当前位置:文档之家› 永磁同步电机磁钢涡流损耗模型及其衡量指标

永磁同步电机磁钢涡流损耗模型及其衡量指标

永磁同步电机磁钢涡流损耗模型及其衡量指标
永磁同步电机磁钢涡流损耗模型及其衡量指标

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

铁芯损耗中的磁滞损耗和涡流损耗的区分

1 变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 (盐城师范学院, 江苏 盐城 224002) [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2 Bf P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和 c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D ?3型频率表。 4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。 5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。 3 测试方法 1. 实验装置的电路原理图如下: 2. 在测试中,在改变f 值时应始终保持m B 值不变。

叠片钢涡流损耗分析

一、实验目的 1.认识钢的涡流效应,以及减少涡流的方法; 2.学习涡流损耗的计算方法 3.学习用MAXWELL 2D 计算碟片钢的涡流 二、实验内容 叠片钢的模型为四片钢片叠加而成,每一片界面的长和宽分别为12.7mm 和0.356mm ,两片之间的距离为8.12um ,叠片钢的电导率为2.08e6S/m ,相对磁导率为2000,作用在磁钢表面的外磁场m A H Z /77.397=,即T B Z 1=,建立相应几何模型,并指定材料属性,指定边界条件,上边界和右边界为偶对称边界,上边界和下边界。分析不同频率下的涡流 做不同频率下的叠片钢磁场分布图,计算不同频率下的最低磁通密度和涡流损耗,与理论计算结果进行比较。 三、模型分析 如图所示,模型由4片叠片钢组成,每一片截面的长和宽分别为12.7mm 和0.356mm ,两片之间的距离为8.12um ,叠片钢的电导率为2.08e6S/m ,相对磁导率为2000,作用在磁钢表面的外磁场Hz =397.77A/m ,即Bz =1T 。 由于该模型对称,所以仿真中只取第一象限作为计算对象。

四、仿真结果及分析 软件计算了不同频率下的最低磁通密度Bmin和涡流损耗P: 如下表: f=1Hz时的磁场强度分布图: f=60Hz时磁场强度分布图:

f=360Hz时的磁场分布图: f=1kHz时的磁场分布图:

f=2kHz时的磁场分布图: f=10kHz时的磁场强度分布图:

五、数据分析 低频涡流损耗的计算 低频涡流损耗的计算公式为: 22224 t B P V ωσ= 式中,V 为叠片体积;t 为叠片厚度;B 为峰值磁通密度;σ为叠片电导率; ω为外加磁场角频率。 Maxwell 2D 所获得的功率损耗値是假定叠片钢在Z 方向上具有单位长度(1m )时而计算出来的。因此,上式中的体积显然需要按以下公式计算: 33612.7100.356101 4.521210V ---=????=? 3m 按照此公式计算的各个频率下的涡流损耗如下表:

永磁同步电机基础的知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相

静止坐标系的变换,如下式所示。 cos sin 22 cos()sin() 33 22 cos()sin() 33 a d b q c u u u u u θθ θπθπ θπθπ ?? ? - ??? ?? ?? =--- ? ?? ?? ?? ?? ? +-+ ?? (2)d/q轴磁链方程: d d d f q q q L i L i ψψ ψ =+ ?? ? = ?? 其中,ψf为永磁体产生的磁链,为常数,0 f r e ω ψ=,而c r p ω ω=是机械角速度,p为同步电机的极对数,ωc为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 3 2 e d q q d T p i i ψψ ?? =- ?? 把它带入上式可得: 3 () 2 33 () 22 e f q d q d q f q d q d q T p i L L i i p i p L L i i ψ ψ ?? =+- ?? =+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为: 3 2 e f q t q T p i k i ψ == 这里, t k为转矩常数, 3 2 t f k pψ =。

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

效率与损耗

损耗与效率 §1 概述 一、损耗与效率的关系 效率是电机的一个重要性能指标 ↑↑↓→↓↓∑耗材尺寸,,,:,δδB A p B A 效率高低取决→损耗大小p ∑→ 材料性能、绕组型式、电机结构等 高效电机就是设法降低电机的损耗、多用材料。 二、电机损耗分类 铁心中的基本损耗——主要是主磁场在铁心中交变产生的磁滞、涡流损耗 表面损耗:定转子开槽而引起的气隙磁导谐 波磁场在对方铁心表面产生的损耗 空载铁心中附加损耗 脉振损耗:定、转子开槽使对方齿中磁通因电机旋 损耗 转而变化所产生的损耗 电气损耗:工作电机在绕组铜中产生的损耗,包括接触损耗 负载时附加损耗:漏磁场包括谐波磁场在定、转子绕组中、铁心及结构件中引起的各 种损耗 机械损耗:通风损耗、轴承磨擦损耗、电刷和换向器(集电环)磨擦损耗 §2 基本铁耗 产生的原因:由主磁场在铁心内发生变化时所产生的 主磁场的变化:①交变磁化性质:变压器铁心、定转子齿中发生 ②旋转磁化性质:定、转子铁轭中发生的

一、磁滞损耗 1、磁滞损耗系数:单位质量铁磁物质内由交变磁化引起的磁滞损耗h p 2、磁滞损耗耗系数计算 在电机铁心内磁通密度T B 6.10.1≤≤时: 磁密振幅 交变磁化的频率下测在周波频率取决于材料性能的常数------=B f HZ fB p h h h h ) 50(2σσσ (h p 与f 、B 有关,与材料有关) 任意频率下: 2 50 B f p h h σ= 3、旋转磁化引起的磁滞损耗一般较交变磁化放大45-65%(轭磁密一般在1.0-1.5T ) 这在以后计算基本铁耗时用系数a k 考虑。 二、涡流损耗 1、产生的原因: 铁心中的磁场发生变化时,在铁心中感应电势,会产生电流,这电流即涡流。由它引起的损耗为涡流损耗。 2、涡流损耗系数计算 电阻率 钢片密度钢片厚度------??= =ρρπσσFe Fe Fe Fe e e e d d fB p 6) (222 任意频率下: 2)50 ( B f p e e σ= 涡流损耗系数e p 与B 、f 及材料厚度平方Fe ?成正比。 三、轭部及齿部的基本铁耗 1、钢的损耗系数(比损耗) 22)50 (50B f B f p p p e h e h Fe σσ+=+= 2、钢比损耗简便计算 3 .125010 )50 ( f B p p Fe = (瓦/公斤)

Maxwell 铁耗计算和涡流损耗

Maxwell help文件 为Maxwell2D/3D的瞬态求解设置铁芯损耗 一、铁损定义(core loss definition) 铁损的计算属性定义(Calculating Properties for Core Loss(BP Curve) 要提取损耗特征的外特性(BP曲线),先在View/EditMaterial对话框中设置损耗类型(Core Loss Type)是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 以设置硅钢片为例。 1、点击Tools>Edit Configured Libraries>Materials. 或者,在左侧project的窗口中,往下拉会有一个文件夹名为definitions,点开加号,有个materials文件夹,右击,选择Edit All Libraries.,“Edit Libraries”对话框就会出现。 2、点击Add Material,“View/Edit Material”对话框会出现。 3、在“Core Loss Type”行,有个“Value”的框,单击,会弹出下拉菜单,可以拉下选择是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 其他的参数出现在“Core Loss Type”行的下面,例如硅钢片的Kh,Kc,Ke,and Kdc,功率铁氧体的Cm,X,Y,and Kdc。如果是硅钢片,对话框底部的“Calculate Properties for”下拉菜单也是可以使用的,通过它可以从外部引入制造厂商提供的铁损曲线等数据(Kh,Kc,Ke,and Kdc)确定损耗系数(Core Loss Coefficient)。 4、如果你选择的是硅钢片,按如下操作: ①从对话框底部的“Calculate Properties for”下拉菜单中选择损耗系数的确定方法(永磁铁permanent magnet、单一频率的铁损core loss at one frequency、多频率的铁损core loss versus frequency),然后会蹦出BP曲线对话框。 单一频率的损耗:点击图表上面的“Import from file.”可以直接导入BP曲线数据文件,但要“*。Tab”格式文件。如果纵横轴错了,可以点击“Swap X-Y Data”按钮,调换B轴和P 轴的数据,但是B轴和P轴的方向不变。或者直接在左侧的表格中填入对应的B值和P值,行不够了可以点击“Add Row Above”按钮,和“add row below”分别从上面和下面添加行,“append rows”是一口气加好几行,或者删除行“delete rows”。表下面的“frequency”表示当前的BP曲线是在什么频率下的性能。“Thickness”表示硅钢片的厚度,“conductivity”是电导率。点击“OK”确定。 多频率的损耗:打开对话框后左下方有个“Edit”窗口,是添加要设定BP曲线的频率的。分别加上几个频率,如1Hz和2Hz。每填写一个赫兹点一下“Add”按钮,就会把频率添加到上面的表格中。在相应的频率后面有“Edit dataset”按钮,点击可进入BP曲线编辑页面。与单一的相同,可以导入文件或者自己填写BP曲线数据。填完点击“OK”按钮。右侧的图中就会出现设定的BP曲线。在图标下面选择“select frequency”显示单一的左侧亮蓝色的频率下的BP曲线,选择“All frequencies”显示所有频率下的BP曲线。选择“original curve”则BP曲线的第一个点需要从0开始。选择“Regression Curve”则,图中不仅显示设定的BP曲线,还会附加一条BP值的增长趋势曲线。 ②确定BP曲线 ③在“Core Loss Unit”对话框里选择BP曲线的单位 ④输入频率Frequency、硅钢片质量密度Mass Density、导电率Conductivity、厚度Thickness 的值和单位。 Kh——滞后系数(Hysteresis Coefficient) Kc——经典涡流系数(Classical Eddy Coefficient) Ke——过量系数(Excess Coefficient) Kdc——考虑直流偏磁效应的系数

电机功率计算

电机功率计算 Final revision by standardization team on December 10, 2020.

电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选择时应注意以下两点: ①如果电动机功率选得过小.就会出现“小马拉大车”现象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动机被烧毁。 ②如果电动机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 要正确选择电动机的功率,必须经过以下计算或比较: P=F*V/1000(P=计算功率KW,F=所需拉力N,工作机线速度M/S) 对于恒定负载连续工作方式,可按下式计算所需电动机的功率: P1(kw):P=P/n1n2 式中n1为生产机械的效率;n2为电动机的效率,即传动效率。 按上式求出的功率P1,不一定与产品功率相同。因此.所选电动机的额定功率应等于或稍大于计算所得的功率。 此外.最常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电动机的功率进行对比。 具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。

验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电动机铭牌上标出的额定电流进行对比。如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大.则表明所选电动机的功率合适。如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电动机的功率选得过大,应调换功率较小的电动机。如果测得的电动机工作电流比铭牌上标出的额定电流大40%以上.则表明电动机的功率选得过小,应调换功率较大的电动机。 实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。 即T=9550P/n 式中: P—功率,kW; n—电机的额定转速,r/min; T—转矩,Nm。 电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。 机械功率公式:P=TxN/97500 P:功率单位W T:转矩,单位克/㎝ N: 转速,单位r/min

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

软磁材料的损耗(一)

软磁材料的损耗(一) 铁氧体磁性材料处在随时间变化的磁场中,材料所吸收的并以热形式耗散的能量,称为磁性材料的损耗。在低磁通密度下,铁氧体磁性材料的损耗可用损耗角正切 tgò来表示: (1-13) 式中。Rs=仅由磁芯引起的测量线圈的串联电阻(Ω)Ls =带磁芯线圈的串联电感(H) f = 频率(Hz) tgò 损耗角正切的倒数,称为品质因数,用 Q 表示 (1-14) 众所周知,铁氧体磁性材料的总损耗包括涡流损耗tgòe,磁滞损耗 tg òh 以及剩余损耗 tgòr,即: tgò=tgòe+tgòh+tgòr (1-15) 涡流损耗与材料电阻率,磁芯尺寸及使用频率有关,并可由下面近似公式表示: (1-16) 式中,ρ= 材料的电阻率,d = 磁芯尺寸,β=系数。对厚度为 d 的

薄片,β=6;对直径为 d 的园柱体,β=16。在弱磁场条件下,由磁滞现象引起的损耗角正切由下式表示: tgòh=ηBμeB (1-17) 式中,ηB = 材料磁滞常数(T1)B = 测量时磁芯中磁感应强度的峰值(T)μe = 磁芯的有效磁导率。总损耗减去涡流损耗和磁滞损耗的差值,称为剩余损耗。在低频弱磁场条件下,因为频率低,涡流损耗可以忽略,且弱磁场下磁滞损耗很小,所以实际测量磁芯损耗角正切实质上主要是剩余损耗值。当磁芯中有气隙存在时,磁芯损耗因子与有效磁导率μe 有关。在低磁通密度时,只要漏磁通可忽略,比损耗与气隙长度无关,即: (1-18) 因此,常用损耗角正切与相对磁导率之比,来表征磁性材料的优值,有时也用μ·Q 乘积来表示,因为tgò/μ=1/μQ。对于开路状态使用的磁芯(如棒形磁芯、螺纹磁场芯等),磁芯损耗用表观品质因数 Qapp 来表示: (1-19) 式中,Qe = 有磁芯线圈的品质因数;Q0 = 无磁芯线圈的品质因数;损耗的出现导致磁导率的下降。图 1-10 示出高磁导率 MnZn 铁氧体的初始磁导率和损耗与频率的关系。

叠片钢涡流损耗分析1

工程电磁场实验报告 ——叠片钢涡流损耗分析 学号: 姓名: 指导老师: 一 实验目的 1.认识钢的涡流效应,以及减少涡流的方法; 2.学习涡流损耗的计算方法 3.学习用MAXWELL 2D计算碟片钢的涡流 二 模型分析 如图所示,模型由4片叠片钢组成,每一片截面的长和宽分别为12.7mm 和0.356mm,两片之间的距离为8.12um,叠片钢的电导率为2.08e6S/m,相对磁导率为2000,作用在磁钢表面的外磁场Hz=397.77A/m, 即Bz=1T。 由于该模型对称,所以仿真中只取第一象限作为计算对象。 三 仿真结果及分析 软件计算了不同频率下的最低磁通密度Bmin和涡流损耗P: 如下表: F(Hz)Bmin(T)P(W)

1 1.000 1.93363e-6 600.999 6.95673e-3 3600.988 2.45087e-1 1k0.919 1.64841 2k0.758 4.58866 5k0.4129.56414 10k0.201 2.1856e2 f=60Hz时的磁场强度分布如图: f=10kHz是的磁场强度分布如图:

F(Hz)Hmin(T)P(W) 1 3.977e+002 1.9605e-660 3.9764e+0027.046e-3360 3.9314e+002 2.478e-11k 3.656e+002 1.6552k 3.0161e+0028.1405k 1.6395e+002 5.630 四 数据分析 低频涡流损耗的计算 低频涡流损耗的计算公式为: 式中,V 为叠片体积;t 为叠片厚度;H 为峰值磁场强度;为叠片电导率;为外加磁场角频率。 Maxwell 2D所获得的功率损耗値是假定叠片钢在Z方向上具有单位长度(1m)时而计算出来的。因此,上式中的体积显然需要按以下公式计算:

空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析 陈东锁 卢素华 陈 彬 (国家节能环保制冷设备工程技术研究中心 珠海 519070) 摘要:在空调系统中,电能主要用于压缩机运转,因此提高效率对于开发高效压缩机非常关键。为了提高永磁电机的效率,需要减少各种形式的电机损耗。永磁同步电动机其运行频率经常发生变化,致使电机内部的损耗随之改变。本文分析了影响永磁电机损耗的主要因素及其变化规律,得到一些对电机参考设计具有指导意义的结论。 关键词:永磁同步电机;有限元;铁耗;铜耗 Abstract:In the air-condition system, most of the electricity is consumed for operating the compressor. Therefore, developing a high efficiency compressor is necessary to increase the energy efficiency. To increase the efficiency of the PM motor, a reduced multiform loss is needed. The operation frequency of permanent magnet synchronous motor (PMSM) varies frequently, and its losses change correspondingly. In this paper, the main factor which affects losses and its variation were investigated, some conclusions which have guiding significance for the reference design of the motor were obtained. Key words:permanent magnet synchronous motors;finite element;iron loss;copper loss 引言 电机作为空调压缩机的核心部分,其效率的高低直接影响压缩机COP大小,所以提高电机的效率成为提高压缩机能效的主要途径。永磁同步电机具有体积小、效率高、输出转矩大等特点,应全球节能要求,永磁同步电机逐渐取代异步电机广泛应用于空调压缩机中。 为提高电机效率,首先需要分析电机损耗。电机损耗主要包括铜损、铁损、机械损及杂散损耗,如果能在设计电机结构时合理分配各损耗,则能使电机效率达到最优。 1永磁电机中的损耗 电机损耗直接影响电机效率,同时也是电机温升的来源。电机损耗可分为铜耗、铁耗、杂散损耗和机械损耗。其中铜耗即电机绕组上产生的损耗;铁耗指铁心中磁场变化而引起的损耗,包括磁滞损耗、涡流损耗和附加损耗;杂散损耗是指其他损耗的统称,主要来源于电机内的漏磁场和谐波磁场;机械损耗是指轴承摩擦损耗、转子旋转时引起转子表面与冷却气体之间的摩擦损耗等。 1.1 铜耗 根据焦耳定律,电机的铜耗与电机绕组阻值和绕组内的电流有关,其计算公式如下: P I R 3 Cu 2 =(1)式中I为绕组相电流;R 为绕组相电阻,其中: (2)式中:ρ——铜线电阻率;L av——半匝线圈长 N——每相绕组串联匝数; N t——并绕根数 a——并联支路数 d——铜线直径 永磁电机中由T=K t I可知, P W R W d NL Cu av 22222 U U d d U U (3) ——气隙磁通 ——绕组因数 根据上述可知降低铜损的方法有:增加导线截面积、缩短绕组端部长度,工艺上提高绕组因数和槽满率,合理选用和设计磁钢,以保证足够大的气隙磁场。

关于Ansoft maxwell中电机铁耗和涡流损耗计算的说明

考虑到最近很多人在问这个问题,因此专门整理出来,供新手参考。 先谈一下什么情况下需要做铁耗分析。对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P 曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。 以上方法,适用于Ansoft maxwell 13.0.0及以上版本,并适用于所有电机种类。 一、 MAXWELL分析磁场时,电气设备或电气元件(无论是电机还是变压器)主要包括两个部分,一个是励磁线圈,另外一个是磁性材料。所以总的损耗包括线圈损耗(也叫铜损)和磁芯损耗(也叫铁损)两个部分。其中线圈损耗还包括直流损耗(也就是直流电阻的损耗)和交流损耗(交流电流下的趋肤效应和邻近效应产生的损耗),这个交流损耗也叫做涡流损耗,在涡流场和瞬态场中可以通过设置EDDY EFFECTS来计算。而铁损只能在瞬态场中计算。铁损的计算,主要是由磁芯材料供应商提供的各种频率和工作磁感应强度下的测试数据为基础,使用STEINMETZ方程式,采用插值法得到的。这个铁损已经包含了磁芯的所有损耗,即:磁滞损耗,涡流损耗和剩余损耗。铁损的计算分两种,一种主要是软磁铁氧体(POWER FERRITE),另外一种主要是矽钢片(ELECTRICAL STEEL),两种计算公式不同。 二、 SOLIDLOSS(实体导体损耗)是指任何导体材料的损耗,既可以包含源电流,又可以有涡流电流。 SOLID CONDUCTOR(实体导体)又包含两种,一种是主动导体,即有外加电流的导体,另外一种 是被动导体,即没有外加电流。被动导体又有两种情况,短路和开路。定子和转子其实就是被动导体 ,当然有涡流存在,也就是一种SOLIDLOSS。其实应该还有一种导体损耗,DISPLACEMENT (位移电流),但是通常都很小,一般用于交变电场分析,磁场中很少用。 三、关于powerloss和coreloss

永磁同步电机学习笔记

永磁同步电机学习笔记 1.功率因数角:外施相电压与定子相电流的夹角。 2.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 3.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 4.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 5.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,

给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢

大电流引线周围结构件中涡流损耗和温升的计算分析

大电流引线周围结构件中涡流损耗和温升的计算分析 发表时间:2019-07-22T11:48:10.307Z 来源:《当代电力文化》2019年第5期作者:崔箫1,2,赵旭阳 3,张冰 4 [导读] 分别针对不同材料及不同屏蔽结构方式进行了磁场和温度场的模拟计算,最后给出了不同方案低压引线允许的最大电流值,为以后合理设计大电流引线周围结构件提供理论依据。 (1.沈阳工程学院,沈阳;2.沈阳工业大学,沈阳;3.沈阳安世亚太科技有限公司,沈阳;4.华晨宝马汽车有限公司,沈阳)摘要:本文应用商用软件Ansys Workbench中的maxwell3D和Steady-State Thermal模块,建立了大容量发电机变压器引线周围结构件三维模型,分别针对不同材料及不同屏蔽结构方式进行了磁场和温度场的模拟计算,最后给出了不同方案低压引线允许的最大电流值,为以后合理设计大电流引线周围结构件提供理论依据。 关键词:变压器大电流引线结构件涡流损耗温升 1.前言 目前我国电力变压器制造业正向大容量方向发展,电力变压器大电流引线周围磁场及相应的损耗分析问题是电力变压器设计的重要问题之一。 现我厂生产的发电机变压器的单项容量已达到了70万千伏安,低压引线电流达到了13000安培。该类型大容量电力变压器的主要问题之一是大电流引线的漏磁引起周围结构件局部过热,使变压器热性能变坏,最终导致绝缘材料的热老化与击穿等严重问题,严重影响到变压器运行的可靠性和寿命。这一系列问题的解决,是变压器可靠设计的前提。所以要合理的选择引线周围结构件的材料及屏蔽方式,这样可以消除局部过热,又可以极大的降低结构件损耗。 本文基于Ansys Workbench软件,建立了能够较详细描述变压器大电流引线周围结构件的计算模型,包括油箱盖,箱盖电屏蔽,低压出线等细致结构;分析计算了不同材料、不同屏蔽时结构件的涡流密度分布和损耗值,给出了相关计算结果,得出了对于产品设计具有参考价值的结论。 2.引线周围部件结构模型与边界条件 本文以一台DFP-260000/420TH、低压引线电流为13000A的单相三柱变压器为例,计算了引线周围结构件的涡流场、温度场。本文应用Ansys Workbench中的maxwell3D模块,进行三维正弦稳态磁场与涡流场的有限元计算。在计算中假设如下: 1) 忽略线圈漏磁场对引线周围磁场的影响; 2) 忽略位移电流的影响; 3) 所有的场量都随时间按正弦变化; 4) 材料是线性均匀的,即磁导率μ、电导率σ皆为分区常数。 变压器中的结构件大多呈薄壁形,其表面尺寸远远地大于其厚度,为了得到精确的计算结果,就要求采用细密的有限元网格,如果选取整个油箱作为求解域,则将使得计算规模过于巨大,从而无法完成计算,因此只截取引线周围部分油箱壁进行计算。下图1 为变压器低压引线周围结构件的示意图。 计算区域和边界条件按下述方式确定: 1)截取两倍于平均高度的油箱部分,将其包含在求解域中,用平行于箱盖的平面将油箱的其余部分截断,该平面即为求解域的下边界,在其上给出Bn=0的边界条件,Bn表示磁通密度的法向分量。 2)在引线上方用平行于油箱盖的平面将引线截断,该平面即为求解域的上边界,在其上同样给出Bn=0的边界条件。 3)对于其余侧面,将求解域延伸到实体结构的数倍,按照无限远边界处理,设其上的电磁场物理量已衰减到零。 3.磁场、温度场数值计算结果 对比了同材料以及不同屏蔽结构,进行了仿真模拟分析,计算结果如下所示,对2为普通钢箱盖漏磁场分布图

详解:集肤效应、邻近效应、边缘效应、涡流损耗

1.集肤效应 1.1 集肤效应的原理 图 1.1 表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth 〉的概念,此深度的电流密度大小恰好为 表面电流密度大小的1/e 倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: 其中:γ为导体的电导率,μ为导体的磁导率, f 为工作频率。 图 1.1. 集肤效应产生过程示意图 图 1.2. 高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图 1.2 所示,由表面向中心处的电流密度逐渐减小。由上图及式 1.1 可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2 影响及应用

在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使 用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用 方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形 或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又 增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号 线的夸大宣传所言 ,集肤效应并不会改变所有的高频讯号 ,并且不会造成任何相关动能的损失。 正好相 图 2.1 表示了邻近效应的产生过程。 A 、B 两导体流过相同方向的电流 IA 和 IB ,当电流按图中箭头 方向突增时,导体 A 产生的突变磁通 ΦA -B 在导体 B 中产生涡流,使其下表面的电流增大,上表面 的电流减少。同样导体 B 产生的突变磁通 ΦB -A 在导体 A 中产生涡流,使其上表面的电流增大,下 表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导 体有效截面面积不同。研究表明 :导体的相对面积越大则导体有效截面越大,损耗相对较小。 图 2.2. 临近效应示意图 反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束 传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 图 2.1. 临近效应产生过程示意 图

相关主题
文本预览
相关文档 最新文档