当前位置:文档之家› 【状元之路】2015届高考物理一轮复习 4-3圆周运动的规律及应用同步检测试题

【状元之路】2015届高考物理一轮复习 4-3圆周运动的规律及应用同步检测试题

【状元之路】2015届高考物理一轮复习 4-3圆周运动的规律及应用同步检测试题
【状元之路】2015届高考物理一轮复习 4-3圆周运动的规律及应用同步检测试题

圆周运动的规律及应用

A 组 基础巩固

1.(多选题)图14-1为甲、乙两球做匀速圆周运动时向心加速度随半径变化的关系图线,甲图线为双曲线的一支,乙图线为直线.由图象可以知道( )

图14-1

A .甲球运动时,线速度的大小保持不变

B .甲球运动时,角速度的大小保持不变

C .乙球运动时,线速度的大小保持不变

D .乙球运动时,角速度的大小保持不变

解析:对于甲球:a ∝1r ,而a =v

2

r

,说明甲球线速度的大小保持不变;对于乙球:a ∝r ,而a =

ω2

r ,说明乙球角速度的大小保持不变.

答案:AD

2.如图14-2所示,将完全相同的两个小球A 、B 用长为L =0.8 m 的细绳悬于以v =4 m/s 向右运动的小车顶部,两小球与小车前后竖直壁接触,由于某种原因,小车突然停止,此时悬线中张力之比F B ∶F A 为(g =10 m/s 2

)( )

图14-2

A .1∶1

B .1∶2

C .1∶3

D .1∶4

解析:当车突然停下时,B 不动,绳对B 的拉力仍等于小球的重力;A 向右摆动做圆周运动,则

突然停止时,A 球所处的位置为圆周运动的最低点,由此可以算出此时绳对A 的拉力为F A =mg +m v 2

L

3mg ,所以F B ∶F A =1∶3,C 正确.

答案:C

3.[20132洛阳期中]如图14-3所示,长为L 的轻杆,一端固定一个质量为m 的小球,另一端固定在水平转轴O 上,杆随转轴O 在竖直平面内匀速转动,角速度为ω,某时刻杆对球的作用力恰好与杆垂直,则此时杆与水平面的夹角θ是( )

图14-3

A .sin θ=ω2

L

g

B .tan θ=ω2

L

g

C .sin θ=

g

ω2

L

D .tan θ=

g

ω2L

解析:对小球分析受力,杆对球的作用力和小球重力的合力一定沿杆指向O ,合力大小为mL ω2

,画出m 受力的矢量图.由图中几何关系可得sin θ=ω2

L g

,选项A 正确.

答案:A

4.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于0,θ应等于( )

A .arcsin v 2

Rg

B .arctan v 2

Rg

C.12arcsin 2v 2

Rg

D .arccot v 2

Rg

解析:如图14-4所示,要使摩擦力为零,必使汽车所受重力与路面对它的支持力的合力提供

向心力,则有m v 2R =mg tan θ,所以θ=arctan v 2

gR

,B 正确.

图14-4

答案:B

5.(多选题)如图14-5所示,水平转盘上的A、B、C三处有三块可视为质点的由同一种材料做成的正方体物块,B、C处物块的质量相等且为m,A处物块的质量为2m,点A、B与轴O的距离相等且为r,点C到轴O的距离为2r,转盘以某一角速度匀速转动时,A、B、C处的物块都没有发生滑动现象,下列说法中正确的是( )

图14-5

A.C处物块的向心加速度最大

B.A处物块受到的静摩擦力最小

C.当转速继续增大时,最后滑动起来的是A处的物块

D.当转速增大时,最先滑动起来的是C处的物块

解析:物块的向心加速度a=ω2r,C处物块的轨道半径最大,向心加速度最大,A正确;物块受到的静摩擦力F f=mω2r,所以有F f A=F f C=2F f B,B错误;当转速增大时最先滑动的是C,A、B同时滑动,C错误,D正确.

答案:AD

B组能力提升

6.[20142浙江省慈溪中学月考]某机器内有两个围绕各自的固定轴匀速转动的铝盘A、B,A盘上有一个信号发射装置P,能发射水平红外线,P到圆心的距离为28 cm.B盘上有一个带窗口的红外线信号接受装置Q,Q到圆心的距离为16 cm.P、Q转动的线速度相同,都是4π m/s.当P、Q正对时,P发出的红外线恰好进入Q的接收窗口,如图14-6所示,则Q接收到的红外线信号的周期是( )

图14-6

A .0.07 s

B .0.16 s

C .0.28 s

D .0.56 s

解析:P 的周期T P =2πr P v =0.14 s ,Q 的周期T Q =2πr Q

v

=0.08 s ,因为经历的时间必须等于它

们周期的整数倍,根据数学知识,0.14和0.08的最小公倍数为0.56,所以经历的时间最小为0.56 s .故A 、B 、C 错误,D 正确.

答案:D

7.10只相同的轮子并排水平排列,圆心分别为O 1、O 2、O 3…O 10,已知O 1O 10=3.6 m ,水平转轴通过圆心,轮子均绕轴以n =4

πr/s 的转速顺时针转动.现将一根长L =0.8 m 、质量为m =2.0 kg

的匀质木板平放在这些轮子的左端,木板左端恰好与O 1竖直对齐(如图14-7所示),木板与轮缘间的动摩擦因数为μ=0.16.则木板保持水平状态运动的总时间为( )

图14-7

A .1.52s

B .2 s

C .3 s

D .2.5 s

解析:轮子的半径r =

O 1O 10

18

=0.2 m ,角速度ω=2πn =8 rad/ s .边缘线速度与木板运动的最

大速度相等,v =ωr =1.6 m/s ,木板加速运动的时间和位移分别为t 1=v μg =1 s ,x 1=v 2

2μg =0.8 m .匀

速运动的位移x 2=O 1O 10-L 2-x 1=2.4 m ,匀速运动的时间t 2=x 2

v =1.5 s ,则木板保持水平状态运动

的总时间t =t 1+t 2=2.5 s.

答案:D

8.如图14-8所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉

手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚要发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( )

图14-8

A.两小孩均沿切线方向滑出后落入水中

B.两小孩均沿半径方向滑出后落入水中

C.两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中

D.甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中

解析:在松手前,甲、乙两小孩做圆周运动的向心力均由静摩擦力及拉力的合力提供,且静摩擦力均达到了最大静摩擦力.因为这两个小孩在同一个圆盘上转动,故角速度ω相同,设此时手中的拉力为F T,则对甲:F fm-F T=mω2R甲,对乙:F T+F fm=mω2R乙.当松手时,F T=0,乙所受的最大静摩擦力小于所需要的向心力,故乙做离心运动,然后落入水中.甲所受的静摩擦力变小,直至与它所需要的向心力相等,故甲仍随圆盘一起做匀速圆周运动,选项D正确.

答案:D

9.如图14-9所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO′匀速转动,规定经过圆心O水平向右为x轴的正方向.在圆心O正上方距盘面高为h处有一个正在间断滴水的容器,从t=0时刻开始随传送带沿与x轴平行的方向做匀速直线运动,速度大小为v.已知容器在t =0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面上时再滴一滴水.求:

图14-9

(1)每一滴水经多长时间滴落到盘面上?

(2)要使每一滴水在盘面上的落点都位于同一直径上,圆盘转动的角速度ω应为多大? (3)第二滴水与第三滴水在盘面上落点间的最大距离x . 解析:(1)水滴在竖直方向的分运动为自由落体运动,有

h =12

gt 2,得t 1=

2h

g

.

(2)分析题意可知,在相邻两滴水的下落时间内,圆盘转过的角度应为n π,所以角速度为 ω=

n π

t 1=n π g

2h

(n =1,2,3…). (3)第二滴水落在圆盘上的水平位移为

x 2=v 22t 1=2v

2h g

第三滴水落在圆盘上的水平位移为

x 3=v 23t 1=3v

2h g

.

当第二与第三滴水在盘面上的落点位于同一直径上圆心两侧时,两点间的距离最大,则

x =x 2+x 3=5v

2h g

.

答案:(1) 2h

g

(2)n π

g

2h

(n =1,2,3…) (3)5v

2h g

10.[20142广东省汕头市金山中学期中]如图14-10,圆形玻璃平板半径为R ,离水平地面的高度为h ,可绕圆心O 在水平面内自由转动,一质量为m 的小木块放置在玻璃板的边缘.玻璃板匀速转动使木块随之做匀速圆周运动.

图14-10

(1)若已知玻璃板匀速转动的周期为T ,求木块所受摩擦力的大小.

(2)缓慢增大转速,木块随玻璃板缓慢加速,直到从玻璃板滑出.已知木块脱离时沿玻璃板边缘的切线方向水平飞出,落地点与通过圆心O 的竖直线间的距离为s .木块抛出的初速度可认为等于木块做匀速圆周运动即将滑离玻璃板时的线速度,滑动摩擦力可认为等于最大静摩擦力,试求木块与玻璃板间的动摩擦因数μ.

解析:(1)木块所受摩擦力等于木块做匀速圆周运动的向心力

f =m ?

??

??2πT 2R

(2)木块做匀速圆周运动即将滑离玻璃板时,静摩擦力达到最大,有

f m =μm

g =m v 2m

R

木块脱离玻璃板后在竖直方向上做自由落体运动,有

h =12

gt 2

在水平方向上做匀速运动,水平位移

x =v m t

x 与距离s 、半径R 的关系如图14-11所示.

图14-11

由图可得

s 2=R 2+x 2

由以上各式解得木块与玻璃板间的动摩擦因数μ=s 2-R 2

2hR .

答案:(1)m ? ??

??2πT 2

R (2)s 2

-R 2

2hR

11.[20142湖北省黄冈市测试]如图14-12所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合.转台以一定角速度ω匀速转动,一质量为m 的小物块落入陶罐内,经过一段时间后小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g .

图14-12

(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;

(2)若ω=(1±k)ω0,且0<k<1,求小物块受到的摩擦力大小和方向.

图14-13

解析:(1)对小物块受力分析如图14-13所示,由于小物块在竖直方向上没有加速度,只在水平面上以O1为圆心做圆周运动,F N的水平分力F1提供向心力.所以有

F2=F N cosθ=mg,

F1=F N sinθ=mrω20,

r=R sinθ

由以上各式联立解得ω0=2g R

.

(2) ①当ω=(1+k)ω0时,由向心力公式F n=mrω2知,ω越大,所需要的F n越大,此时F1不足以提供向心力了,物块要做离心运动,但由于受摩擦阻力的作用,物块不至于沿罐壁向上运动.故摩擦力的方向沿罐壁向下,如图14-14所示.对f进行分解,此时向心力由F N的水平分力F1和f 的水平分力f1的合力提供

图14-14 F2=f2+mg,

F n=F1+f1=mrω2

再利用几何关系,并将数据代入得f=3k+k

2

mg.

图14-15

②当ω=(1-k)ω0时,由向心力公式F n=mrω2知,ω越小,所需要的F n越小,此时F1超过所需要的向心力了,物块要做向心运动,但由于受摩擦阻力的作用,物块不至于沿罐壁向下运动.故摩擦力的方向沿罐壁向上,如图14-15所示.

对f进行分解,此时向心力由F N的水平分力F1和f的水平分力f1的合力提供

F2=f2+mg,

F n=F1-f1=mrω2

再利用几何关系,并将数据代入得f=3-k

2

mg.

答案:(1) 2g

R

(2)当ω=(1+k)ω0时,f=

3k+k

2

mg;当ω=(1-k)ω0时,f=

3k-k

2

mg

C组难点突破

12.[20142甘肃省天水一中段考]如图14-16所示,倾斜放置的圆盘绕着中心轴匀速转动,圆

盘的倾角为37°,在距转动中心r=0.1 m处放一小木块,小木块跟随圆盘一起转动,小木块与圆盘的动摩擦因数为μ=0.8,木块与圆盘的最大静摩擦力与相同条件下的滑动摩擦力相同.若要保持小木块不相对圆盘滑动,圆盘转动的角速度最大值为(已知sin37°=0.6,cos37°=0.8)( )

图14-16

A.8 rad/s B.2 rad/s

C.124 rad/s

D.60rad/s

解析:木块与圆盘的最大静摩擦力出现在最低点,此时最大静摩擦力指向圆心,最大静摩擦力与重力沿圆盘的分力的合力提供木块做圆周运动的向心力,即μmg cosθ-mg sinθ=mrω2,解得最大角速度为ω=2 rad/s,选项B正确.

答案:B

高考物理圆周运动经典练习题

圆周运动 水平圆周运动 【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是(D) A、物体所受弹力增大,摩擦力也增大了 B、物体所受弹力增大,摩擦力减小了 C、物体所受弹力和摩擦力都减小了 D、物体所受弹力增大,摩擦力不变 【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a、b两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B ) A.在a轨道上运动时角速度较大 B.在a轨道上运动时线速度较大 C.在a轨道上运动时摩托车对侧壁的压力较大 D.在a轨道上运动时摩托车和运动员所受的向心力较大 【例题】长为L的细线,拴一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L与竖直方向的夹角是α时,求: (1)线的拉力F;

(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。 ★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。由平行四边形法则得小球受到的合力大小为mg tanα,线对小球的拉力大小为F =mg/cosα由牛顿第二定律得mgt anα=mv 2 /r 由几何关系得r =Lsi nα 所以,小球做匀速圆周运动线速度的大小 为v = 小球运动的角速度 v r ω= == 小球运动的周期22T π==ω 点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。 1、竖直平面内: (1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: ①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即r mv mg 2 临界 = ?rg =临界υ(临界υ是小球通过最高点的最小速度, 即临界速度)。 ②能过最高点的条件:临界υυ≥。 此时小球对轨道有压力或绳对小球有拉 力

高考物理一轮复习圆周运动专题训练(附答案)

高考物理一轮复习圆周运动专题训练(附答 案) 质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。以下是圆周运动专题训练,请考生认真练习。 1.(2019湖北省重点中学联考)由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是() A.P、Q两点的角速度大小相等 B.P、Q两点的线速度大小相等 C.P点的线速度比Q点的线速度大 D.P、Q两物体均受重力和支持力两个力作用 2.(2019资阳诊断)水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径Rr=21。当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为1,木块的向心加速度为a1,若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为2,木块的向心加速度为,则() A.=Rr=21 B.=2 C.=1 D.=a1 3.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径RB=4RA、RC=8RA,如图3所示。当自

行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比aAaB∶aC等于() A.11∶8 B.41∶4 C.41∶32 D.12∶4 对点训练:水平面内的匀速圆周运动 4.山城重庆的轻轨交通颇有山城特色,由于地域限制,弯道半径很小,在某些弯道上行驶时列车的车身严重倾斜。每到这样的弯道乘客都有一种坐过山车的感觉,很是惊险刺激。假设某弯道铁轨是圆弧的一部分,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢地面与水平面夹角)为,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为() A. 2 B.4 C. 5 D.9 5.(多选)绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动() A.转速相同时,绳长的容易断 B.周期相同时,绳短的容易断 C.线速度大小相等时,绳短的容易断 D.线速度大小相等时,绳长的容易断 6.(多选)(2019河南漯河二模)两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。设法让两个

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

(完整word版)高中物理圆周运动优秀教案及教学设计

高中物理圆周运动优秀教案及教学设计 导语:教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。你知道生活中还有哪些圆周运动呢?以下是品才整理的,欢迎阅读参考! 一、教材分析 《匀速圆周运动》为高中物理必修2第五章第5节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。 人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。 教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。 二、教学目标 1.知识与技能 ①知道什么是圆周运动、什么是匀速圆周运动。理解线

速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。 ②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。 ③理解匀速圆周运动是变速运动。 ④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。 2.过程与方法 ①运用极限思维理解线速度的瞬时性和矢量性.掌握运用圆周运动的特点去分析有关问题。 ②体会有了线速度后,为什么还要引入角速度.运用数学知识推导角速度的单位。 3.情感、态度与价值观 ①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。 ②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。 ③进行爱的教育。在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。 三、教学重点、难点 1.重点

最新高考物理专题复习:圆周运动精编版

2020年高考物理专题复习:圆周运动精编 版

专题4.2 圆周运动 【高频考点解读】 1.掌握描述圆周运动的物理量及它们之间的关系. 2.理解向心力公式并能应用; 3.了解物体做离心运动的条件. 【热点题型】 题型一圆周运动的运动学问题 例1.如图4-3-3所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点( ) 图4-3-3 A.角速度之比ωA∶ωB=2∶1 B.角速度之比ωA∶ωB=1∶ 2 C.线速度之比v A∶v B=2∶1 D.线速度之比v A∶v B=1∶ 2 【提分秘籍】 1.圆周运动各物理量间的关系

2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比; 当ω一定时,v 与r 成正比; 当v 一定时,ω与r 成反比。 3.对a =v 2 r =ω2r 的理解 当v 一定时,a 与r 成反比; 当ω一定时,a 与r 成正比。 4.常见的三种传动方式及特点 (1)皮带传动:如图4-3-1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-1 (2)摩擦传动:如图4-3-2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-2 (3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。 【举一反三】 如图4-3-4所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来。a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

高中物理圆周运动最新最全高考模拟题附有详细解析资料

高中物理圆周运动最新最全高考模拟题 一.选择题(共19小题) 2.(2015?徐州模拟)一个物体做匀速圆周运动时,线速度大小保持不变,下列说法中正确 3.(2012?珠海校级模拟)氢原子中的电子绕原子核做匀速圆周运动和人造卫星绕地球做匀 4.(2010?浙江)宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示.已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T0.太阳光可看作平行光,宇航员在A点测出的张角为α,则() 的次数为 过程的时间为

6.(2015?宿迁模拟)A、B两个质点分别做匀速圆周运动,在相等时问内通过的弧长之比 7.(2015?云南校级学业考试)如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的线速度大小为v,则它运动的向心加速度大小为() B 8.(2015?临潼区)两颗人造地球卫星A和B的轨道半径分别为R A和R B,则它们的运动速率v A和v B,角速度ωA和ωB,向心加速度a A和a B,运动周期TA和TB之间的关系为正 A B 9.(2015?遂宁模拟)图中所示为一皮带传动装置,右轮的半径范围r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r.c 点和d点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则()

10.(2015春?娄底期中)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g,若圆盘从静止开始绕转轴缓慢地加速运动,用ω表示圆盘转动的角速度,下列说法正确的是() 11.(2015?安庆校级四模)如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内:套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为() 12.(2015?廉江市校级模拟)如图所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是() 13.(2015?广州)如图所示,质量相等的a、b两物体放在圆盘上,到圆心的距离之比是2:3,圆盘绕圆心做匀速圆周运动,两物体相对圆盘静止,a、b两物体做圆周运动的向心力之比是()

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

高考物理圆周运动专项测试含答案

高考物理圆周运动专项测试含答案 高考物理圆周运动专项测试 一、选择题 1.物体以角速度ω做匀速圆周运动,下列说法中正确的是() A.轨道半径越大线速度越大 B.轨道半径越大线速度越小 C.轨道半径越大周期越大 D.轨道半径越大周期越小 2.某质点绕圆轨道做匀速圆周运动,下列说法中正确的是() A.因为它速度大小始终不变,所以它做的是匀速运动 B.它速度大小不变,但方向时刻改变,是变速运动 C.该质点速度大小不变,因而加速度为零,处于平衡状态 D.该质点做的是变速运动,具有加速度,故它受合外力不等于零 3.静止在地球上的物体都要随地球一起转动,下列说法正确的是() A.它们的运动周期都是相同的 B.它们的线速度都是相同的 C.它们的线速度大小都是相同的

D.它们的角速度是不同的 4.一皮带传送装置,a、b分别是两轮边缘上的两点,c 处在O1轮上,且有ra=2rb=2rc,则下列关系正确的有() A.va=vb B.ωa=ωb C.va=vc D.ωa=ωc 5.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h”上,可估算出该车车轮的转速为() A.1 000 r/s B.1 000 r/min C.1 000 r/h D.2 000 r/s 6.某一皮带传动装置,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是() A.从动轮做顺时针转动 B.从动轮做逆时针转动 C.从动轮的转速为n D.从动轮的转速为n 二、非选择题 7.所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系为rA=rC=2rB.若皮带不打滑,求A、B、C轮边缘的a、b、c三质点的角速度

高中物理圆周运动总结

图圆周运动的实例分析 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T AB 2 11②代入数据得:s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为 T2,则有mg T =?45cos 2 ③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。要使 AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: mg T =θcos 2,T2cos θ =m ω2LBCsin θ ⑤而LACsin30°=LBCsin45°,LBC= 2m ⑥由⑤、⑥可解得 N T 3.22=;01=T 【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上 的合外力必然为零。 (2)同轴装置与皮带传动装置 在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等。 例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等 C .a 点与d 点向心加速度大小相等 D .a 、b 、c 、d 四点,加速度最小的是b 点 【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与 皮带接触的各点线速度大小相同。这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。 【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va =vc ,又v =ωR , 所以 ωar =ωc·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21 ωa ,所以选项B错.又vb =ωb·r = 21 ωar =2 v a ,所以选项A 也错.向心加速度:aa =ωa2r ;ab =ωb2·r =(2 ωa )2r =41ωa2r =41aa ;ac =ωc2·2r =(2 1ωa )2·2r = 21ωa2r =21aa ;ad =ωd2·4r =(21 ωa )2·4r =ωa2r =aa .所以选项C 、D 均正确。 【总结】 a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再 添加一个向心力。 图 图

高考物理真题练习圆周运动

2010高考物理真题训练:圆周运动 1.(2007广东理科基础,8,2分)游客乘坐过 山车,在圆弧轨道最低点处获得的向心加速率达到20m/s 2,g 取10m/s 2,那么此位置座椅对游客的作用力相当于游客重力的 ( ) A .1倍 B .2倍 C .3倍 D .4倍 2.(2008广东理科基础,7,2分)汽车甲和汽车乙质量相等,以相等的速率沿同一水平弯 道做匀速圆周运动,甲车在乙车的外侧。两车沿半径方向受到的摩擦力分别为.乙甲和f f 以下说法正确的是 ( ) A .乙甲小于f f B .乙甲等于f f C .乙甲大于f f D .乙甲和f f 大小均与汽车速率无关 3.(2009上海春招,4,2分)如图3 – 1所示,机器人的机械传动 装置中,由电动机直接带动轮子转动,电动机转速恒为2转/秒。若轮子半径为0.05m ,则机器人的速度v 1为 m/s ;若电动机直接带动半径为0.03m 的轮子时,机器人的速率v 2为v 1的 倍。 4.(2008广东单科,17,18分)(1)为了响应国家的“节能减排” 号召,某同学采用了一个家用汽车的节能方法。在符合安全行 驶要求的情况下,通过减少汽车后备箱中放置的不常用物品和控制加油量等措施。使汽车负载减少,假设汽车以72km/h 的速度匀速行驶时,负载改变前、后汽车受到的阻力分别为2 000N 和1 950N 。请计算该方法使汽车发动机输出功率减少了多少? (4)在一种叫“飞椅”的游乐项目,示意图如图4 – 1所示, 长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘。转盘可绕穿过其中心的竖直轴转动。当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ。不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系。 5.(2008山东理综,24,15分)某兴趣小组设计了如图5 – 1

高考物理生活中的圆周运动及其解题技巧及练习题(含答案)

高考物理生活中的圆周运动及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度; (3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离. 【答案】(1)线断裂的瞬间,线的拉力为45N; (2)线断裂时小球运动的线速度为5m/s; (3)落地点离桌面边缘的水平距离2m. 【解析】 【分析】 【详解】 (1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有: F N=F=mω2R, 设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有: F1:F0=ω2: 2 =9:1, 又F1=F0+40N, 所以F0=5N,线断时有:F1=45N. (2)设线断时小球的线速度大小为v,由F1= 2 v m R , 代入数据得:v=5m/s.

(3)由平抛运动规律得小球在空中运动的时间为:t =220.810 h s g ?==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m . 2.如图所示,在光滑的圆锥体顶部用长为 的细线悬挂一质量为 的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴 线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知 , 重力加速度g 取 若北小球运动的角速度 ,求此时细线对小球的拉力大小。 【答案】 【解析】 【分析】 根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。 【详解】 若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有: 此时小球做圆周运动的半径为: 解得小球运动的角速度大小 为:代入数据得: 若小球运动的角速度为: 小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则 水平方向上有: 竖直方向上有: 联立方程求得: 【点睛】 解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。 3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为 0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为 10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦

高中物理圆周运动知识点

1.匀速圆周运动 1.线速度:质点通过的圆弧长跟所用时间的比值。 222s v r r fr nr t T πωππ?=====? 单位:米/秒,m/s 2.角速度:质点所在的半径转过的角度跟所用时间的比值。 222f n t T ?πωππ?====? 单位:弧度/秒,rad/s 3.周期:物体做匀速圆周运动一周所用的时间。 22r T v ππω == 单位:秒,s 4.频率:单位时间内完成圆周运动的圈数。 1f T = 单位:赫兹,Hz 5.转速:单位时间内转过的圈数。 N n t = 单位:转/秒,r/s n f = (条件是转速n 的单位必须为转/秒) 6.向心加速度:22222()(2)v a r v r f r r T πωωπ===== 7.向心力:22222()(2)v F ma m m r m v m r m f r r T πωωπ====== 三种转动方式 绳模型

2.竖直平面的圆周运动 1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。 (注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用 mg =2 v m R ? v 临界=Rg (2)小球能过最高点条件:v ≥ Rg (当v >Rg 时,绳对球产生拉力,轨道对球产生压力) (3)不能过最高点条件:v F>0(F 为支持力) (3)当v =Rg 时, F =0 (4)当v >Rg 时,F 随v 增大而增大,且F>0(F 为拉力) 3.万有引力定律 1.开普勒第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。 3 2 r k T = (K 值只与中心天体的质量有关) 2.万有引力定律: 122m r F G m =?万 (1)赤道上万有引力:F mg F mg ma =+=+引向向 (g a 向和是两个不同的物理量,) (2)两极上的万有引力:F mg =引 3.忽略地球自转,地球上的物体受到的重力等于万有引力。 22GMm mg GM gR R =?=(黄金代换) 4.距离地球表面高为h 的重力加速度:()()()222GMm GM mg GM g R h g R h R h '''=?=+?=++ 5.卫星绕地球做匀速圆周运动:万有引力提供向心力 2G M m F F r ==万向 22GMm GM ma a r r =?= (轨道处的向心加速度a 等于轨道处的重力加速度g 轨)

高考物理模型之圆周运动模型

高考物理模型之圆周运 动模型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0= g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mg T 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的 A 、 B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始 出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转 动的最大角速度为多大( g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大, F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运

高中物理圆周运动专题

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,222 24T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴, 2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑, 则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3- 4

高考物理 秒杀必备 圆周运动

圆周运动 一、主要内容 本章内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。 二、基本方法 本章中所涉及到的基本方法与第二章牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本章的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。 例1假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则() A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍。 D.根据上述选项B和C给出的公式,可知卫星运动的线速度将减 【错解】选择A,B,C

高考物理(圆周运动及应用)

圆周运动及应用 1.(2010·西安铁一中月考)如图1所示,质量为m 的物块从半径为R 的半 球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点 时受到的摩擦力是F f ,则物块与碗的动摩擦因数为 ( ) 图1 A.F f mg B.F f mg +m v 2R C.F f mg -m v 2R D.F f m v 2R 解析:物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,据牛顿第二定律得F N -mg =m v 2R ,又F f =μF N ,联立解得μ=F f mg +m v 2 R ,选项B 正确. 答案:B 2.如图2所示,天车下吊着两个质量都是m 的工件A 和B ,系A 的吊 绳较短,系B 的吊绳较长.若天车运动到P 处突然停止,则两吊绳 所受的拉力F A 和F B 的大小关系为 ( ) A .F A >F B B .F A mg 解析:天车运动到P 处突然停止后,A 、B 各以天车上的悬点为圆心做圆周运动,线速度相同而半径不同,由F -mg =m v 2L ,得:F =mg +m v 2 L ,因为m 相等,v 相等,而L A F B , A 选项正确. 答案:A 3.(2010·汕头模考)如图3所示,在验证向心力公式的实验中,质量相同的钢球①放在A 盘的边缘,钢球②放在B 盘的边缘,A 、B 两盘的半径之比为2∶1.a 、b 分别是与A 盘、B 盘同轴的轮.a 轮、b 轮半径之比为1∶2,当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力之比为 ( ) 图3 A .2∶1 B .4∶1 C .1∶4 D .8∶1 解析:a 、b 两轮在同一皮带带动下匀速转动,说明a 、b 两轮的线速度相等,即v a =v b ,又r a ∶r b =1∶2,由v =rω得:ωa ∶ωb =2∶1,又由a 轮与A 盘同轴,b 轮与B 盘同轴,则ωa =ωA ,ωb =ωB ,根据向心力公式 F =mrω2 得F 1F 2=mr A ωA 2mr B ωB 2=81 .所以 D 项正确.

高考物理圆周运动(含答案)

考点9 圆周运动 两年高考真题演练 1.(2015·天津理综,4) 未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力。为达到上述目的,下列说法正确的是( ) A.旋转舱的半径越大,转动的角速度就应越大 B.旋转舱的半径越大,转动的角速度就应越小 C.宇航员质量越大,旋转舱的角速度就应越大 D.宇航员质量越大,旋转舱的角速度就应越小 2.(2015·浙江理综,19)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r。一辆质量为m的赛车通过AB线经弯道到达A′B′线,有如图所示的①、②、③三条路线,其中路线③是以O′为圆心的半圆,OO′=r。赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max。选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( ) A.选择路线①,赛车经过的路程最短 B.选择路线②,赛车的速率最小 C.选择路线③,赛车所用时间最短 D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 3.(2015·福建理综,17 )如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上。若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( ) A.t1<t2 B.t1=t2 C.t1>t2 D.无法比较t1、t2的大小

相关主题
文本预览
相关文档 最新文档