应用.机械工业出版社,2010,23(2):7-11.

[4] 何兆红,王高.CMOS图像传感器的最新发展现状.光机电信息,2002,(12):14-16.

[5] 金湘亮,陈杰,仇玉林.基于CMOS工艺的图像传感技术研究与进展.半导体技术,2002,27(8):5-9.

[6] 陈慧敏,栗平,张英文等.CMOS图像传感器的研究新进展.半导体光电,2006,27(6):664-667.

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

无线传感器网络结课论文

无线传感器网络结课论文 学号: 姓名: 学院:

目录 一.无线传感器网时间同步技术综述 (1) <一>引言 (1) <二>同步技术研究现状 (1) <三>时间同步算法 (2) 3.1泛洪时间同步协议 (2) 3.2 RBS 协议 (2) 3.3LTS协议 (3) <四>小结 (3) 二.基于无线传感器网络的环境监测系统 (3) <一>网络系统简介 (3) <二>网络系统结构 (3) 2.1总体结构 (3) 2.2传感器节点结构 (4) 2.3汇聚节点结构 (5) <三>应用无线传感器网络的意义 (6) 三.学习心得 (7) 四. 参考文献 (8)

一.无线传感器网时间同步技术综述 <一>引言 无线传感器网络( Wireless Sensors Network,WSN) 是一种在一定区域内投放大量的传感器节点,通过无线通信形成的一个单跳或多跳的自组织式的网络系统,它通常采集和处理监测区域中被感知目标的信息,并通过网络发送给主机端以提高人类对物理环境的远端监视和控制能力。无线传感网络技术在交通、国防、医学、农业等方面有着重要的运用。无线传感器网络由大量的节点构成,通常包括传感器节点、汇聚节点和任务管理节点。大量体积小、精度高的传感器节点随机部署在监测区域内,通过自组织的方式构成网络。传感器节点将监测到的数据传输给其它传感器节点,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达任务管理节点。用户则通过任务管理节点发布监测任务以及收集监测数据,对无线传感器网络进行管理。 无线传感器网络是许多领域里的关键技术之一,而时间同步则是无线传感器网络中的关键技术之一。简而言之,在检测与监视某对象的过程中,目标定位和追踪、协同数据处理、能量管理等都对物理时间的精确度都有着敏感的需求。因此,无线传感器网络的应用通常需要一个适应性比较好的时间同步服务,以保证数据的一致性和协调性。此外,数据融合、通信信道复用等也都需要时间同步的保障。所以,如何根据无线传感器网络的特点对物理时间进行同步是一个重要的问题。 目前,学术界和业界对无线传感器网络的时间同步技术进行了一定的研究,本章节描述了无线传感器网络时间同步技术的研究现状,对3种不同时间同步机制的经典算法进行分析和比较。 <二>同步技术研究现状 时间同步技术相对于计算机网络的相关技术而言尚为年轻,自从2002年学术会议Hot Nets上首次提出了时间同步这一研究课题后,到目前为止,无线传感器网络的时间同步技术也取得了一定进展,同时也开发出了多种极其有价值时间同步的算法。 目前,对于单跳网络的同步研究已趋于成熟,但由于同步误差的累积,导致单跳网络的同步技术难以扩展到多跳网络,使得多跳网络的同步技术研究较为薄弱。若再考虑节点的移动性,则会极大增加同步技术的研究难度。因此,无线传感器网络的时间同步技术还有很大的研究空间。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理及应用--教学大纲

《传感器原理及应用》 课程教学大纲(04、05级) 编号: 英文名称:Principles and Applications of Sensor 适用专业:自动化 责任教学单位:电子工程系自动化教研室 总学时:36 学分:2.0 考核形式:考查 课程类别:专业基础课 修读方式:必修 教学目的:本课程主要介绍工程检测中常用的传感器,以及运用这些传感器测量诸如力、压力、温度、位移、物位、转速和振动等参数的方法。使学生在传感器技术方面具有一定的知识,了解工程检测中常用传感器的结构、原理、特性、应用及发展方向。在工作中具有初步选用传感器的能力。 主要教学内容及要求: 一、概述 主要教学内容 1 传感器的组成与分类 2 传感器在科技发展中的重要性 3 传感器技术的发展动向 了解:传感器技术的应用、传感器的分类 二、传感器的一般特性 主要教学内容 1 传感器的静态特性 2 传感器的动态特性 3 传感器动态特性分析 4 传感器的无失真测试条件 了解:传感器的静态特性和动态特性 掌握:传感器的静态特性和动态特性的表述方法。 三、电阻应变式传感器 主要教学内容 1 电阻应变片的工作原理 2 电阻应变片的种类、材料和参数 3 电阻应变片的动态响应特性

4 电阻应变式传感器的温度误差及其补偿 5 电阻应变式传感器的信号调节电路及电阻应变仪 掌握:电阻应变片的工作原理、结构与特点、工作特性和应用。 四、电感式传感器 主要教学内容 1 变磁阻式传感器 2 差动变压器 3 涡流式传感器 掌握:电感式传感器的工作原理、结构与特点、工作特性和应用。 五、电容式传感器 主要教学内容 1 电容式传感器的结构原理及结构形式 2 电容式传感器的等效电路 3 电容式传感器的信号调节电路 4 电容式传感器的应用 了解:电容式传感器的结构与特点 掌握:电容式传感器的工作原理、工作特性和应用。 六、磁电式传感器 主要教学内容 1 磁电式传感器工作原理 2 动圈式磁电传感器 3 磁阻式磁电传感器 了解:开磁路磁阻式转速传感器的组成、结构原理圈和工作原理。 掌握:磁电式传感器的定义及其结构上的两大部分和两种磁路结构。 七、压电式传感器 主要教学内容 1 压电式传感器的工作原理 2 压电材料 3 压电式传感器的等效电路 4 压电式传感器的信号调节电路 了解:影响石英晶体表面电荷密度大小的因素。 掌握:压电效应、石英晶体的纵向压电效应的定义;压电元件的等效电路和电荷放大电路和电路中各元件的意义。 八、光电传感器及应用 主要教学内容 1 内光电效应、常见的光敏元件、光敏元件的应用

现代传感器应用技术论文

《检测与转换技术》结课论文 班级:电力系统8班 学号:13230801 姓名:白智扬

现代传感器应用技术 传感器技术是现代科技的前沿技术,是现代信息技术的三大支柱之一,其水平高低是衡量一个国家科技发展水平的重要标志之一。传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。改革开放20多年来,我国的传感器技术及其产业取得了长足进步,主要表现在:一是建立了“传感技术国家重点实验室”、“微米/纳米国家重点实验室”、“国家传感技术工程中心”等研究开发基地;二是MEMS、MOEMS等研究项目列入了国家高新技术发展重点;三是在“九五”国家重点科技攻关项目中,传感器技术研究取得了51个品种86个规格的新产品;四是初步建立了敏感元件与传感器产业,2000年总产量超过13亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定应用。因为传感器所涉及的内容很多,而我所学的知识有有限,所以本文仅就电感式传感器的原理及应用做一下简单的介绍。电感式传感器(inductance type transducer)是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 电感式传感器具有以下优缺点: (1)结构简单,传感器无活动电触点,因此工作可靠寿命长。 (2)灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。 (3)线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%~0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。因为知识水平有限,本文主要对自感式和电感式传感器做一个详细的介绍。 1.1自感式传感器的工作原理:

未来传感器的发展趋势

未来传感器的发展趋势 课程论文 论文题目:未来传感器的发展趋势学院: 专业: 姓名: 学号: 指导老师: 二零一二年五月六日

目录 中文摘要 (3) 英文摘要 (3) 一、引言 (4) 二、传感器的历史 (5) 三、未来传感器的发展趋势 (7) (一)未来传感器的特点 (7) (二)未来传感器的几大方向 (8) (三)几个热门的研究方向 (8) 四、结束语 (9)

摘要:在人类进入信息时代的今天,人们的一切社会活动都是以信息获取与信息转换为中心的,传感器作为信息获取与信息转换的重要手段,是信息科学最前端的一个阵地,是实现信息化的基础技术之一。在工程科学与技术领域里,可以认为:传感器是人体“五官”的工程模拟物。 当前,我国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。我国在传感器生产产业化过程中,应该兼顾引进国外和自主创新两方面。在引进国外先进技术中,可以提高自己的技术,同时也满足了国内市场的需求,形成了传感器生产产业规模。发现新效应,开发新材料、新功能;研研究生物感官、开发仿生传感器等为主要寻求传感器技术发展的新途径。 关键词:信息获取信息转换信息化关键趋势 Abstract:In the information age in human today, people of all social activities are based on information acquisition and information conversion as the center, sensor information acquisition and information conversion as the important means of information science is the same a position, is the foundation to realize the information technical one. In the engineering science and technology field, can think: sensor is human body \"facial features,\" engineering simulation objects. At present, our country sensors from the traditional industry is in the key of the development of new sensors stage, it reflects the new sensor to miniaturization, muti_function change, digital, intelligent, systematic and network the general trend of development. Our country in the sensor in the process of industrialization of production, should give consideration to the introduction of foreign and independent innovation two aspects. In introducing foreign advanced technology, can improve their technology, but also meet the demand of the domestic market, formed the sensor manufacturing industry scale. Find new effects, the development of new materials, new function; Research on biological research, develop bionic sensors senses as the main seek sensor technology development new way. Keywords: information acquisition information conversion informatization key trend

传感器课程设计论文

激发不同层次的学生学习传感器的兴趣 电气工程与自动化系王文川 论文摘要:本文结合传感器教学改革实践的经验,笔者提出了一种适合当前成都市技师院校传感器实践教学的新思路,突出“能力为本”的思想,打破“学科为本”的模式,激发学生学习的积极性,培养学生的工程意识、分析问题和解决问题的能力,针对不同层次的学生,直升学生、三高学生、五高学生、预备技师学生等,作出相应的教学方案和教案及教学方法,并针对学生是否实训,作出具体的学习方案,因此提高学生的创新能力和综合素质。 前言 21世纪是信息科学与技术全新发展的时代,信息技术已经成为社会发展一股新的强大推动力。传感器技术作为信息技术和产业的重要组成部分,因此受到了国家和社会各个行业的高度重视,并且迅速发展。在《传感器技术》这门课程中我们了解了各种各样的传感器,如:电阻式传感器变磁阻式传感器,电容式传感器,磁电式传感器,压电式传感器,热电式传感器,光电式传感器,光纤式传感器,数字式传感器,化学传感器,生物传感器等,还有更多的传感器新技术。传感器技术是以传感器为核心论述其内涵、外延的学科,也是一门涉及测量技术、功能材料、微电子技术、精密与微细加工技术、信息处理技术和计算机技术等相互结合形成的密集型综合技术。当今的传感器是一种能把非电输入信息转换成电信号输出的器件或装置,通常由敏感元件和转换元件组成。 传感器未来的发展主要朝着以下四个方面:⑴发现新效应,开发新材料、新功能;新的效应和现象的发现,是新的敏感材料的开发的重要途径,而新的敏感材料的开发是新型传感器出现的重要基础。⑵

传感器的多功能集成化和微型化;所谓集成化就是在同一芯片上,或将众多同类型的单个传感器件集成为一维,二维或三维阵列型传感器,或将传感器件与调理、补偿等处理电路集成一体化。微型传感器是朝着微米/纳米技术领域发展,其显著特征就是体积小、重量很轻,这种传感器一般应用于航空航天,环境保护,生物医学和工业自动化等高科技领域。⑶传感器的数字化、智能化和网络化;传感器的数字化提高传感器本身的多种性能。智能化是指传感器具有一种或多种敏感功能,不仅能实现信息的探测、处理、逻辑判断和双向通讯,而且具有自检测、自校正、自补偿、自诊断等多功能的器件或装置。传感器网络是一种由众多随机分布的一组同类或异类传感器节点与网关节点构成的无线网络。⑷研究生物感官,开发仿生传感器;利用仿生学、生物遗传工程和生物电子学技术研究它们的机理,研究仿生传感器,也是一个十分引人注目的方向。 所以学习与掌握各种传感器的应用对于我们电气工程与自动化类专业显得尤为重要。也是把握科技最新前沿的一条途径。也就是说,学会传感器的应用技术,好的就业在等你。本次课程设计主要是传感器在测位移方面应用的研究,对不同的传感器测位移原理的特性比较和研究,自己设计3种以上位移传感器,写出设计方案,针对不同层次的学生,直升学生、三高学生、五高学生、预备技师学生等,写出不同的教学方案,并对每种位移传感器原理、测量电路、输出特性、灵敏度、精度进行分析。比较每一种传感器的优缺点及改善方法,最后做出总结。此次课程设计可以更好的帮助我们掌握所学的知识。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

传感器原理及其应用(李艳红、李海华主编)-部分课后习题

传感器原理及其应用(李艳红、李海华主编)-部分课后习题

第一章P10 1、2、5、6 1.传感器的定义 答:传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定关系、便于应用的某种物理量(主要是电量)的测量装置。 2.传感器组成及作用 答:(1)传感器一般由敏感元件、转换元件、测量电路三部分组成; (2)敏感元件:直接感受被测量,并输出与被测量有确定关系的物理量; 转换元件:将敏感元件输出的非电量转换为电量; 测量电路:将转换元件输出的电量变换成便于显示、记录、控制和处理的信号 3.开环测量系统和闭环测量系统区别 答:开环测量系统(1)信息只沿着一个方向传递(2)系统相对误差等于各环节相对误差之和 (3)结构简单,但每个环节特性变化都会造成测量误差 闭环测量系统(1)有正向通道和反馈通道(2) 输入输出关系由反馈环节 特性决定,测量处理等环

节造成的误差较小 4.测量不确定度及其评定方法 答:(1)测量不确定度:表征合理赋予被测量值的分散性,与测量结果相联系的参数 即结果的可靠性和有效性的怀疑程度(2)不确定度按其评定方法可分为A类评定和B类评定 A类评定是用统计方法进行评定。即对某 被测量进行等精度的独立多次重复测量, 得到一系列的测得值。 B类评定用非统计分析法,它不是由一系 列的测得确定,而是利用影响测得值分布 变化的有关信息和资料进行分析,并对测 量值进行概率分布估计和分布假设的科 学评定 B类评定的信息来源有以下6项: ①以前的观测数据; ②对有关技术资料和测量仪器特性的 了解和经验; ③生产部门提供的技术说明文件; ④校准文件、检定证书或其他文件提供 的数据、准确度的等级或级别,包括

传感器与检测技术论文

2301436245 传感器与检测技术论文 1、传感器的定义、组成、分类及基本特征。 传感器源自“感觉”一词。人类的“五官”可以说就是最原始的传感器。 它是一种能够感受被测量信息同时又能够将感受到的被测量信息按照一定的规律转换或电、信号或其他所需形式的信号输出,以达到便于传输、处理、显示和控制等目的的检测装置。 从各行各业到日常生活,传感器几乎是无处不在,无处不用,其主要作用就是信息的采集和获取。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器也称为变换器、换能器、变松器、发送器与探测器等,由于传感器元件的输出信号往往都非常微弱,传感器在除敏感元件两大组成部分之外,所以还必须加入转换电路以便对弱小的信号进行放大。另外,还应有辅助电源,以供传感器和转换电路工作。随着集成电路技术在传感器应用中的深入,传感器的各个组成部分可以集成在同一半导体芯片上,构成集成传感器。 传感器种类众多,原理各异分类方式也不尽相同。按输入被测量进行分类,一般可分为速度传感器、温度传感器、位移传感器、压力传感器等。这种分类方法直接反应了检测的目的;按输出量形式可分为数字传感器与模拟传感器两类;按工作机理可分为结构型和物性型;按转换原理可分为电阻式、电容式、电感式、压电式、光电式、热点式传感器等;按信息的传递方式可分为能量转换传感器与能量控制型传感器两类。 随着计算机辅助设计,辅助制造技术,集成电路技术和微机械电子系统技术等新技术以及新工艺、新材料的应用,出现了精度更高,性能更优、用途更广的现代传感器。现代化传感器正在向智能化、集成化、多功能化方向发展。 传感器有其基本特性,可分为静态特性和动态特性。静态特性是指静态信号作用下的输出输入关系特性,而所谓动态特性是指动态信号下的输入输出关系特性。衡量传感器其静态特性优劣的重要性能指标线是性灵敏度、迟滞、重复性、分辨率与稳定性。 传感器它是一种能够感受被测量信息的,在检测系统中传感器有着广泛的应用,现代自动检测是以计算机技术为核心,以传感器技术为基础构成的。 检测系统的各个组成部分是以信息流的过程进行划分的。传感器处于整个系统的第一个环节,其作用是将直接感受到的被测量转换为容易进行测试的电信号或其他所需形式的信号。检测技术是科学实验中必不可少的手段。任何一项现代自然科学成就或技术发明,总是通过检测技术获取大量准确的数据。检测技术能够涉及的测量范围与能够达到的测量精度,很大程度上决定着现代科技进步的深度与广度。如在国防科技中,没有检测技术,导弹发射与卫星上天是不可能的。利用检测技术处理获取的数据信息,能对产品的质量和性能做出客观的评价,为工艺人员进行制造工艺提供依据。在现在大工业生产中,如果没有检测技术,新设备的研制以及复杂工艺流程的具体实现是不可能的。 传感器的应用作为自动检测的首要环节,进行正确的选用是首先要考虑的。在选用传感器时,不能片面追求其线性度好、灵敏度高、迟滞小、重复性优、分辨力强,而是应该根据检测的具体要求和条件,保证主要性能指标满足要求即可,即选用时应遵循下列几项原则:考虑检测系统内部的要求;考虑检测系统外部的条件;考虑传感器自身的技术指标。 传感器作为感知、获取和检测信息的窗口,提供着人类赖以进行判断、决策与处理所必

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器论文

沈阳工学院 结课论文设计验收报告题目:车类电机转速测量的设计 院系:信息与控制学院 专业:电子信息工程 班级学号: 12309129 学生姓名:宋明亮 指导教师:付丽华 成绩: 年月日

1 需求分析 (3) 2 设计方案要求 (4) 2.1 功能及技术要求 (4) (1)测速范围 (4) 2.2 测速及倒车提示系统设计方案论证 (4) 3 硬件电路的设计 (7) 3.1 超声波测距电路 (7) 3.1.2方案二:光电传感器 (9) 4. 转速检测电路 (11) 4.2数码管显示电路 (13) 4.3 直流电机控制电路 (15) 5结束语 (10)

1 需求分析 随着人们生活水平的不断提高,汽车已经成为生活中主导的交通工具,汽车产业蓬勃发展。为保障汽车驾驶时的舒适性和安全性世界各国对汽车防撞技术的研究和发展投入了大量的人力、物力和财力,据统计,危机情况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%,所以现在汽车安装各类测距系统以保障行车安全。 针对我国高速公路交通安全的需要,以及国内外汽车电子技术的应用现状和发展趋势,综合汽车电子技术、通讯技术和控制技术等多学科理论,从必要性、可行性、实用性和经济性等角度出发,提出开发研制汽车测速及倒车提示系统。目的在于当行车处于高速及倒车状态时,提醒驾驶员或自动采用相应措施,从而减少或避免高速公路碰撞事故的发生。

2 设计方案要求 2.1 功能及技术要求 (1)测速范围 测速范围分为四档:第一档速0—130cm/s,第二档速130—200cm/s,第三档速200—260cm/s,第四档速260—300cm/s。 (2)倒车测距范围。 该模拟系统的测量范围在2—3米之间。当距离小于20cm时,电机自动停止,或者说在大于20cm时,也可以通过按键使电机停止。 (3)按键功能如表2-1所示。 表2-1 按键功能表 按键名称 K1 倒转键 K2 减速键 K3 加速键 K4 正转键 K5 复位键 S1 S2 进入倒车状态 (4)显示功能。 该系统具备显示功能,显示内容有正常运行的转速及倒车状态时障碍物与汽车尾部的距离,其显示精度为1cm。 2.2 测速及倒车提示系统设计方案论证 2.2.1发射与接收模块 方案一:采用后视摄像进行倒车 这种方法可以获得障碍物的直观图像,但无法测得准确的距离;虽然其可靠性高但是价格较高,得不到普遍的推广使用;这种方法还存在一些其他的缺陷,如其在夜间会受到影响,无法重现图像,使其在晚间如同虚设,不仅如此,它还会受到天气的影响,在阴雨、雾雪天气,后视摄像这种方法同样起不到效果。

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

传感器原理及应用_复习总结

传感器原理及应用总结 ?传感器一般由敏感元件、转换元件、转换电路三部分组成。 ?传感器的基本特性通常用其静态特性和动态特性来描述。 ?电阻传感器的基本原理是将各种被测非电量转为对电阻的变化量的测量,从而达到测量的目的。 ?金属丝电阻应变片与半导体应变片的工作原理主要区别在于前者利用导体形变引起电阻变化、后者利用半导体电阻率变化引起电阻变化。 ?金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称应变效应;半导体或固体受到作用力后电阻率要发生变化,这种现象称压阻效应。直线的电阻丝绕成敏感栅后,长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为横向效应。 ?光电开关和光电断续器是开关式光电传感器的常用器件,主要用来检测物体的靠近、通过等状态。?光电式传感器由光源、光学元器件和光电元器件组成光路系统,结合相应的测量转换电路而构成。?硅光电池的光电特性中,光照度与其短路电流呈线性关系。 ?光敏二极管的结构与普通二级管类似。它是在反向电压下工作的。 ?压电传感元件是一种力敏感元件,它由压电传感元件和测量转换电路组成。 ?压电式传感器的工作原理是基于某些电介质材料的压电效应。它是典型的有源传感器。 ?压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件并联起来,而当以电压作为输出的时候则一般是把压电元件串联起来。 ?差动电感式传感器与单线圈电感式传感器相比,线性好、灵感度提高一倍、测量精度高。 ?螺线管式差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。 ?差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电

传感器与检测技术论文

课程论文 课程名传感器与检测技术 专业:机电一体化 姓名:贺涛 学号:0951101253324 二O一一年六月十六日数字温度传感器DS18B20简介、

传感器源自“感觉”一词。人类的“五官”可以说就是最原始的传感器。 它是一种能够感受被测量信息同时又能够将感受到的被测量信息按照一定的规律转换或电、信号或其他所需形式的信号输出,以达到便于传输、处理、显示和控制等目的的检测装置。 从各行各业到日常生活,传感器几乎是无处不在,无处不用,其主要作用就是信息的采集和获取。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。随着人们生活水平的不断提高, 传感器与检测技术、单片机控制技术无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中基于数字温度传感器DS18B20设计的数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为人们工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。 传感器也称为变换器、换能器、变松器、发送器与探测器等,由于传感器元件的输出信号往往都非常微弱,传感器在除敏感元件两大组成部分之外,所以还必须加入转换电路以便对弱小的信号进行放大。另外,还应有辅助电源,以供传感器和转换电路工作。随着集成电路技术在传感器应用中的深入,传感器的各个组成部分可以集成在同一半导体芯片上,构成集成传感器。 传感器种类众多,原理各异分类方式也不尽相同。按输入被测量

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

CMOS图像传感器结课论文

CMOS图像传感器的工作原理及应用 摘要:随着集成电路制造工艺技术的发展和集成电路设计水平的不断提高,基于CMOS集成电路工艺技术制造的CMOS图像传感器由于其自身的优势,目前在诸多领域中得到了广泛的应用,市场前景广阔,所以对CMOS图像传感器的研究与开发有非常高的市场价值。本文首先介绍了CMOS传感器的工作原理及应用现状,随后叙述了CMOS图像传感器的像元、结构及工作原理,着重说明了成像原理和图像信号的读取和处理过程,以及在数字摄像机,数码相机,拍照手机中的应用方式。 关键词:CMOS图像传感器、工作原理及应用现状 The principle and application of CMOS image sensor Abstract:With the development of integrated circuit manufacturing technology and the continuous improvement of integrated circuit design level, based on CMOS integrated circuit manufacturing technology of CMOS image sensor due to its own advantages, the current has been widely used in many fields, wide prospect of market, so for CMOS image sensor research and development has a very high market value. At first, this paper introduces the working principle of CMOS sensor and application present situation, then describes the CMOS image sensor as yuan, structure and working principle, emphasize the imaging principle and image signal reading and processing, as well as in digital cameras, digital cameras, camera phones, the application of the way. Keywords: CMOS image sensor, the working principle and application status 1引言 CMOS图像传感器是一种典型的固体成像传感器,与CCD有着共同的历史渊源。CMOS 图像传感器通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD转换器、数据总线输出接口、控制接口等几部分组成这几部分通常都被集成在同一块硅片上。其工作过程一般可分为复位、光电转换、积分、读出几部分。 在CMOS图像传感器芯片上还可以集成其他数字信号处理电路,如AD转换器、自动曝光量控制、非均匀补偿、白平衡处理、黑电平控制、伽玛校正等,为了进行快速计算甚至可以将具有可编程功能的DSP器件与CMOS器件集成在一起,从而组成单片数字相机及图像处理系统。 目前,新型CMOS图像传感器不仅应用在数码相机,并且这项技术也广泛应用在中高端智能手机中,与我们的生活息息相关 2 CMOS图像传感器相关技术 2.1 像元结构和工作原理 CMOS图像传感器的光电转换原理与CCD基本相同,其光敏单元受到光照后产生光生电子。而信号的读出方法却与CCD不同,每个CMOS源像素传感单元都有自己的缓冲放大器,而且可以被单独选址和读出。 图2-1上部给出了MOS三极管和光敏二极管组成的相当于一个像元的结构剖面,在光积

相关主题
文本预览
相关文档 最新文档