当前位置:文档之家› 常规大中桥抗震设计探讨

常规大中桥抗震设计探讨

常规大中桥抗震设计探讨
常规大中桥抗震设计探讨

文章编号:1008-3812(2015)01-014-04

辽宁省交通高等专科学校学报

JOURNAL OF

LIAONING

PROVINCIAL COLLEGE OF

COMMUNICATIONS

第17卷第1期

2015年2月

Vol .17No.1Feb .

2015

收稿日期:2014-11-04作者简介:赵立岩(1981—

),男,辽宁东港人,硕士,高级工程师。研究方向:桥梁设计。

道路作为抗震救灾的生命线工程,其重要性不言而喻。而桥梁作为道路的咽喉,更是重中之重。尤其自5.12汶川地震后,桥梁的抗震性能要求被提高到了一个新的高度。常规大中桥包括预应力混凝土空心板(后文简称空心板)、装配式预应力混凝土箱型梁(后文简称小箱梁)、装配式预应力混凝土T 型梁(后文简称T 梁)、现浇钢筋混凝土箱梁、现浇预应力钢筋混凝土箱梁(后文简称现浇箱梁)。以上桥梁均采用模数化设计,主要跨径包括16m 、20m 、25m 、30m 、35m 和40m 。其结构相对简单,地震作用下受力机理相对明确,规范上多有简化计算方法。常规大中桥的抗震设计应遵循“一可三易”原则,即损伤部位及损伤程度可控;损伤部位易检;损伤构件易修;损伤构件易换

[2]

1主要地震破坏形式及抗震设计理念

桥梁主要有以下几种地震破坏形式:受水平

地震力作用滑落;桥墩塑性铰抗弯、抗剪强度不足破坏;墩桩钢筋连接锚固性能不足;支座、挡块等连接部位破坏。

目前,桥梁抗震设计共有两种主要的设计理念:

(1)将支座视为能力保护构件,保证支座在地震作用下不破坏,地震力由上至下顺利传递。《公路桥梁抗震设计细则》中的抗震计算方法就是建立在这个理念之上的,抗震设计流程见图1。这样的计算机理非常明确,但对于支座的抗震能力要求非常高,且其地震力全部传递至结构下

部,容易造成下部破坏

[1]

(2)将支座视为保险丝单元,支座在地震作用下作为塑性铰单元,可以破坏,通过设置多重防护措施,多道设防、分级耗能,达到地震力由上至下的传递,这样对于支座的要求低,橡胶支座可以广泛使用。此种理念通常设计的支座较弱,若没有可靠地防落梁措施,容易造成落梁等破坏

[2]

常规大中桥抗震设计探讨

赵立岩

周国红

(辽宁省交通规划设计院,辽宁沈阳

110166)

摘要常规大中桥作为公路中最常见的结构物,数量非常巨大,其抗震设计一直是重点。本

文通过对常规大中桥抗震设计中支座、墩柱抗剪、地基液化、减隔震支座、抗震措施、构造措施、系梁设置等常见问题的研究和讨论,总结设计相关经验,为今后同类桥梁的抗震设计提供有益参考。

关键词

抗震设计;能力保护构件;液化;抗震措施

中图分类号:U 442.5+5

文献标识码:

A

图1常规大中桥抗震设计流程图

14··

赵立岩等:常规大中桥抗震设计探讨第1期

2下部结构抗震

2.1桩柱配筋面积

《公路桥梁抗震设计细则》6.8.5条规定,桩基弯矩设计值等于墩柱塑性铰区弯矩承载力(采用材料强度标准值计算)乘以超强系数1.2。

凡是要求不损伤的部位均应按现行规范进行验算,如能力保护基础、盖梁等。故桩基承载力的验算按现行桥涵规范进行,即采用材料强度设计值,通常,材料强度标准值与设计值之比约为1.2。所以在不考虑结构尺寸的前提下,两者配筋面积之比应为1.2×1.2=1.44。

经查阅近年国内部分实际工程项目,E2地震作用下,考虑墩柱塑性铰的情况下,桩基作为能力保护构件,其钢筋核心配筋率在1.35%左右,钢筋面积为墩柱钢筋面积的1.6~1.9倍[3][4],如汕揭高速公路、成武高速公路等。

2.2墩柱抗剪能力

对于按延性抗震设计的桥梁,在E2地震作用下墩柱屈服后,按能力保护原则计算,与地震输入无关。《公路桥梁抗震设计细则》中墩柱塑性铰区的斜截面抗剪强度引入了美国抗震设计规范计算公式,并取其最低限值,混凝土能够提供的抗剪强度非常小,通常只有钢筋提供抗剪强度的1/10左右,所以单纯通过提高结构尺寸来提高墩柱抗剪能力的效果并不明显,只有尽量加强箍筋的配置才能有效提高墩柱的抗剪强度,从而导致目前设计中,塑性铰区的箍筋直径越来越大,间距越来越小。综上所述,应改变传统“桩柱配筋越多,对结构抗震越有利”的想法。在满足结构地震受力及变形要求的前提下,适量配置墩柱主筋。通常,截面的核心配筋率可选择在1%左右。

2.3抗震箍筋配置

下部结构箍筋对提高结构的抗震性能具有很大作用。箍筋在桥梁下部结构中的功能主要有下三个方面:

(1)用于约束塑性铰区域内混凝土,提高混凝土的抗压强度和延性;

(2)提供抗剪能力;

(3)防止纵向钢筋压曲。

目前柱身设计中,墩柱多配置螺旋箍筋。但实际施工过程中发现,钢筋螺旋起来很困难,施工质量难以保证,部分施工单位为施工方便,将螺旋箍改为焊接环式箍筋。《公路桥梁抗震设计细则》中未体现出螺旋箍筋与焊接环式箍筋方式的区别,但《建筑抗震设计规范》6.3.12条对柱箍筋加密区的体积配箍率的要求中,普通箍(焊接单环式箍筋)和螺旋箍的最小配箍特征值不相同,两者的比值约为1.2。可以理解为,螺旋箍筋和焊接环式箍筋对于混凝土的约束效果是不同的,螺旋箍筋的效果是焊接环式箍筋的1.2倍。所以,不宜采用普通箍(焊接单环式箍筋)直接代替螺旋箍,如果将螺旋箍筋改为焊接环式箍筋的话,建议将箍筋间距减小为原间距的0.8倍。本文建议,在满足抗剪强度及配箍率要求情况下,箍筋尽量采用小直径、小间距的配箍方式,并尽量采用光圆钢筋。

2.4地基液化对桩柱配筋的影响

液化场地极大的改变了桩身的地震反应,液化使桩身弯矩的最大值增大,同时也改变了桩身的弯矩分布,在液化层与非液化层的交界处出现较大的弯矩[5]。按《公路桥梁抗震设计细则》4.3.9条,结构抗震计算时按地层不同深度处土层液化抵抗系数,通过对计算模型中的桩土相互作用土弹簧的刚度进行折减来模拟砂土液化的影响。

轻微液化时,因液化折减系数为1或2/3,其对土弹簧的刚度折减较小或没有,经过计算,其桩基弯矩分布与不考虑液化时相同或变化微小,故建议轻微液化条件下,不考虑地基液化对于桩基主筋、加强短筋及箍筋加密段长度的影响。

中等液化时,因液化折减系数为1/3或2/3,其对土弹簧的刚度有一定的折减,经过计算,其对桩基弯矩分布有一定的影响。桩基弯矩最大值位置会有所下移,故建议中等液化条件下,对桩基主筋、加强短筋及箍筋加密段长度在不考虑液化的基础上增加1/2液化深度(桩基主筋若通长则不需要增加长度)。

严重液化时,引起液化折减系数为0或1/ 3,其对土弹簧的刚度折减较大,甚至变为0,使液化土层部分的桩基变成周围没有弹簧约束的墩柱单元。经过计算,其对桩基弯矩分布有较大影响,桩基弯矩最大值位置有明显下移。故建议严重液化条件下,对桩基主筋、加强短筋及箍筋加密段长度在不考虑液化的基础上增加液化深度(桩基主筋若通长则不需要增加长度)。

15

··

辽宁省交通高等专科学校学报2015年

2.5系梁

系梁的设置使桥墩(双柱或多柱)在横向形成框架,起到地震耗能作用,并能控制墩身横桥向位移,对桥墩横向抗震有很大作用。从以上有利的角度考虑,系梁的结构尺寸及配筋应尽量加大。但与此同时,系梁的存在也会使桥墩出现横向轴力不平衡的情况,甚至使单侧桥墩出现受拉情况,对桥墩本身受力不利,且若系梁过强(尺寸过大,配筋过强)的话,地震作用下系梁可能像刚体一样对桥墩墩身造成破坏。从以上不利的角度考虑,系梁的结构尺寸及配筋应尽量减小[6]。

从以上两种相互矛盾的角度上将,系梁可以被称为能力妥协构件。系梁可按下面的原则进行配筋:在地震作用下起到一定的耗能作用,有效控制桥墩横向变形,但又不会因为系梁过强,对与其相连的墩身造成破坏。建议是系梁采用合适的纵向配筋率(0.5%左右),适当加强箍筋配筋率(0.4%左右)。

2.6支座垫石

以前桥梁设计过程中,对支座垫石的抗震并未进行专门考虑,但通过汶川地震的实际桥梁破坏发现,支座垫石过高,会对抗震不利。因梁体支撑在支座垫石上,故支座垫石完成后梁的支撑搭接长度实际变成到支座垫石边缘的距离了。若支座垫石做的过高过小,相当于支撑长度减小,若上部梁从垫石上滑落,与盖梁发生碰撞,会对梁端部产生破坏,甚至是落梁。所以抗震设计时,应考虑将支座垫石尽量做大。

2.7挡块

从地震防撞角度考虑,挡块应尽量做强,但从梁体受力角度上将,挡块不宜过强,防止与梁体碰撞后对梁体产生破坏。目前常用的抗震措施时,将挡块适当加强,并在外缘预留一定的防落梁宽度。另外,可以考虑采用两层的抗震挡块,第1层采用较弱的挡块,主要起耗能作用,同时保证在与梁体碰撞时不会对梁体有大的伤害;第2阶段采用相对较强的挡块,在第1阶段措施耗能作用基础上,最终起到防落梁的作用。

3支座抗震

3.1板式橡胶支座

结合某高速公路项目(地震动峰值加速度0.15及0.2g,基本地震烈度Ⅶ及Ⅷ度),对支座在E1、E2地震作用下进行计算,得出结论见表1:

表1支座地震验算表

从表1中可以看出,在E1地震作用下,支座满足要求,但在E2地震作用下,支座的厚度及抗滑稳定性都会出现不满足要求的情况。对于板式橡胶支座,可以通过加高支座高度的方式解决其厚度不满足要求的情况,但支座的抗滑稳定性很难解决,对此,《城市桥梁抗震设计规范》规定“对采用板式橡胶支座的桥梁结构,如在地震作用下,支座抗滑性能不满足规范要求时,应采用限位装置,或进行减隔震设计”[7]。所以,可以通过设置抗震构造措施来解决板式橡胶支座抗震问题。

3.2减隔震支座

空心板结构适宜采用延性抗震设计,加强墩柱尺寸或配筋,加强塑性铰区域的箍筋配置或细部构造设计,做好抗震设防措施,不建议采用减隔震支座。

正常场地条件下,7度区(含)以下常规桥梁,不建议采用减隔震支座。8度区(含)以上的T梁、小箱梁可考虑采用减隔震支座。

4常规大中桥常用抗震措施

目前大中桥常用的抗震措施有加强型锚栓、纵向抗震挡块、横向抗震挡块、纵横向防落梁措施(连梁装置)、限位器等。加强型锚栓一般应用于小桥或空心板结构;纵向抗震挡块、纵横向防落梁措施一般应用于小箱梁、T梁等结构;限位器一般应用于现浇箱梁结构;横向抗震挡块普遍适用以上多种结构。如丹东大东港疏港高速公路项目,采用了包括抗震锚栓、纵向抗震挡块、纵向防落梁连梁措施,限位器,竖向防落梁等措施。

5结论及建议

(1)目前,桥梁抗震设计有两种理念:将将支座视为能力保护构件,保证支座在地震作用下条件

E1作用E2作用限位

措施

厚度稳定性厚度稳定性

7度区

(0.15g)

Ⅰ类场地满足满足满足满足否

Ⅱ类场地满足满足满足满足否

Ⅲ、Ⅳ类场地满足满足满足不满足是8度区

(0.2g)

Ⅰ类场地满足满足满足满足否

Ⅱ类场地满足满足满足不满足是

Ⅲ类场地满足满足不满足不满足是

16··

赵立岩等:常规大中桥抗震设计探讨

第1期Discussion of Seismic Design of the Routine Bridge

ZHAO Li-yan

Zhou Guo-hong

〔Abstract 〕The routine bridge is the most common structure in the highway,and the seismic design of the

routine bridge is the key part.This article conducts the discussion of bearing,pier shear,foundation liqua -tion,damping and isolating bearing,anti-seismic construction,construction measures,and summarizes the design experience,which could provide the useful consult of the same kind bridge.

〔Keywords 〕seismic design,capacity protected member,liquefaction,anti-seismic construction

不破坏;将支座视为保险丝单元,支座在地震作用下作为塑性铰单元,可以破坏。以上两种理念各有利弊,可根据桥梁实际抗震要求灵活选用。

(2)E 2地震作用考虑墩柱塑性铰的情况下,桩基钢筋面积可按墩柱钢筋面积的1.6~1.9倍选用。

(3)对于下部结构,不宜使用焊接环式箍筋代替螺旋箍筋。

(4)应根据液化等级考虑地基液化对桩基主筋、加强短筋及箍筋加密段的影响。

(5)系梁作为抗震能力妥协构件,应采用合适的纵向配筋率并适当加强箍筋配筋率。

(6)应根据结构形式及地震烈度考虑采用何种形式的抗震措施及是否采用减隔震支座。

(7)对干线高速公路(生命线工程)与支线

高速公路可采用不同的抗震设防标准。

参考文献

[1]中华人民共和国交通运输部.JTG/T B 02-01-2008公路桥梁

抗震设计细则[S ].北京:人民交通出版社,2008.[2]王克海,韦韩,李茜,等.中小跨径公路桥梁抗震设计理念

[J ].土木工程学报,2012,45(9):115-121.

[3]卢建,徐宝林.成武高速公路抗震设计[J ].公路,2012

(05):194-197.

[4]何颖川.汕揭高速公路汕头段常规桥梁的抗震设计[J ].公

路工程,2013,38(3):155-157.

[5]李闯.液化场地桩基桥梁地震反应分析[D ].上海:同济大

学,2014.

[6]沈星,叶爱君,王晓伟.柔性横系梁双柱墩的抗震行为分析

[J ].同济大学学报,2013(03):26-30.

[7]中华人民共和国住房和城乡建设部.CJJ 166-2011城市桥梁

抗震设计规范[S ].北京:中国建筑工业出版社,2011.

版权声明

为适应我国信息化建设,扩大本刊及作者知识信息交流渠道,本刊已被国内外文献索引、文摘和全文数据库收录,作者著作权使用费与本刊稿酬一次性给付。如作者不同意文章被收录,请在来稿时向本刊声明,本刊将做适当处理。

17··

常规大中桥抗震设计探讨

作者:赵立岩, 周国红, ZHAO Li-yan, Zhou Guo-hong

作者单位:辽宁省交通规划设计院,辽宁 沈阳,110166

刊名:

辽宁省交通高等专科学校学报

英文刊名:Journal of Liaoning Provincial College of Communications

年,卷(期):2015(1)

引用本文格式:赵立岩.周国红.ZHAO Li-yan.Zhou Guo-hong常规大中桥抗震设计探讨[期刊论文]-辽宁省交通高等专科学校学报 2015(1)

[公路桥梁]如何加强公路桥梁中的抗震设计

如何加强公路桥梁中的抗震设计 【摘要】在抗震抢险救灾中,公路交通运输是抢救人民生命财产、尽快恢复生产和重建 家园的重要环节,遍布的道路交通就犹如全身的血管,由此可知道路交通的重要性,而公路桥梁作为道路交通的一部分,其重要性也就可想而知,而桥梁工程,作为重要的生命线工程,是交通运输的咽喉,在国家建设中起着举足轻重的作用,为保证公路桥梁设施的完好,发挥其在抗震救灾中的作用,需对公路桥梁抗震设计进行深入的研究,所以本文就将对公路桥梁抗震设计予以简单的阐述。 【关键词】公路桥梁;施工管理 1桥梁的主要震害形式 桥梁的震害有多种形式,根据破坏的部位不同,主要可分为上部结构震害、附属工程震害、墩柱震害、基础震害四种:一是上部结构震害。桥梁上部结构震害按照产生的原因不同,可以分为结构震害和位移震害。其中较常见的是位移震害,桥梁位移震害主要表现为上部结构的纵向位移、横向位移以及扭转,一般来说,设置伸缩缝的地方比较容易发生位移震害;二是附属工程震害。在地震力的作用下,主梁与下部墩柱、桥台连接部较为薄弱,若附属工程没有足够的限位能力将出现震害,其主要表现为支座脱离主梁、挡块碰撞破坏、伸缩缝拉断、台胸墙剪断等震害;三是墩柱震害。墩柱的震害主要表现出两种特征:即塑性铰破坏和剪切破坏,柔桥墩柱在地震力作用下,墩柱底部、顶部和墩柱与系梁连接处容易出现塑性铰,塑性铰混凝土在反复地震作用下剥落、破碎,失去承载能力,而刚性墩在地震作用下,变形能力小,主要以强度抵抗地震力,当地震力超越其承载强度时,出现剪切破坏;四是基础震害。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,地基破坏主要是指地震作用下因砂土液化、不均匀沉降及稳定性不够等因素导致的地层水平滑移、下沉、断裂,基础的震害则主要表现为移位、倾斜、下沉、折断和塑性铰破坏。 2公路桥梁抗震设防目标 公路工程对政治、经济、国防和抗震救灾具有特别重要的意义,在地震时一旦发生破坏,就将造成交通中断,后果非常严重,所以在进行公路工程抗震设计时,应根据不同等级公路的重要性程度,要考虑重要性系数来计算水平地震作用,其与建筑结构抗震设计采用的“三水准两阶段”的抗震设计方法有所不同,目前我国桥梁抗震仍采用一次设计法,仅进行基本烈度下的抗震验算,只进行设计地震力作用下的强度验算,没有考虑桥梁结构的“变形能力”和“耗能能力”,这就导致钢筋混凝土墩桂在强烈地震作用下,往往会因设计弯曲延性不足或塑性铰区设计抗剪强度不足而发生弯剪破坏或剪切破坏,因此,单一的强度设防原则是目前我国公路桥粱抗震设计中存在的主要问题,国际上公认的多级抗震设防原则是“小震不坏,中震可修,大震不倒”,我们建议公路桥梁的抗震设计宜采用三阶段三水准设防,对于第一阶段设计:对于小震,宜采用众值裂度的地震动参数,计算出结构在弹性状态下的地震作用效应,使结构在小震作用下不发生弹性破坏,并进行结构强度和稳定性验算,满足第一设防裂度对结构强度、变形和稳定性的要求,实现小震不坏;对

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁抗震复习题定稿版

桥梁抗震复习题精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度基本地震烈度和E1地震E2地震是什么关系 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到 的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波它们的传播特点是什么各种波的速度对比 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。

纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。 5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种 波就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为:

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范新规范删减列表 1.0.4、设计使用年限(新增) 桥涵主体结构和可更换部件的使用年限提出明确要求。 1..0.6、增加抗风、抗震、抗撞设计要求。 3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。 3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。 3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。 3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。 3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。 3.2.7、新增跨线桥桥墩设置及防护要求。 3.4.1、紧急停车带的设计长度要求修改。 3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。 3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。 3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。 3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。 3.6.6、增加桥梁栏杆与桥面板的连接方式描述。 3.6.8、条纹中补充了盆式支座、球钢支座等支座。 3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。 3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》 3.8.2、新增永久观测点的设置要求。(特大桥、大桥) 3.8.4、修改防雷设计要求。(参考《建筑物防雷设计规范》、《高速公路设施防雷设

计规范》) 3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。 3.8.7、新增跨线桥设置防抛网要求。 4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。 4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。 4.1.5、偶然组合:修改作用的分项系数。 4.1.6、取消长期组合、短期组合的说法,改为:准永久组合及频遇组合。 4.1.7、增加钢结构疲劳设计荷载组合规定。 4.2.2、增加预加力标准值计算公式。 4.2.5、第五条,增加水浮力标准值计算公式。 4.3.1、各等级公路桥涵的汽车荷载等级做了一定调整,将二级公路荷载等级标准提高了一半(由偏向公路二级,改为偏向公路一级)。车道荷载中集中荷载Pk的起始计算标准提高,由180KN提高至270KN。对交通组成中重载交通比重较大的公路桥涵,宜采用与该公路交通组成相适应的汽车荷载模式进行整体和局部验算。 4.3.1、汽车横向折减系数改为横向车道布载系数,提高单车道布载系数至1.2。 4.3.3、离心力计算取消了半径的限制,弯桥均需计算离心力。 4.3.7、增加疲劳荷载计算模型。 4.3.8、风荷载标准直接引用《公路桥梁抗风设计规范》,删除原来规范中规定的内容。 4.3.12、无悬臂宽幅箱梁,宜考虑横向温度梯度引起的效应。(新增内容) 4.3.13、支座摩擦系数增加盆式支座、球形支座的规定。 4.4.1、取消内河航道等级为1-3级内河船舶撞击作用设计值,要求按照专题研究确定。

桥梁抗震设计及加固技术

桥梁抗震设计及加固技术浅析 杨立国 (山东科技大学,山东青岛266590) 摘要:地震是我国多发的地质灾害现象,我国地震灾害分布的范围比较大,地震具有强度大、频率高的特点,公路桥梁往往在地震中出现损坏,给救灾工作带来了困难。针对我国汶川地震等近年来地震的情况,我国公路桥梁的抗震加固工作需要进一步加强,文章对我国公路桥梁抗震加固工作的现状进行了分析,探讨了抗震加固技术的应用,为我国公路桥梁提高到足够的抗震强度提供一些思路。 关键词:地震灾害抗震设计;加固技术 引言:随着我国城市化进程加快,作为城市基础设施之一的公路交通其重要性越来越突出。同时,我国处于地震多发地带,尤其是近几年不断发生各种等级的地震。在地震发生时,不仅会有大量的地面建筑物及各种设施遭到破坏或倒塌,大量人员伤亡,而且还会严重造成交通中断。若作为抗震救灾生命线工程之一的公路交通(尤其是铁路桥梁、城市高架、公路桥梁等公路工程的咽喉要道)受到较大损坏,将会给后续救助工作造成极大的困难。此外,目前我国公路行业现采用的抗震设防标准是《公路桥梁抗震设计细则》(JTJ/TB02-01-2008),公路桥梁抗震设计细则》(JTJ/TB02-01-2008)较《公路工程抗震设计规范》(JTJ004-89)在设计思想、安全设防标准、设计方法、设计程序和构造细节等诸多方面均有很大的变化和深入。 1 桥梁与抗震 我国处于世界两大地震带——环太平洋地震带和亚欧地震带之间,是一个强震多发国家,汶川、玉树地震表明强烈地震将引发长期的社会政治、经济问题,并带来难以慰籍的感情创伤。在抗震救灾中,公路交通运输网更是抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节,所以公路桥梁是生命系统工程中的重要组成部分,公路桥梁抵抗震害的能力是桥梁设计中重点关注的问题之一。桥梁震害中获得的经验和知识是推动桥梁抗震设计的原动力,1971年美国san fernand地震(6.6级)、1989年美国北加州的lonm pfieta地震(7.1级)、1995年日本阪神大地震(7.2级)、2008年汶川大地震(8.0级)等影响巨大的地震引起了工程界的重视和广泛探讨。随着建筑物与地震反应关系的研究深入,桥梁抗震设计理论得到了提高与拓展,2008年我国公路桥梁设计规范由《公路桥梁抗震设计细则》(JTJ/TB02-01-2008)替代原来的《公路工程抗震设计规范)(JTJ004-89),是我国桥梁设计的一大进步,根据历次大地震的调查研究,公路桥梁的地震破坏主要形式总结归纳如下:(1)桥梁上部结构受水平力作用滑落(汶川百花大桥落梁);(2)桥墩塑性铰的抗弯、抗剪强度不足,导致桥墩破坏(日本阪神大量墩柱破坏);(3)桥墩、桩基础钢筋的连接及锚固性能不足,导致桥墩破坏(最为常见); (4)桥梁支座等连接部位破坏(最为常见)。常规桥梁抗震设计首先应是抗震构造措施,根据汶川地震相关调查表明干线公路桥梁由于采用了合理的抗震构造措施,结构安全富裕较多,震后其破坏远小于地方道路桥梁。抗震构造措施是总结桥梁震害经验的基础上提出的设计原则,事实表明抗震构造措施可以起到有效减轻震害作用,而所耗费的工程代价往往较低。 2 桥梁设计与抗震措施 2.1 防止落梁的措施 《公路桥梁抗震设计细则》指出上部结构主梁的支承长度a≥70+0.5L(L为梁的计算跨径,L 单位为m,a单位为cm),该取值沿用自日本抗震设计规范,多数设计者认为规范取值较为保守,比上一代规范《公路工程抗震设计规范(JTJ004-89))有较大提高(a≥50+l)。这里需指出该种认识属于误区,当“长桥高墩”时应在规范基础上给予更多的安全富余。例如:都汶高速公路庙子坪岷江大桥第10跨(跨径50m、墩高70m)。虽然盖梁宽度高达3.0m(根据《桥梁

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

桥梁抗震设计要点及减隔震技术的应用

桥梁抗震设计要点及减隔震技术的应用 桥梁是现代人类生活中极为重要的生命线之一,也是不可或缺的重要设施,作为生命线工程,其抗震安全的重要性不言而喻,因此,桥梁抗震设计、减隔震技术是桥梁抗震研究的重要内容。本文在总结了以往地震中橋梁震害,提出了桥梁抗震设计要点,阐明了减隔震原理、分类及适用情况,为桥梁工程师提供一个有利的依据。 标签:桥梁震害;抗震设计;减隔震 引言 目前中国新建和在建的桥梁工程,大都没有经历过强震的考验,震害资料缺乏,其抗震设计理论和方法研究存在不足,我国现阶段的抗震思想是“小震不坏,中震可修,大震不倒”,这一抗震思想要求结构遭遇设防烈度的地震后主体结构不应有大的破坏并可以修复,遭遇罕遇地震后允许结构有大的破坏,但不能倒塌造成人员伤亡。但由于地震作用的不确定性和复杂性,结构有可能遭受比设防烈度更大的地震作用,这样会使结构构件严重受损。综上,在地震来临时,如何保证桥梁结构的安全性以及震后修复工作,给桥梁建造者带来了巨大的挑战,桥梁抗震设计显得尤为突出,桥梁的减震措施的应用显得尤为迫切。 一、桥梁震害及分析 调查与分析桥梁的震害及其产生的原因是建立正确的抗震设计方法、采取有效的抗震措施的科学依据[1-2]。桥梁主要由上部结构、下部结构、支座及附属结构组成,纵观历史上发生的大地震,由地震引起的损害也多集中正在上部结构、下部结构及支座,主要有以下现象: 1)上部结构的震害 上部结构的震害分为自身震害、位移震害和碰撞震害。在历次的地震中,混凝土梁体自身在地震中的破坏并不多,主要是钢结构的局部屈曲破坏。桥梁上部结构的移位震害在主要表现为桥梁上部结构的纵向移位、横向移位以及扭转移位,如伸缩缝的移位震害,落梁震害。上部结构的碰撞震害多为相邻梁体粱端之间的碰撞、梁端部与桥台胸墙之间的碰撞。地震中,如果相邻结构之间的间距过小,可能会发生碰撞,产生极大的撞击力,从而使结构受到破坏。 2)支座的震害 桥梁支座是连接上部结构与下部结构的重要部分,是桥梁结构体系中抗震性能较薄弱的一个环节,在强地震作用下,支座非常容易发生破坏。支座的破坏形式主要有支座移位、锚固螺栓被剪断、拔出,支座脱空等。

公路桥梁的抗震设计论文

公路桥梁的抗震设计 沈阳农业大学水利学院王世雄 摘要:我国处于世界两大地震带——环太平洋地震带和亚欧地震带之间,是一个强震多发国家,汶川、玉树地震表明强烈地震将引发长期的社会政治、经济问题,并带来难以慰籍的感情创伤。在抗震救灾中,公路交通运输网更是抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节,所以公路桥梁是生命系统工程中的重要组成部分,公路桥梁抵抗震害的能力是桥梁设计中重点关注的问题之一。文章分析桥梁结构震害及其原因,探讨公路桥梁抗震设防目标,提出公路桥梁抗震设防措施。 关键字:桥梁;公路;设计;抗震 Abstract:China is the world's two largest earthquake zone -- the central Pacific seismic belt and the Eurasian seismic belt, is a strong earthquake country, Wenchuan, the Yushu earthquake shows that the strong earthquake will cause social politics, long term economic problems, and brings to the comfort of emotional trauma. In earthquake relief, the highway transportation network is an important link to rescue the people's life and property and to resume production, rebuild their homes as soon as possible, reduce the secondary disasters, so the highway bridge is an important part of life in the system engineering, road and bridge damage resistance ability is one of the focus in bridge design problem. The seismic damage analysis and reasons of bridge structure, bridge seismic fortification target, the highway bridge seismic fortification measures. Keywords:highway bridge; earthquake; design; 我国是地震多发国家,这些年来地震一直不断,特别是2008年5月12日的、汶川大地震给我国造成了巨大的损失。在抗震抢险救灾中公路交通运输是抢救人民生命财产、尽快恢复生产和重建家园的重要环节。遍布的道路交通犹如全身的血管,由此可知道路交通的重要性,而公路桥梁作为道路交通

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

城市轨道交通桥梁设计常用规范(截止2015年12月31日)

序号规范名称有效版本1《地铁设计规范》GB50157-2013 2《城市轨道交通工程设计文件编制深度规定》建质2013-160号3《城市轨道交通技术规范》GB50490-2009 4《城市轨道交通工程项目建设标准》建标104-2008 5《城际铁路设计规范》TB10623-2014 6《高速铁路设计规范》TB10621-2014 7《跨座式单轨交通设计规范》GB50458-2008 8《内河通航标准》GB50139-2014 9《混凝土结构设计规范》(2015版)GB50010-2010 10《铁路混凝土结构耐久性设计规范》TB10005-2010 11《铁路混凝土工程预防碱-骨料反应技术条件》TB/T3054-2002 12《铁路桥涵设计基本规范》TB10002.1-2005 13《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 14《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005 15《铁路桥涵地基和基础设计规范》(2009版)TB10002.5-2005 16《铁路工程抗震设计规范》GB50111-2006 17《城市轨道交通结构抗震设计规范》GB50909-2014 18《混凝土结构加固设计规范 》GB50367-2013 19《混凝土结构后锚固技术规程》JGJ145-2013 20《铁路桥梁钢结构设计规范 》TB10002.2-2005 21《铁路结合梁设计规定》TBJ 24-89 22《钢-混凝土组合桥梁设计规范》GB50917-2013 23《公路钢混组合桥梁设计与施工规范》JTG/T D64-01-2015 24《公路钢结构桥梁设计规范》JTG D64-2015 25《钢结构设计规范》GB50017-2003 26《新建时速200公里客货共线铁路设计暂行规定》铁建设2005-285号27《铁路工程设计防火规范》TB10063-2007 28《铁路工程地质勘察规范》TB10012-2007 29《城市轨道交通岩土工程勘察规范》GB50307-2012 30《市政工程勘查规范》CJJ56-2012 31《城市地下管线探测技术规程》CJJ61-2003 32《铁路工程基桩检测技术规程》TB10218-2008 33《建筑基桩检测技术规范》JGJ106-2014 34《铁路桥涵工程施工安全技术规程》TB10303-2009 35《铁路桥梁盆式橡胶支座》TB/T2331-2013 36《铁路桥梁球形支座》TB/T3320-2013 37《桥梁球型支座》GB/T17955-2009 38《城市轨道交通桥梁盆式支座》CJ/T464-2014 39《城市轨道交通桥梁球型钢支座》CJ/T482-2015 40《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1-2008 41《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2-2007 42《钢筋混凝土用钢筋焊接网》GB/T1499.3-2010 43《预应力混凝土用螺纹钢筋》GB/T20065-2006 44《预应力混凝土用钢绞线》GB/T5224-2014 45《预应力混凝土桥梁用塑料波纹管》JT/T529-2004 46《预应力混凝土用金属波纹管》JG225-2007 47《预应力筋用锚具、夹具和联结器》GB/T14370-2007 48《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 49《碳素结构钢》GB/T700-2006 50《桥梁用结构钢》GB/T714-2015 51《低合金高强度结构钢》GB/T1591-2008 52《电弧螺柱焊用圆柱头焊钉》GB/T10433-2002 53《钢结构焊接规范》GB50661-2011 54《钢结构高强度螺栓连接技术规程》JGJ82-2011 55《铁路钢桥高强度螺栓连接施工规定》TBJ214-92 56《金属熔化焊焊接接头射线照相》GB/T3323-2005 57《无损检测 焊缝磁粉检测》JB/T6061-2007铁路桥涵规范的修订内容见铁道部、铁总相关文件 (一)设计规范 (截止2015年12月31日) 拉索、缆索、冷铸 镦头锚、索鞍、索 夹等材料规范不在 此列表中

日本桥梁抗震设计规范

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。 关键词:桥梁基础抗震设计日本规范 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 loma prieta地震(m7.0)、1994年美国northridge地震(m6.7)、1995年日本阪神地震(m7.2)、1999年土耳其伊比米特地震(m7.4)、1999年台湾集集地震(m7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 中国现行《公路工程抗震设计规范》(jtj004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的aashto规范、cal-tans规范、atc32美国应用技术协会建议规范,新西兰规范nz,欧洲规范ec8,日本规范japan)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

浅谈桥梁抗震设计

浅谈桥梁抗震设计 摘要 目前桥梁工程抗震的研究问题是当今热点问题,本文在分析桥梁结构地震破坏的主要形式基础上,阐述了桥梁抗震设计原则,最后对于桥梁抗震设计方法进行分析,重点探讨了桥梁抗震概念设计、桥梁延性抗震设计、地震响应分析及设计方法的改变以及多阶段设计方法等内容。 关键词: 地震破坏桥梁结构抗震设计抗震措施 引言 桥梁工程又是中的重中之重,桥梁工程抗震研究的重要性不言而喻。抗震概念设计是指根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构总体方案、材料使用和细部构造,以达到合理抗震设计的目的。合理的抗震设计,要求设计出来的结构在强度、刚度和延性等指标上有最佳的组合,使结构能够地实现抗震设防的目标。本文主要探讨了桥梁工程抗震设计相关问题,为今后桥梁设计起到借鉴作用。桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。 地震形成 地震,是地球内部发生的急剧破裂产生的震波,在一定范围内引起地面振动的现象。地震(earthquake)就是地球表层的快速振动,在古代又称为地动。它就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害。大地振动是地震最直观、最普遍的

表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。地震是极其频繁的,全球每年发生地震约550万次。目前衡量地震规模的标准主要有震级和烈度两种。同样大小的地震,造成的破坏不一定是相同的;同一次地震,在不同的地方造成的破坏也不一样。为了衡量地震的破坏程度,科学家又“制作”了另一把“尺子”一一地震烈度。在中国地震烈度表上,对人的感觉、一般房屋震害程度和其他现象作了描述,可以作为确定烈度的基本依据。影响烈度的因素有震级、震源深度、距震源的远近、地面状况和地层构造等。地震发生时,最基本的现象是地面的连续振动,主要特征是明显的晃动。地震分为天然地震和人工地震两大类。此外,某些特殊情况下也会产生地震,如大陨石冲击地面(陨石冲击地震)等。引起地球表层振动的原因很多,根据地震的成因,可以把地震分为以下几种: 1、构造地震由于地下深处岩石破裂、错动把长期积累起来的能量急剧释放出来,以地震波的形式向四面八方传播出去,到地面引起的房摇地动称为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。 2、火山地震由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。 3、塌陷地震由于地下岩洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,次数也很少,即使有,也往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。 4、诱发地震由于水库蓄水、油田注水等活动而引发的地震称为诱发地震。这类地震仅仅在某些特定的水库库区或油田地区发生。 5、人工地震地下核爆炸、炸药爆破等人为引起的地面振动称为人工地震。人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。 桥梁破坏形式 桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种: 1 落梁破坏 震害原因

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

相关主题
文本预览
相关文档 最新文档