当前位置:文档之家› 铜掺杂硒化银材料的制备和性能研究

铜掺杂硒化银材料的制备和性能研究

铜掺杂硒化银材料的制备和性能研究
铜掺杂硒化银材料的制备和性能研究

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

银纳米粒子的合成

银纳米粒子的合成及其表征 一、实验目的: 1. 掌握银纳米粒子的合成原理和制备方法。 2. 掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构 造。 3. 进一步熟悉紫外分光光度法的测定原理。 二、实验原理: 纳米粒子是指粒子尺寸在纳米量级(1~100nm)的超细材料。由于其特有的小尺寸效应、表面效应、量子尺寸效应、量子隧道效应等,使其拥有完全不同于常规材料的光学性能,力学性能,热学性能,磁学性能,化学性能,催化性能,生物活性等,从而引起了科技工作者的极大兴趣,并成为材料领域研究的热点。成为21世纪最有前途的材料。 银纳米粒子,因其独特的光学电学性能,得到人们的关注。常用的制备方法分为物理法和化学法。化学法有溶胶-凝胶法、电镀法、氧化-还原法和真空蒸镀法等。本实验中我们利用氧化还原法合成银纳米粒子。银纳米粒子引起尺寸的不同,表现出不同的颜色。由黄溶胶和灰溶胶两种。可用紫外可见光谱表征。根据朗伯-比耳定律:A=εb c,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。据此,可绘制校准曲线。并对样品进行测定。本实验我们利用氧化还原法合成黄溶胶,并对其进行表征。 三、试剂和仪器 TU-1901紫外-可见分光光度计,比色管 (1.5mmol/L),王水 硝酸银(1mmol/L),NaBH 4 四、实验步骤:

1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、银纳米粒子的合成 1)制备银纳米粒子的玻璃容器均需在王水或铬酸溶液中浸泡,最后用去离子水洗涤几次。 (M=37.85)溶液。 2)配制50 mL 1.5mmol/L的NaBH 4 溶液置于冰浴中,在剧烈搅拌下,逐滴加入2.5 3)取15mL 1.5 mmol/L的NaBH 4 mL 1mmol/L的AgNO 溶液,继续搅拌30 min,制得黄色的银纳米粒子溶胶。 3 3、银纳米粒子的表征和测量 1)紫外可见光谱的表征 1. 启动计算机,打开主机电源开关,启动工作站并初始化仪器。 2. 在工作界面上选择测量项目(光谱扫描,光度测量),设置测量条件(测量波长等)。 3. 将空白放入测量池中,点击基线,进行基线校正。 4. 将合成的银纳米粒子放入样品池,点击开始,进行扫描。确定最大吸收波长。 5. 校准曲线的绘制 配制稀释不同倍数的银纳米粒子溶液(1,2,4,5倍),放入样品池,进行

铜铟镓硒电池片加工工艺

CIGS薄膜太阳能电池简介 字体大小:大 - 中 - 小yaqian发表于 10-05-15 10:32 阅读 (75) 评论(0) CIGS是太阳能薄膜电池CuInxGa(1-x)Se2的简写,其具有稳定性好、抗辐照性能好、成本低、效率高等优点。小样品CIGS薄膜太阳能电池的最高转化效率2008年3月刷新为19.9%,由美国可再生能源实验室采用三步蒸发法制备。大面积电池组件转化效率及产量根据各公司制备工艺不同而有所不同,一般在10% ~15%范围内。我国CIGS薄膜技术还处于实验室阶段,南开大学光电子研究所在CIGS研究上处于国内领先水平,转换效率可达到13%以上。 铜铟镓硒太阳能电池板 铜铟镓硒电池片加工工艺CIGS 铜铟镓硒太阳能电池板的制造 用交替溅射的方法制备铜铟镓硒薄膜太阳能电池预置层。通过可变占空比的电源控制器实现对Cu/Ga合金靶以及In靶溅射时间的控制,进而实现对最后元素配比的控制。实验中发现,在一个溅射周期中,Cu/Ga合金靶溅射时间对最后成分影响最大,其次是In靶溅射时间,非溅射时间的长短对成分也有影响。交替溅射制备的铜铟镓硒预置层经过XRD检测,合金相主要为Cu11In9。 “溅射金属预制层再硒化、硫化”所生产的CIGS薄膜太阳电池是目前世界上技术最先进、工业化生产最成熟的第二代光伏产品。CIGS薄膜是由铜、铟、硒等金属元素组成的直接带隙化合物半导体材料,其对可见光的吸收系数为所有薄膜电池材料中最高的,而原材料的消耗却远低于传统晶体硅太阳电池。与高效率高成本的晶体硅太阳电池和低效率低成本的非晶硅太阳电池相比,CIGS太阳电池具有高效率低成本长寿命的多重优势,是最有希望降低光伏发电成本的高效薄膜太阳电池,并且它可以充分利用我国丰富的铟资源,是真正符合国家法规鼓励条款的适合中国国情的可再生能源技术,具有广阔的发展前景。 铜铟镓硒太阳能薄膜电池的构造 CIGS薄膜示意图 衬底为覆有Mo层的钠钙玻璃,一般采用直流磁控溅射法沉积Mo钼作为支持层。而CIGS薄膜的生长则采用三步共蒸发。再采用水浴法沉积CdS薄膜,接着溅射双层的ZnO薄膜,再用电子束蒸发制备Ni/Al电极,最后上面再覆盖一层增透膜MgF2。 铜铟镓硒太阳能电池板的应用

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米银粉的液相还原制备方法

纳米银粉的液相还原制备方法 摘要:纳米银粉因粒径小(1~100nm)、比表面积大、表面活性位点多、高导电性等优良特点,已被广泛用作各类电池的电极材料。本文综述了纳米银粉的液相还原制备及其各方面应用,对今后的发展趋势进行了展望。 关键词:纳米银粉、液相还原、制备 Liquid phase reduction method for preparing nanometer silver powder Abstract: Nanosilver powder has been widely applied in the electrode materials due to its small grainsize,large specific surface areas,many active sites Oil the surface,and high conductivity.This paper reviews the nanosilver liquid preparation and all aspects of application of the reduction, the future development trends are discussed. Key words:nanosilver powder、reduction in liquid phase、Preparation 引言 人类社会进入21世纪以来,高新技术发展迅速,特别是生物、信息和新材料等代表了高新技术的发展方向。在信息产业飞速发展的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。[]6纳米材料被誉为21世纪最有前途的材料, 自20 世纪80 年代以来逐渐成为各国研究开发的重点, 引起人们极大的关注, 其应用已十分广泛, 在磁性材料、电子材料、光学材料以及高强、高密度材料的烧结、催化、传感等方而有广阔的应用前景。银纳米粒子不仅具有一般纳米粒子的性质, 作为贵金属纳米的重要一员, 具有独特的光学、电学、催化性质, 可广泛应用于催化剂材料、电池电极材料、低温导热材料和导电材料等。而且, 与其他金属纳米材料相比, 银纳米粒子具有最优良的导电性能和较好电催化性能, 将银纳米粒子修饰到电极上有着较大的应用价值和前景。因此, 研究纳米银的制备方法具有重要意义, 纳米银的制备及改进技术从纳米抗菌材料起始以来就成为研究者及开发商们广泛关注的热点。[]2 1、纳米银粉的基本概念和性质 纳米材料又称为超微颗粒材料,由纳米微粒组成。银粉是一种重要的贵金属粉末,广泛的应用于催化剂、抗菌材料、医药材料、电子浆料等领域。[]1纳米粉末是指尺寸范围为1~100nm的粉末,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观

银纳米材料的制备

银纳米材料的制备 (矿业学院矿物加工工程080801110265) 摘要为了更好的了解纳米银的制备,主要介绍了纳米银粉的特性、结构和分类;简述了纳 米银的制备方法;纳米银材料研究现状;展望了纳米银研究的发展方向,介绍了其应用领域。 关键词纳米银粉纳米银辐射γ射线电子束 Silver that the material preparation (institute of mining technology mineral processing engineering080801110265) Abstract In order to better understanding of the preparation of radiation,mainly introduces nanometer silver powder characteristics,construction and classification;discussed radiation preparation of method;nm silver of materials research at the present;the direction of the development of nanotechnology research silver, introduced the application domain. Key words nanometer silver powder radiation γ-ray electron beam 前言纳米粒子是指粒子尺寸在1~100nm之间的粒子,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特有的性质和功能[1]。金属纳米粒子是指组分相在形态上被缩小至纳米程度(5~100nm)的金属颗粒,这种新型纳米材料,其原子和电子结构不同于化学成分相同的金属粒子。纳米材料是一种新兴的功能材料,具有很高的比表面积和表面活性,例如,纳米银导电率比普通银块至少高20倍,因此,广泛用作催化剂材料、防静电材料、低温超导材料、电子浆料和生物传感器材料等[2]。纳米银还具有抗菌、除臭及吸收部分紫外线的功能,因而可应用于医药行业和化妆品行业[3]。在化纤中加入少量的纳米银,可以改变化纤品的某些性能,并赋予很强的杀菌能力。因此,研究纳米银粉的制备技术具有重要意义。 1 纳米银粉的特性及纳米银的结构 纳米银粉与普通粉相比,由于其尺寸介于原子簇和宏观微粒之间,因此也具有纳米材料的表面效应、体积(小尺寸)效应、量子尺寸效应、宏观量子隧道效应等许多宏观材料所不具有的特殊的性质[4]。 1.1.1 表面效应 纳米银粉是表面效应是指由大颗粒变成超细粉后,表面积增大,表面原子数目增多造成的效应,纳料银粉的表面与块状银粉是十分不同的。 1.1.2 体积效应 纳米银粉的体积效应是指体积缩小,粒子内的原子数目减少而而造成的效应。随着纳米

【CN109877335A】铜铟镓硒粉体的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910183466.2 (22)申请日 2019.03.12 (71)申请人 先导薄膜材料(广东)有限公司 地址 511517 广东省清远市高新区百嘉工 业园27-9号清远先导材料有限公司D 车间 (72)发明人 朱刘 白平平 谢群 童培云  张强  (51)Int.Cl. B22F 9/20(2006.01) C23C 14/34(2006.01) (54)发明名称 铜铟镓硒粉体的制备方法 (57)摘要 本发明涉及铜铟镓硒粉体的制备方法,其包 括如下步骤:S1、制备铜铟镓合金;S2、烧结;S3、 破碎筛分。本发明铜铟镓硒粉体的制备方法,相 比于高压一步合成法,其对设备要求简单,设备 投资小,易于规模化工业生产,所合成的粉体组 分均匀、无偏析;相比于现有两步法,不需要制备 多个二元体系合金,优化工艺流程,降低产品被 污染的可能性, 保证产品纯度。权利要求书1页 说明书6页 附图2页CN 109877335 A 2019.06.14 C N 109877335 A

1.一种铜铟镓硒粉体的制备方法,其特征在于:其包括如下步骤: S1、制备铜铟镓合金:按照一定比例称取4.5N或者以上纯度的铜、铟、镓原料,将铜、铟、镓原料装入一制粉炉内,然后将制粉炉内感应加热至700~900℃,确保铜、铟、镓全部熔化,形成铜铟镓合金液体,以保护气体作为雾化气,将制粉炉的雾化气压力设置为8~15 bar,在雾化气的冲击作用下,铜铟镓合金液体通过雾化喷嘴雾化制备得到微米级铜铟镓粉体; S2、烧结:按照一定比例称取铜铟镓粉体和硒粉,混合后进行球磨,将球磨好的混合粉体置于一坩埚中,然后将坩埚置于一管式反应炉内,用保护气体置换管式反应炉内的空气,然后以5~10℃/min的升温速率升温至190~230℃,保温时间为2~4h;之后以5~10℃/min的升温速率继续升温至600~700℃,保温时间为4~8h; S3、破碎筛分:烧结结束后,关闭加热电源,待管式反应炉的温度降至100℃后,停止通入保护气体,取出物料,最后将物料破碎、球磨、筛分得到需要粒度的铜铟镓硒粉体。 2.根据权利要求1 所述的铜铟镓硒粉体的制备方法,其特征在于:S1中,铜、铟、镓的原料比为:34.43~38.29:30.25~54.07:11.50~31.46。 3.根据权利要求1 所述的铜铟镓硒粉体的制备方法,其特征在于:S2中,铜铟镓粉体和硒粉的原料比为:51.82~52.43:47.57~48.18。 4.根据权利要求1 所述的铜铟镓硒粉体的制备方法,其特征在于:S2中的球磨过程为:将铜铟镓粉体与硒粉装入一混料容器内,根据混料容器内的粉体质量,向球磨机中放入氧化锆球,后将混料容器放入球磨机内进行球磨。 5.根据权利要求4所述的铜铟镓硒粉体的制备方法,其特征在于:球磨机的转速为50~150r/min,球磨时间为4~8h。 6.根据权利要求4所述的铜铟镓硒粉体的制备方法,其特征在于:混料容器的制备材质为聚氨酯或者PE。 7.根据权利要求1所述的铜铟镓硒粉体的制备方法,其特征在于:S2中,保护气体置换时间为3~5h,保护气体流量为5~10L/min。 8.根据权利要求1所述的铜铟镓硒粉体的制备方法,其特征在于:S2中,保护气体置换管式反应炉内的空气后,将保护气体的流量设置为0.5~2L/min。 9.根据权利要求1所述的铜铟镓硒粉体的制备方法,其特征在于:S1中制备铜铟镓合金时加热温度为700~800℃。 10.根据权利要求1所述的铜铟镓硒粉体的制备方法,其特征在于:S1中雾化气压力为8~ 12bar。权 利 要 求 书1/1页2CN 109877335 A

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

各向异性银纳米材料的制备及生长机制研究进展

各向异性银纳米材料的制备及生长机制研究进展* 高敏杰1,孙 磊1,王治华2,赵彦保1 (1 河南大学特种功能材料教育部重点实验室,开封475004;2 河南大学化学化工学院环境和分析化学研究所,开封475004 )摘要 银纳米材料具有许多特异性能,在电学、光学、催化等领域得到了广泛应用,其性能在很大程度上受到形貌、尺度、晶体结构和结晶度等因素的影响,因而研究银纳米材料形貌和尺度的可控制备具有十分重要的意义。从水体系和非水体系两方面综述了液相化学还原法制备银纳米材料的研究工作进展, 详细论述了线(棒)形、片(盘)形、立方体形等特异形貌银纳米粒子的制备方法和实验条件;探讨了银纳米材料各向异性形貌的影响因素;提出了不同形貌银纳米晶的形成机理。分析指出晶种的晶型结构尤其是缺陷结构对晶体的最终形貌有很大影响; 加入表面修饰剂是防止银纳米颗粒团聚和控制形貌的有效方法。提出了此类研究目前存在的主要问题,展望了其发展方向和趋势。 关键词 各向异性 银纳米材料 液相化学还原 生长机制 中图分类号:O781;O648.1 文献标识码:A Progress on the Prep aration and Growth Mechanism ofAnisotrop ic Silver NanomaterialsGAO Minj ie1,SUN Lei 1,WANG Zhihua2,ZHAO Yanbao1 (1 Key Laboratory for Special Functional Materials of Ministry of Education,Henan University,Kaifeng  475004;2 Institute of Environmental and Analytical Sciences,College of Chemistry  and Chemical Engineering,Henan University,Kaifeng 475004)Abstract Due to their novel properties,anisotropic Ag nanomaterials have attracted much attention in recentyears.It is very important to control the size,shape,and structure of silver nanomaterials due to the strong  correla-tion between the parameters and the optical,electrical,and catalytic properties.The study advances on the prepara-tion of silver nanomaterials using chemical reduction method in aqueous and non-aqueous solution are reviewed,inclu-ding the synthesis of Ag nanowires,nanodisks and nanocubes,etc.The growth mechanism and influence factors forthe formation of anisotropic Ag  nanomaterials are concluded.It is found that the formation process is a joint functionof internal(crystal texture)and external(reaction parameter)factors.The structures of crystal seeds play an impor-tant role on the formation process of anisotropic morphology.The addition of surface modification agent is an effectiveapproach to control the particles morphology and restrain aggregation.At last,the shortages in the liquid phase reduc-tion method to synthesis of Ag anisotropic nanomaterials are analyzed and the developing trends of this field are pros-p ected.Key  words anisotropic,Ag nanomaterials,liquid phase chemical reduction,formation mechanism *国家自然科学基金( 50701016);中国博士后科学基金(2011M500787) 高敏杰: 女,1987年生,硕士研究生 孙磊:通讯作者,男,1975年生,副教授,硕士生导师,主要从事纳米材料的制备及性能研究E-mail:sunlei@h enu.edu.cn0 引言 银纳米材料由于具有特异的物化性质,在抗菌材料、传感器、光电材料等领域得到了广泛应用。研究表明,金属纳米材料的性能在很大程度上取决于粒子的形貌、尺寸、组成、结晶度和结构,理论上人们可以通过控制上述参数来精细调 节纳米粒子的性质[ 1,2] 。形貌是影响银纳米颗粒光学性质的主要因素 [3-6] ,不同形貌的纳米银,其表面等离子共振(Sur- face p lasmon resonance,SPR)光谱也不相同。球形银纳米颗粒对称性高,只有一个偶极子,表现为单一SPR峰;棒状银纳米颗粒有横向和纵向两个偶极SPR峰;银纳米立方体有3个SPR峰;三角形银纳米颗粒有弱的面外四极、面内四极和强的面内双极SPR峰。银纳米材料的其它物化性质亦受其 形貌及尺度的影响[ 7-10] 。这一现象引起了许多科学工作者的关注,不同形貌银纳米材料的制备及生长机理的报道也越来越多。 银纳米材料的制备方法有多种,目前主要有液相化学还原法、沉积法、电极法、蒸镀法、机械研磨法、辐射化学还原 · 54·各向异性银纳米材料的制备及生长机制研究进展/高敏杰等

铜铟镓硒薄膜太阳能电池的现状及未来

铜铟镓硒薄膜太阳能电池的现状及未来学术界和产业界普遍认为太阳能电池的发展已经进入了第三代。第一代为单晶硅太阳能电池,第二代为多晶硅、非晶硅等太阳能电池,第三代太阳能电池就是铜铟镓硒CIGS(CIS中掺入Ga)等化合物薄膜 太阳能电池及薄膜Si系太阳能电池。 铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电池的特性和竞争优势;介绍了国内外在铜铟 镓硒薄膜太阳能电池领域的研究现状;最后探讨了铜铟镓硒薄膜太阳 能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达

105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1、铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

晶种法制备银纳米材料

晶种法制备银纳米材料 本论文以10mmol/L硝酸银为前驱体,采用NaBH4为还原剂,以聚乙烯吡咯烷酮(PVP)为保护剂制备了银纳米晶种,紫外检测结果表明在波长398nm处有典型的银纳米颗粒的吸收峰。以此银纳米晶种为一级晶种,采用抗坏血酸为还原剂,PVP为保护剂,以不同浓度硝酸银为生长母液,通过加入不同量晶种得到了各种不同形貌的银纳米晶体,并对产物进行扫描电子显微镜(SEM)和光电子能谱分析(EDX)等表征。SEM结果表明得到了花状、片状、单分散颗粒状等银纳米晶体,EDX结果表明产物是纯银纳米金属晶体,无其他杂质。实验中考察了晶种加入量和生长母液浓度对产物形貌的影响,通过控制各种因素从而达到对产物形貌的可控制备。 标签:晶种法;聚乙烯吡咯烷酮;抗坏血酸;银纳米材料;可控制备 1 概述 纳米材料是指在三维空间任何一个方向上处于1-100nm尺度的材料,而这样的材料通常表现出不同于宏观物体或者单个孤立原子的奇异特性,纳米材料的基本性能对尺度的依赖方式比较特别。银纳米颗粒由于其独特的物理化学性质而成为纳米科学研究的焦点之一[1-2]。Haruta[3]等发现负载于过渡金属氧化物上的银纳米颗粒在温度低至197K时也能对一氧化碳氧化反应具有催化活性,此后银纳米颗粒对于多种化学反应的催化潜力一直为学术界所关注。 1.1 银纳米材料的应用 目前银纳米材料的主要应用集中在三大块:开发新型纳米材料、提供纳米传感器的基础构件、构造纳米电子器件,而这些应用分别依赖于银纳米材料独特的化学性能,光学性能和电学性能。对于银纳米材料的光学性能的一个常用的领域是表面增强拉曼散射光谱[4]测试技术,金属银能大大提高拉曼光谱的灵敏度,因而可用在表面科学、单分子层分析、痕量分析、传感等等领域。 1.2 银纳米材料的化学制备 近十年来,国际上报道了大量的制备银纳米材料的方法,主要分为物理法与化学法两大类[5],其中化学法因其工艺简单,经济,对设备要求低,容易规模化等优势从而得以迅猛发展。结合各种方法制备的机理,特点以及重要性,可以将化学法分为四类:模板法,电化学法,晶种法,多元醇法和湿化学法。 1.3 本实验研究内容及意义 本实验以硝酸银为前驱体,采用NaBH4作为还原剂,以聚乙烯吡咯烷酮为保护剂制备了银纳米晶种,以此银纳米晶种为一级晶种,采用抗坏血酸为还原剂PVP为保护剂以不同浓度的硝酸银为生长母液,得到不同形貌的银纳米晶体。

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

半导体纳米材料的制备方法(精)

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点 关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积 引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。 2.半导体纳米粒子的基本性质

2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等以后,其中的电子、空穴和激子等载流子的运动将受到强量子封闭性的限制,同时导致其能量的

相关主题
文本预览
相关文档 最新文档