当前位置:文档之家› 集成介质天线的光子微波接收

集成介质天线的光子微波接收

集成介质天线的光子微波接收
集成介质天线的光子微波接收

本科生毕业论文(设计)

题目集成介质天线的光子微波接收

姓名与学号陈利欢3049913068

指导教师章献民

年级与专业04电子信息工程

所在学院信息科学与工程学院

第一章引言- 3 -

1.1背景- 3 - 1.2 已往的研究- 5 - 1.

2.1 球状微腔内部的回音壁模式研究- 5 - 1.2.2 基于微腔的电光调制特性-6- 1.2.3 介质谐振器天线- 7 - 1.3 最新的研究成果- 7 - 1.4本文的主要内容- 8 -

第二章集成介质天线的接收机设计-10-错误!未定义书签。

2.1 介质天线的结构设计- 10 - 2.2 谐振微腔的设计- 11 - 2.3 金属调制电极结构的设计12 2.4 接收机整体结构的设计13 第三章介质天线的相关仿真研究14

3.1 关于介质谐振天线的本征模式14 3.2 观察调制效果的大小21 第四章总结30参考文献31致谢32

摘要

ROF (Radio Over Fiber)技术在现代无线通信系统中正日益表现出旺盛的生命力,而结合了基于WGM谐振腔和介质天线技术的光子接收技术是该领域内的一个重大成果,它完成了信号的接收与调制,顺利将信号耦合到光纤链路以备后续的信号处理工作。本文首先深入掌握了在这个领域已经很成熟的介质天线、电光调制、及铌酸锂谐振微腔等理论成果,并把整个设计方案合理地划分成三大主要部分。

用CST电磁仿真软件完成整个接收机的设计,并察看谐振天线的本征振荡模式、金属电极上的调制电场及改变各部分的结构与尺寸实现最佳的接收机性能。

我们设置了一系列的观测曲线,尤其是将实验结果作为考察调制效果的重要依据,利用设计软件的强大的计算仿真功能,以图表和曲线等形式直观地展现出来。在本文的最后,综合性能、成本、美观等因素给出了对应中心频率f=3.5GHZ 时集成介质天线的光子微波接收机方案。

关键词:ROF WGM谐振腔介质天线 CST 电光调制

Abstract

ROF (Radio Over Fiber) is showing an exuberant vitality gradually in modern wireless communication system. The photonic reception technology which combines the WGM resonance-antrum and dielectric antenna technology is a significant achievement in this field. It has accomplished signal taking-over and modulation, smoothly coupling the signal to the fiber for the following work. This thesis goes deep into some mature achievement in this field such as the dielectric antenna, optical-electricity modulation, and

3

i

b

N O L resonance-antrum. The entire design

plan is divided rationally into three major parts.

We uses CST software tool first to accomplish entire receiver design and observes the intrinsical mode of the dielectric antenna, the modulation electrical field on the metal and the receiver’s function which changes the structure and dimension of every part to achieve the best. We have interposed a series of observation curves, especially taking the experiment results as important references of modulation effect. We also make use of the powerful simulating function of the software and unfold it visually in the form of diagrams and curves.

In the last part of the thesis, taking the function , cost and looks into consideration, we put forward a photonic microwave receiver plan with the central frequency of 3.5 GHZ.

Keywords: ROF WGM -resonance-antrum dielectric-antenna CST

optical- electric modulation

第一章引言

基于集成介质天线的光子微波接收机在ROF (Radio Over Fiber)技术的无线通信系统中扮演了核心角色,由于其体积小,结构简单,装拆方便,无电消耗等优点在现代无线通信技术的发展中正焕发出越来越强的生命力。

1.1背景

1.1.1 ROF技术的基本概念

ROF技术就是指利用光纤代替大气作为一种传输媒质来传输信号(如:基带、中频或射频信号)的一种传输技术。其系统框图如图1-1所示。图中示意出:多个基站(BS)通过光纤与中心节点(CO)相连接。光纤仅仅起传输作用,交换、控制和信号的再生等都集中在中心节点。

图1.1 ROF的网络结构

对于下行信号传输而言,首先在中心节点(CO)处利用光器件和全光技术对信号进行调制和光电变换,然后将变换后的光信号通过光纤传输到远端基站,最后在远端基站通过光电探测和解调技术得到所要传送的信号,并通过天线发送出去。对于上行信号传输而言,首先将天线接收到的信号进行光电转换和相应的频率下变换,然后经过光纤传输到中心节点(C0),最后通过光电检测和所需的频率下变换得到基带信号。

本文中研究的是ROF技术中的核心部分,也即基于集成介质天线的光子微波接收机,其整体的框图如图1-2所示【1】:

图1.2 集成介质天线的光子微波接收机

图中的光电介质天线捕捉到来自于自由空间的射频信号,而内置的光纤链路则可以有效地保证电子线路与空气接口的电隔离,进而保证整个系统的接收性能。

1.1.2 ROF技术的优点【2】

l)低损耗:该技术采用光纤作为传输媒质来传输毫米波信号。且由于光纤具有低损耗的特性,所以信号只需较小的传送功率就可以在光纤中传输较远的距离,这样大大减少了整个系统的功率消耗,降低了整个系统的成本。

2)高带宽:光纤有很高的带宽,不考虑远距离传输损耗时,850nm、310nm、155onm这三个低损耗窗口的总带宽超过50THz。

3)不受无线频率的干扰:由于微波信号是以光的形式通过光纤系统传播,所以不受无线频率的干扰。

4)便于安装和维护:在ROF系统中,昂贵复杂的设备都集中在中心站点,基站结构设备都十分简单。

5)降低功率的消耗

6)操作更具灵活性:ROF分布式系统对信号的格式具有透明性,可以按照需求传输各种调制格式的信号。

1.2已往的研究

1.2.1 球状微腔内部的回音壁模式研究

实现微波射频信号到光信号的转换的核心器件是一个高Q值的碟状电光调制器,该电光调制器采用高光电系数的铌酸锂材料制作而成,利用微波环状谐振器的电场响应特性和微腔谐振的回音壁模式理论,使其达到同时谐振的目的,从而实现微波的高分辨率转换【3】。

回音壁模Whispering Gallery Mode是电磁场在柱状或球状谐振腔中振荡形成的模式场,因其Q值高,模场区域集中等其他特性而受到重视,应用范围涵盖了从基础物理到光通信的一个广阔领域。其中基于WGM谐振腔和微带天线技术的光子接收技术是该领域内的一个重大成果。应用在实践中的球状谐振腔几何构造如图1-3所示:

图1-3 圆盘状的铌酸锂微腔

回音壁模式下的光波传播可以这样来理解:光波在微球的内表面上不断进行全反射,从而被约束在球内并沿着球的大圆绕行,同时为了使绕行中光波不断叠加得到增强,光波绕行一周后应满足一定的相位匹配条件。铌酸锂微腔是一种比较好的微谐振腔,它利用光在不同折射率材料之间的曲面边界上的内全反射,使符合某些模式方程的特定波长的光可以在微盘内绕着微盘循环传播,而不会从微盘内出射到周围低折射率的介质中去,这些模式即为“回音壁模式”。在这种情况下,由于曲面边界能够很好地把光波限制在微盘内的增益区域中传播,而无太多能量损失从而“回音壁模式”有着很高的Q值。实践上曾有人在液态小球中得到

了Q=105的回音壁模式[5]。

1.2.2 基于微腔的电光调制特性

当光载波经过棱镜耦合到腔内,可在腔体中激励起回音壁模式,并受到金属电极的电场调制,如图1-4所示:

图1-4 光载波经棱镜耦合进入腔体

电光调制的原理是电光效应,是由外加电场引起媒质折射率的变化而产生的双

折射现象,电光效应最重要的是线性电光效应。[6]

谐振腔材料采用3i b N O L ,它是

一种各向异性的单轴晶体,在无外界电场时,电场矢量E 沿z 轴方向谐振的光的折射率为e n ,E 沿X ,Y 轴方向谐振的光的折射率为o n 。在外界电场作用下,三个方向的主折射率将随着电场变化而发生改变,其中X ,Y 方向的折射率为常量,在外加Z 方向的电场Z E 的情况下,只需用到Z 方向的主折射率随电场变化的关系来分析光相位随射频电场的变化:即3

3312

Z Z e e n n n r E ι

=-

??? 。最终可以实现对载波的相位调制:如果入射光强为cos optin A t E ω=,外加电场为electro E =sin m m t E ?,那么窄带调相时的出射光线为cos cos sin optout m A t A t t E ωδω?=-,其中δ是折射率和电场强度的函数[7]。

1.2.3 介质谐振器天线

10-以下)、高介电常数ε(20~100)介质谐振器(DR)一般由低损耗(tanδ=4

的材料做成,经常用于屏蔽微波电路中,如滤波器、振荡器等。在这些介质谐振器中能得到很高的无载Q值。假如介质谐振器放在自由空间中,则其最低阶模(主模)的Q值大大减小,因为其功率在空间中辐射了,因此可作为天线。,在选择适当形状、介电常数以及馈电方式的情况下,介质谐振器可以作为天线来使用。这里有必要区分介质谐振天线与金属空腔谐振器的区别:对于金属腔体谐振器,由于理想电壁的存在,不向外辐射能量;而处于自由空间中的介质谐振器,当工作于辐射模式时,可以向外辐射电磁波,因而可以作为天线单元来使用。我们的设计方案中,介质谐振器作为接收天线来使用其原理与发射天线大致相同。明确了这样的区别与联系后我们就可以在设计天线时对于边界条件的设置时有较清晰的理解和把握,而这样的把握在仿真的过程中显然是非常的必要。

介质天线的特点如下:首先它是一种三维结构,其尺寸大小可以随设计方式的改变而改变进而其谐振频率也可以相应地发生变化,这点给设计人员提供了较

ε往往较大所以

大的便利性。其次介质天线的尺寸较小,尺寸因子为由于

r

可以使得天线的尺寸较小。再次,天线的电场主要集中在介质天线的内部,受外

界的影响较小。最后,天线的激励方式简单,比如微带馈线是常用的形式,馈源

考虑简单而灵活易行。

1.3最新的研究成果

1.3.1 介质天线与电光调制器的集成

现在已经投入实际应用的天线与电光调制器的集成装置如图1-5所示。

图1-5 集成介质天线的接收机装置

Bridges 等人设计的天线耦合的电光调制器则是直接将调制器的金属电极改造成了接收天线。这一点也可以运用到基于微腔的电光调制器上,充分利用调制器的电极来实现信号的接收——这一点对于减少尺寸有多么大的意义!

在图1-5给出的实际模型中将电光调制器集成在介质天线内,以减小尺寸,同时增加耦合效率。在这种方案中,我们取消了原来的介质基板,直接利用微波介质谐振器充当介质基板的角色。此时3i b N O L 微腔完全镶嵌在微波介质谐振腔中,而微腔上的金属电极则直接延伸到了介质谐振腔材料上。尽管耦合的效率会有所下降,却获得了简单小巧的结构,方便集成携带。

1.3.2 金属电极结构的设计

金属电极上谐振的场其场强沿线满足相应的分布,即电场强度()E l 是l 的函数。衡量调制效果的大小可以转化为考察值()E l dl ?的大小,这应该包含两方面的内容:一方面需要的电场幅度值大,另一方面电场值的符号在整个积分区间保持同向,满足这两点后整个积分结果就大。

1.4本文的主要内容

本文在了解光子微波接收的国内外发展动态和最新进展基础上重点综合研究了介质天线及相关的电光调制效应的原理,给出以光子为载波的接收机方案,在

方案的设计中综合考虑了多种指标,应用了各种已有的较为成熟的理论结果,朝性能优良、结构简单、成本低廉的方向努力。在实验的仿真中应用了CST软件强大的空间电磁理论计算功能,给出了多种形式的结果。在认真研究这些实验结果的基础之上改进设计指标,包括各部分的空间位置、各部分的尺寸、各部分的结构等。比较各种结果,发现各参量间内在的联系对于加深电磁理论的认识,培养自己的观察分析问题的能力大有裨益。尤其是整个实验进程中对微波器件的设计和参数设置性能仿真都利用了CST软件。对于自己实验技能的提高和快速学习能力的培养也有很大的意义。

第二章 集成介质天线的接收机结构设计

在整个设计伊始,我们首先要定义好设计方案的单位units 如下,Dimensions :mm; Frequency :GHz ;Time:S 。定义好背景材料及观察仿真的频率范围。然后开始绘制各部分的结构图。我们把整个接收机分成三大部分,分别是介质天线,谐振微腔,调制金属电极,下面开始他们的设计。

2.1介质天线的结构设计

天线的结构直接影响到其远端的辐射方向图及相应的接收性能。考虑到工程实际及结构的方便性,文中采用的结构为圆柱形,这种形状的研究最多,而且设计方便,其相关的品质因素及谐振频率等方面的研究有较成熟的理论基础可以采用。选用圆柱天线的优点是加工简单且馈电形式多样,是研究和应用的主流。但也有其固有的缺点—尺寸较小,对加工工艺要求高。一旦成型就不容易调谐,材料介电常数相对较高因此价格较为昂贵等。

介质材料选用normal 其中的参数:38ε=, 1.0μ=,给该层定义名称DRA 。该部分圆柱结构的具体尺寸见下文的表2.1a 所示,在表2.1中集中地标示出各部分具体尺寸。

表2.1a 介质天线圆柱结构尺寸

文中介质天线的激励方式为自由空间中的电磁场激励,以此模拟来自空间中的射频微波信号。Plane Wave 的具体参数设置及三维视图如图2.1所示:

图2.1 采用自由空间电磁波激励

我们的目的正是希望介质天线的内部可以激励起稳定的场分布,而场分布中特定点的幅值变化携带了信号相位的相应信息,以此顺利实现介质天线接收到微波信号。

2.2 谐振微腔的设计

文中采用的结构即为常见的圆盘状的结构,这种方案可以取得很高的谐振效果,如前述的图1-3。设计中为取得较好的效果,实际采用的结构中间部分是空心的,这是经过试验中不断地改进得到的,对于半径的选取尤其是内半径经过了参数的扫描定义了parameters in-radius,然后参数扫描求解最佳效果的内半径数值:Par Sweep 。当然这些是在其他尺寸保持不变的情况下而言的。介质材料选用normal ,其他的参数为:23ε=, 1.0μ=,给该层定义名称NSL (取铌酸锂中文拼音的前三字母)。该部分圆柱结构的具体尺寸见下文的表2.1b 所示,在表2.1b 中集中地标示出了各部分具体尺寸。

表2.1b 铌酸锂微腔的尺寸

2.3 金属调制电极结构的设计

文中采用的电极结构为圆环形,介质天线中的场耦合到电极上形成稳定的场分布,这种场分布就包含了射频信号的相关相位信息,以此去调制沿着铌酸锂微腔壁环形行进的光载波,调制信号再经棱镜耦合出谐振微腔,并进入到光纤链路进而传至接收端。

金属电极的结构设计对于调制效果的影响很大,在多种研究文献中提到了调制电极与介质天线的耦合及电极的结构问题,对于集成介质天线的光子微波接收装备,保持形态上的美观,材料的节省,方便加工和改进也是必不可少的考虑因素。文中采用的结构究其本质而言也是应用了微带谐振器的原理,如图2-2所示。

图2.2 微波微带线

它是由介质基片一边的导体带和基片另一边的接地板所构成,导体带用印刷技术敷在介质基片上,常用金、银、铜等良导体做成,接地板是铜板或者铝板。当通入微波信号后,会在微带和接地板之间形成电场。构建环形微带谐振器以实现同时谐振,传送信号只需满足一定的相位叠加原则即可。

文中采用的方案即为完纯的金属电极以铌酸锂微腔为基片,以此去直接调制微腔中环绕的光载波,利用了同时谐振的原理。选用的尺寸数据如表2.1c所示:

表2.1c 金属调制电极的尺寸

2.4 接收机整体结构的设计

综合2.1-2.3各章,我们得到了设计的初步模型如下图2.3所示:

图2.3 集成介质天线的微波光子接收机初步模型

为了顺利地展开后续的分析工作,我们还要定义一些常见的单位,定义仿真时察看的相关变量并以此作为衡量设计性能的依据,为了最终查看在金属电极上的场强分布,我定义了在电极上呈圆环分布的曲线,这些曲线的半径呈等差数列排列,在下图中观察曲线以蓝色曲线标记。定义的过程中要先选定金属电极平面,然后确定好与电极面对应的local coordinate system 通过它在其上绘制出环形的曲线。结构如图2.4所示:

图2.4 集成介质天线的接收机模型定义了观测曲线

第三章 介质天线的相关仿真研究

3.1 关于介质谐振天线的本征模式

对于设计介质谐振天线,我们是想将它应用在实践中的,即对于各种尺寸的天线能够迅速地求解其本征模的频率,对于模型中建构的方案发现它的主模式对于实际应用而言是非常具有现实意义的。

按照文献Dielectric Resonator Antennas —A Review and General Design Relations for Resonant Frequency and Bandwidth 给出的本征频率求解公式: 对于11HE δ模:

2

2 6.3240.270.360.02/22a a a H a f

K

H π

?

???

???==?+?+? ?????

???

?

??

???

由此可得到

)/2(a c a f

K π=??

对于01TM δ模:

()

1/2

1/2

2

2

23.382a a K

H πε?=÷

????++??????????

由此可得到

)/2(a c a f

K π=??。可计算得到理论上的01TM

δ

模本征频率,计算

算式如下:

()

1/2

1/2

2

20.63025286

11.253823.38216a K

π?=÷

=??

?

??++???

???????

?

f

8

3

)/2(0.63025286 3.0)(6.2811.25) 2.68(1010a c a GHZ K π=??=???÷?=

但是实际仿真过程中得到的较为理想的谐振模式如图3.1.a 和3.1.b 所示:

图3.1.a 理想谐振模式剖面图(平行YOZ 平面切割)

图3.1.b 理想谐振模式剖面图(平行XOZ 平面切割)

该谐振模式的中心频率为

o

f

=3.5GHZ ,如果在介质天线底部定义一条圆环状

的观测路径,事实上这条观测曲线在介质天线的内部,并以此观察沿线的各种场强量的分布,所得到的各条曲线如图 3.2所示:(由于定义的曲线中心为在X-center :0,Y-center : 0,曲线的半径为9.8mm 故其周长为29.861.57mm mm π??= 下面即标示出电场量沿曲线的分布,分为幅值、相位及实部、虚部等)。

图3.2.a 沿线电场幅值分布

图3.2.b 沿线电场相位分布

图3.2.c沿线电场分量实部分布

图3.2.d 沿线电场分量虚部分布

由图3.2.a-3.2.d可见在观测曲线上的电场量幅值较好的满足正弦分布,与文献All-dielectric photonic-assisted radio front-end technology给出的结果基本上是符合

的[7]。

f=2.68GHZ附近,介质但在实验中,对于理论计算得到的谐振频率

天线内部并未建立起稳定的模式场的振荡,在该频率处实际的场分布情况如图3.3所示:

图3.3 理论计算频率处的电场分布示意

当用Eigen-mode Solver 计算时见图3.4,

最新《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

微波光子学及其链路研究进展与应用综述

微波光子学及其链路研究进展与应用综述 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

微波光子学及其链路研究进展与应用综述 摘要:微波光子学以光子技术为工具,生成、处理、传输微波/毫米波信号,注重微波与光子在概念、器件和系统方面的结合。微波光子学典型研究包括了微波信号的光产生、处理和转换,微波信号在光链路中的分配和传输等。微波光子链路技术与传统电子技术相比则具有非常明显的优势:重量轻,易于铺设,抗电磁干扰,低损耗,高带宽等。本文通过对微波光子链路领域相关文献的阅读与学习,对该领域的研究进展和技术应用进行简要综述。 关键词:微波光子学;微波光子链路;系统应用 引言 微波光子学(MicrowavePhotonics,MWP)作为微波与光子技术结合的一种新兴学科,发展迅速。在过去30年中,微波光子学在理论、器件、关键技术和系统应用层面都取得了进步与发展,某些应用甚至已经实现了实用化。在船舰、机载、卫星、雷达系统、无线通信等或民用或军用领域的复杂多元化电磁环境中,微波光子信息处理技术的地位日益凸显,有着广阔的应用前景。 微波光子链路(MicrowavePhotonicLink,MPL)也得益于微波光子学快速的发展与进步而受到广泛地关注与研究。光生毫米波技术、光纤无线电(ROF)技术、光控相控阵技术等作为微波光子学技术的分支,近年来已成为国内外研究热点。微波光子链路作为这些技术的重要组成部分,优势明显,在电子战、雷达、遥感探测、无线通信等领域得到广泛应用。 一、微波光子学及微波光子链路的研究进展与研究现状 微波光子学及其链路背景 光波分复用技术及掺铒光纤放大器(EDFA)出现后,光通信得到迅速发展。无线通信容量需求也不断发展增加,应用于光纤系统中光发射和接收中的微波技术也在迅速发展。传统的微波传输介质在长距离传输时具有很大损耗,但光纤系统具有低损耗、高带宽特性,对于微波传输和处理相当具有吸引力。

微波技术与天线傅文斌习题答案第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 () () ?? ?-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为 ?? ?+=+=2221212 2 121111I Z I Z U I Z I Z U ?? ?? ??????-=??????=c d c c bc ad c a Z Z Z Z 1 2221 1211 Z 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 ???? ? ?????=1123 13 231112 131211S S S S S S S S S S 由无耗性,I S S =* T ,即 ?????? ????=????????? ???????????100010001*11*23 *13*23 *11* 12 * 13 * 12* 11 1123 13 2311121312 11 S S S S S S S S S S S S S S S S S S 得

实用文档之微波技术与天线课后题答案

1-1 实用文档之"解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> " 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低 频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线 上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点 绪论 微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。 微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~ 0.1mm 微波的特点(要结合实际应用): 似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析) 第一章均匀传输线理论 均匀无耗传输线的输入阻抗(2个特性) 定义: 传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注: 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性: 无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)

2、λ/4变换性:Zin(z)-Z in(z+λ/4)=Z 02 证明题: (作业题) 均匀无耗传输线的三种传输状态(要会判断)参数 |Γ|ρZ 1行波01 匹配驻波1∞ 短路、开路、纯 电抗行驻波 0<|Γ|<1 1<ρ<∞ 任意负载 能量电磁能量全部 被负载吸收电磁能量在原 地震荡 1.行波状态: 无反射的传输状态 匹配负载:

负载阻抗等于传输线的特性阻抗 沿线电压和电流振幅不变 电压和电流在任意点上同相 2.纯驻波状态: 全反射状态 负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态: 传输线上任意点输入阻抗为复数 传输线的三类匹配状态(知道概念) 负载阻抗匹配: 是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。源阻抗匹配: 电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 共轭阻抗匹配: 对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) 阻抗圆图的应用(*与实验结合)

《微波技术与天线》实验指导书

微波技术与天线实验指导书 南京工业大学信息科学与工程学院 通信工程系

目录 实验一微波测量系统的熟悉和调整.................. - 2 -实验二电压驻波比的测量......................... - 9 -实验三微波阻抗的测量与匹配 .................... - 12 -实验四二端口微波网络阻抗参数的测量 ............. - 17 -

实验一 微波测量系统的熟悉和调整 一、实验目的 1. 熟悉波导测量线的使用方法; 2. 掌握校准晶体检波特性的方法; 3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE 10波的电场分量沿轴向方向上的分布。 二、实验原理 1. 传输线的三种状态 对于波导系统,电场基本解为ift rm ift r e E e a b r V E --== ) /ln(0 (1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( 00π π -=- 在x=a/2处 z E e e E E y ift ift y y βsin 2)(00-=+=+- 其模值为:z E E y y βsin 20= 最大值和最小值为: 2min 0max ==r r r E E E (2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( ' 00π π +=- 在x=a/2处 z E e E E e E e E e E e E e E e E E y ift y y fit y fit y fit y ift y fit y fit y y βcos 2)()()('0 ' 0'0 '0'00'00+-=++-=+=----- 由此可见,行驻波由一行波与一驻波合成而得。其模值为:

微波技术与天线复习题

微波技术与天线复习题 一、填空题 1微波与电磁波谱中介于(超短波)与(红外线)之间的波段,它属于无线电波中波长(最短)的波段,其频率范围从(300MHz)至(3000GHz),通常以将微波波段划分为(分米波)、(厘米波)、(毫米波)和(亚毫米波)四个分波段。 2对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 3无耗传输线的状态有(行波状态)、(驻波状态)、(行、驻波状态)。 4在波导中产生各种形式的导行模称为波导的(激励),从波导中提取微波信息称为波导的(耦合),波导的激励与耦合的本质是电磁波的(辐射)和(接收),由于辐射和接收是(互易)的,因此激励与耦合具有相同的(场)结构。 5微波集成电路是(微波技术)、(半导体器件)、(集成电路)的结合。 6光纤损耗有(吸收损耗)、(散射损耗)、(其它损耗),光纤色散主要有(材料色散)、(波导色散)、(模间色散)。 7在微波网络中用(“路”)的分析方法只能得到元件的外部特性,但它可以给出系统的一般(传输特性),如功率传递、阻抗匹配等,而且这些结果可以通过(实际测量)的方法来验证。另外还可以根据

微波元件的工作特性(综合)出要求的微波网络,从而用一定的(微波结构)实现它,这就是微波网络的综合。 8微波非线性元器件能引起(频率)的改变,从而实现(放大)、(调制)、(变频)等功能。 9电波传播的方式有(视路传播)、(天波传播)、(地面波传播)、(不均匀媒质传播)四种方式。 10面天线所载的电流是(沿天线体的金属表面分布),且面天线的口径尺寸远大于(工作波长),面天线常用在(微波波段)。 11对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 12微波具有的主要特点是(似光性)、(穿透性)、(宽频带特性)、(热效应特性)、(散射特性)、(抗低频干扰特性)。 13对传输线等效电路分析方法是从(传输线方程)出发,求满足(边界条件)的电压、电流波动解,得出沿线(等效电压、电流)的表达式,进而分析(传输特性),这种方法实质上在一定条件下是(“化场为路”)的方法。 14传输线的三种匹配状态是(负载阻抗匹配)、(源阻抗匹配)、(共轭阻抗匹配)。 15波导的激励有(电激励)、(磁激励)、(电流激励)三种形式。

微波与天线习题

第一章 均匀传输线理论 1.在一均匀无耗传输线上传输频率为3GHZ 的信号,已知其特性阻抗0Z =100Ω,终端接 l Z =75+j100Ω的负载,试求: ① 传输线上的驻波系数; ② 离终端10㎝处的反射系数; ③ 离终端2.5㎝处的输入阻抗。 2.由若干段均匀无耗传输线组成的电路如图,已知g E =50V ,Z 0=g Z = 1l Z =100Ω,Z 01=150Ω,2l Z =225Ω,求: ① 分析各段的工作状态并求其驻波比; ② 画出ac 段电压、电流振幅分布图并求出极值。 3.一均匀无耗传输线的特性阻抗为500Ω,负载阻抗l Z =200-j250Ω,通过4 λ 阻抗变换器及并联支节线实现匹配,如图所示,已知工作频率f =300MHZ ,求4 λ 阻抗变换段的特性阻抗01Z 及并联短路支节线的最短长度min l 。

4.性阻抗为0Z 的无耗传输线的驻波比为ρ,第一个电压波节点离负载的距离为min1l ,试证明此时终端负载应为 min1 min1 1tan tan l j l Z j l ρβρβ-Z =- 5 明无耗传输线上任意相距 4 λ 的两点处的阻抗的乘积等于传输线特性阻抗的平方。 6某一均匀无耗传输线特性阻抗为0Z =50Ω,终端接有未知负载l Z ,现在传输线上测得电压最大值和最小值分别为100mV 和200mV ,第一个电压波节的位置离负载min13 l λ =,试求 负载阻抗l Z 。 7.传输系统如图,画出AB 段及BC 段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值。(图中R=900Ω) 8.特性阻抗0150Z =Ω的均匀无耗传输线,终端接有负载250100l j Z =+Ω,用 4 λ 阻抗

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章

————————————————————————————————作者:————————————————————————————————日期: 2

17 第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将1.0

微波技术与天线试卷B

1 2007 /2008学年第 2 学期 课程名称:微波技术与天线 共 5 页 试卷: B 考试形式: 闭 卷 一、 填空题(每空1分,共10分) 1、微波的频率范围从 到 。 2、圆波导的主模是 。 3、微带线的高次模有两种模式,其中波导模式存在于 与 之间。 4、无耗传输线上任意相距λ/2处的阻抗 。 5、矩形波导中传输的主模是__________。 6、圆波导中损耗最小的的模式是_______________。 7、电基本振子的远区场是一个沿着径向向外传输的 电磁波。 8、天线的有效长度越长,表明天线的辐射能力___________。 二、选择题(每题2分,共20分) 1、若传输线上全反射时,驻波比等于 。 A :0 B :1 C :2 D :∞ 2、双导体传输系统中传输的是 。 A :TE 波 B :TM 波 C :TEM 波 D :TE 和TM 波 3、匹配双T 的四个端口 。 A :只有两个端口匹配 B : 完全匹配 C :只有三个端口匹配 D :完全不匹配 4、当单极天线的高度h<<λ时,其有效高度约为实际高度的 。 A :2/3 B :1/3 C : 1/2 D :1/4

5、无耗传输线,终端断短路时在电压波腹点处,相当于。A:并联谐振B:串联谐振C:纯电感D:纯电容 6、在微波视距通信设计中,为使接收点场强稳定,希望反射波的成分 _________。 A:愈小愈好B:愈大愈好C:适当选择D:不确定 7、传输线的工作状态与负载有关,当负载开路时,传输线工作在何种状态?( ) A.混合波 B.行波 C.驻波 D.都不是 8、可以导引电磁波的装置称为导波装置,传播不受频率限制的导波装置是( ) A. 方波导 B.同轴线 C. 圆波导 D.以上都可以 9.天线是发射和接收电磁波的装置,其关心的主要参数为( ) A.增益 B.驻波比 C. 方向图 D.以上都是 10、在规则金属波导中波的传播速度比无界空间媒质中传播的速度。A:快B:慢C:相等D:无法确定 三、简答题(每题6分,共24分) 1、对均匀传输线的分析方法通常有哪两种?各自特点是什么? 2

微波技术与天线考试复习重点含答案

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0R jwL Z G jwC +=+它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为()()R jwL G jwC γ=++传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ=;4)传输线上电磁波的波长λ与自由空间波长0λ的关系02r π λβε==。 7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系

《微波技术与天线》习题答案

《微波技术与天线》习题答案 章节 微波传输线理路 1.1 设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数 1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.0213 1 )2.0(j z j e e --=Γ=Γ 31 )5.0(=Γλ (二分之一波长重复性) 31 )25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010 l jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性) 1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。 解:同轴线的特性阻抗a b Z r ln 60 0ε= 则空气同轴线Ω==9.65ln 600a b Z 当25.2=r ε时,Ω== 9.43ln 60 0a b Z r ε 当MHz f 300=时的波长: m f c r p 67.0== ελ 1.3题 设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,

试证明此时的终端负载应为1 min 1 min 01tan tan 1l j l j Z Z βρβρ--? = 证明: 1 min 1min 010)(1 min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ ββ--? =∴=++?=由两式相等推导出:对于无耗传输线而言:)( 1.4 传输线上的波长为: m f r 2c g == ελ 因而,传输线的实际长度为: m l g 5.04 ==λ 终端反射系数为: 961.051 49 01011≈-=+-= ΓZ R Z R 输入反射系数为: 961.051 49 21== Γ=Γ-l j in e β 根据传输线的4 λ 的阻抗变换性,输入端的阻抗为: Ω==25001 2 0R Z Z in 1.5 试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。 证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距 4 λ 处看进去的输入阻抗为' in Z ,则有: z jZ Z z jZ Z Z ββtan tan Z 10010 in ++=

微波技术与天线实验4利用HFSS仿真分析矩形波导

实验3:利用 HFSS 仿真分析矩形波导 一、 实验原理 矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。 图1 矩形波导 1) TE 模,0=z E 。 cos cos z z mn m x n y H H e a b γππ-= 2 cos sin x mn c z n m x n y E H b a b j k e γπππωμ-= 2 sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπ ππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k =2 2 m n a b ππ???? ? ????? +而mn H 是与激励源有关的待定常数。 2) TM 模 Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模, m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即

c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波光子学研究的进展

微波光子学研究的进展 2009-08-1916:31 摘要:微波光子学注重微波与光子在概念、器件和系统的结合,典型研究包括微波信号的光产生、处理和转换,微波信号在光链路中的分配和传输等。其研究成果促进了新技术的出现,如光载无线(RoF)通信、有线电视(CATV)的副载波复用和光纤传输、相控阵雷达的光控波束形成网络以及微波频域的测量技术等. 英文摘要:In microwave photonics, the combination of concepts, devices and system is emphasized. Its typical research includes: photonic microwave generation, photonic signal processing and conversion, distribution of microwave signals in optical links, and so on. These research results promote new technologies such as Radio over Fiber (RoF) communications, the subcarrier multiplex and fiber transmission of Cable Television (CATV), optical control beam forming network in phased array radar, test technologies in microwave frequency, and so on. 基金项目:国家自然科学基金资助项目(60736002、60807026) 1 微波光子学产生的背景 光波分复用技术的出现和掺铒光纤放大器的发明使光通信得到迅速发展。光纤通信具有损耗低,抗电磁干扰,超宽带,易于在波长、空间、偏振上复用等很多优点,目前已实现了单路40~160 Gb/s、单根光纤10 Tb/s的传输。 随着容量传输速率的不断提高,光纤系统需要在光发射和接收机中采用微波技术。 与此同时,随着对无线通信容量需求的增加,微波技术也在迅速发展。微波通信能够在任意方向上发射、易于构建和重构,实现与移动设备的互联;蜂窝式系统的出现,使微波通信具备高的频谱利用率。但目前微波频段的有限带宽成为严重问题,人们开始考虑30~70 GHz新频段的利用。60 GHz光载无线(ROF)系统由于接入速率高和不需要另外申请牌照等优点正成为宽带接入的热门技术。60 GHz信号在大气中的传输损耗高达14 dB/km,意味着在蜂窝移动通信中信道频率可更加频繁地重复使用。但传统的微波传输介质在长距离传输时具有很大损耗,而光纤系统具有低损耗、高带宽特性,对于微波传输和处理充满吸引力。 光纤技术与微波技术相互融合成为一个重要新方向。从理论上来讲,微波技术和光纤技术的理论基础都是电磁波波动理论。在光电器件中,当波长足够小时要考虑波动效应,采用电磁波理论来设计和研究光电器件,如波导型或行波型器件。理论基础的统一,使得微波器件和光电子器件可使用相同材料和技术在同一芯片上集成,这极大促进了两个学科的结合,促进了一门新的交叉学科——微波光子学的诞生。 微波光子学概念最早于1993年被提出[1]。其研究内容涉及了与微波技术和光纤

微波技术与天线考试试卷(A)

一、填空(102?) 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为 mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别()() 70120104,F 1085.8,ln 2ln 2--?==?===πμμεπμπεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最_ __________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两 个分量,它们在空间上___________(选填:平行,垂直),在 时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。 5、 旋转抛物面天线由两部分组成, ___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来 的球面波沿抛物面的___________向反射出去,从而获得很强 ___________。 二、判断(101?) 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时, 该传输线为短线。( ) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。( )

3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°, 它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( ) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大 功率。( ) 5、微带线在任何频率下都传输准TEM 波。( ) 6、导行波截止波数的平方即一定大于或等于零。( ) 7、互易的微波网络必具有网络对称性。( ) 8、谐振频率、品质因数和等效电导是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。( ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。( ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) 2、在波导激励中常用哪三种激励方式?(6分) 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) 四、计算题(41分) 1、矩形波导BJ-26的横截面尺寸为22.434.86a mm b ?=?,工作频率为3GHz ,在终端接负载时测得行波系数为0.333,第一个电场波腹点距负载6cm ,今用螺钉匹配。回答以下问题。 (1)波导中分别能传输哪些模式?(6分) (2)计算这些模式相对应的p νλ,p 及。(9分)

微波技术与天线实验3利用ADS设计集总参数匹配电路

一、实验目的 学会用ADS进行集总参数匹配电路设计。 二、实验步骤 1、打开“ADS(Advanced Design System)”软件:点击图标。 2、点击“Close”键,关闭Getting start with ADS窗口(如图1)。 图1 3、在“Advanced Design System 2009(Main)”窗口中点击“File>New Project”(如图2), 图2 在“New project”窗口中的“C:\users\default\”后输入“matching”,点击“OK”(如图3)。

图3 4、默认窗口中的选项(如图4(a)),关闭窗口“Schematic Wizard:1”,进入 “[matching-prj]untitled1(Schematic):1”窗口(如图4(b))。 图4(a) 图4(b) 5、找到“Smith Chart Matching”,并点击(如图5)。

图5 点击“Palette”下的“Smith chart”图标,弹出“Place SmartComponent:1”窗口,点击“OK”按钮(如图6(a))。在操作窗口中点击出一个smith chart,然后点击鼠 标右键选择“End Command”(如图6(b))。 图6 (a)

图6(b) 6、点击“Tools>Smith Chart”(如图7(a)),出现“Smith Chart Utility”以及 “SmartComponent Sync”窗口,点击“Smartcomponent Sync”窗口中的“OK”(如 图7(b))。 图7 (a)

《微波技术与天线实验》2

《微波技术与天线实验》课程实验报告 实验二: 学院通信工程 班级13083414 学号13041403 姓名李倩 指导教师魏一振 2015年11 月12 日

实验名称:集总参数滤波器设计 1.实验目的 (1)通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来进一步熟悉MWO2003 的各种基本操作。 (2)本次实验我们需要用到MWO2003 的优化和Tune 等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧。 2.实验内容 设计一个九级集总参数低通滤波器,要求如下: 通带频率范围:0MHz~400MHz 增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB 阻带内600MHZ以上S 21 <-50dB 反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 3.实验结果 实验电路原理结构图:

运行结果: 4.思考题 (1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤? 带宽和截止频率参数的设计、结构图的设计需要改变,所以原理图属性设置、画结构图、元件参数设置、参数优化步骤需要改变。 首先需要改变电路图的结构,如下图

将原来的电容接地改成电感接地。 之后在优化参数进行重新设置。也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。原来的600~MAX的改为0~600MHZ的频率范围。如下图

之后重复上述仿真可以得到如下结果 可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。反射系数在某个区域内比较符合。 (2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)在优化过程中,电容c1和c0的参量调节对优化结果影响最大。

微波光子学

掺铒光纤(EDF)是使掺铒光纤放大器(EDFA)具有放大特性的关键技术之一,它多用石英光纤作为基质,也有采用氟化物光纤的。掺铒光纤的制作是以传统的改进化学气相沉积工艺,气相轴向沉积工艺,外气相沉积工艺为基础,结合气相掺杂技术或液相掺杂技术来完成的,其中液相掺杂技术使用的更为普遍。在掺铒光纤放大器技术中,掺铒光纤工艺至关重要,在光纤中可认为信号光与泵浦光的场近似高斯分布,在光纤芯轴线上的光强最强,所以掺杂时尽量使杂志粒子集中在近轴区域,以使光域物质的作用最充分,从而提高能量转换效率。一般单模光纤纤芯直径在9微米左右,如果将掺杂光纤拉得比常规光纤更细,可提高信号光和泵浦光的能量密度,从而提高其相互作用的效率。但芯径的减小将会带来新的问题,芯径小的掺杂光纤与常规光纤的模场不匹配,从而带来较大的反射和连接损耗。通常的解决办法是在光纤中掺氟(F)元素,以降低其折射率(但并不改变半径),从而改变模场直径,使之增大到与常规光纤可匹配程度,此时连接损耗可以降至0.5dB以下,这种方法称为扩散成锥法,即在光纤尾端形成模场直径锥。 在掺铒光纤的制造过程中还有一个最佳掺杂光纤长度的问题。掺杂光纤太短,掺杂离子对泵浦光的吸收不充分,不能形成离子数反转;掺杂光纤太长,在输出端介质吸收激光光子,使输出功率下降。因而掺铒光纤存在一个最佳长度,以获得最小的阀值功率,使所能得到的泵浦光子数和离子反转数在泵浦端达到最大值,以充分得到高的泵浦光转换效率。 掺铒光纤的设计对于宽带平坦的增益是非常重要的,掺铒光纤的参量包括材料特性和波导特性两个方面。掺铒光纤的优化设计包括优化芯部组分(芯部共掺杂离子,掺杂浓度及在纤芯的分布等)和波导结构两方面内容。优化芯部组分设计,提高铒离子掺杂离子在石英玻璃中的分散性是光纤材料设计的重要内容。目前掺铒光纤采用的最多的基质材料是Ge/Al/Si体系,同时进行共掺杂的还有其它稀离子(如La3+等)、研究发现,改变掺量,将引起吸收峰和荧光带中心的移动和峰值的改变,可以有效地改善EDFA的增益平坦度。 铒离子的掺杂浓度和与铒离子共掺杂元素的选择对EDF的性能产生重要的影响,若掺杂浓度过低,在掺杂离子总数有效数低于入射光子的区域,基态有可能耗尽倒空,增益作用被终止。原则上,铒离子掺入的浓度越高,单位光纤长度上的光增益越高,从而可以用较短的光纤长度获得所需要的光增益。若掺杂浓度过高,则可能出现浓度抑制问题,即过高地掺杂浓度可能使铒离子靠得很近,铒离子之间将存在能量转移,导致激光上能级的有效粒子数降低,荧光寿命降低,激光过程受到限制,从而使光纤的性能退化,故存在适宜的掺杂浓度范围。适度提高掺杂浓度的前提是提高分散性,可以通过改善基质材料的溶解特性,如采取高掺杂AlLa材料设计,可以改进制备工艺.提高掺杂离子的分散性和均匀性,避免掺杂不均匀带来的浓度偏析影响。为获得最佳泵浦效果,铒离子沿光纤剖面理想的浓度分布应与泵浦光束的光强度匹配,但在实际掺杂工艺条件下,实现上述理想分布较为困难。一股可行的工艺设计是考虑将铒离子集中掺杂在纤芯的中央区域,这样可以避免光强较弱的边缘部分因铒离子未被充分激励而成为吸收体,使增益下降,同时可以使中央区域的铒离子到充分激励。所以掺铒光纤的增益系数井不单纯与纤芯半径有关,还取决于掺杂的半径。 掺铒光纤的设计,除了选定基质与掺杂浓度外,对光纤波导参数(芯径或模场直径、数值孔径.截止波长等)的合理选择也是很重要的。这直接关系到信号光与泵浦光、放大光纤与传输单模光纤之间的模场匹配与能量耦合效率。掺铒光纤的光学结构说到底是由EDF在EDFA中的性能要求和光纤制造工艺共同决定的。增益和泵浦效率是EDFA的重要参数。它们依赖于折射率剖面、铒离子掺杂区域和浓度等光纤结构。获得高增益和泵浦效率需要粒子数反转率高,目的是使较小的泵浦功率下获得最大的信号增益功率,尽可能充分利用耦合入EDF的泵浦功率,因此,EDF选择合适的结构及光学参数及其重要。 光纤光栅是利用光纤材料的光敏性,在纤芯内形成空间相位光栅。所谓光纤中的光敏性是指掺杂光纤中通过激光时,光纤的折射率将随着光强的空间分布发生相应的变化,这种现象也称为光致折射率变化效应,如用激光干涉条纹侧面辐照掺锗光纤,就会在光纤中的一段长度内,形成光纤长度方向折射率的周期扰动,从而形成光纤光栅,或称为光纤Bragg光栅,而且这种光栅在 C 500以下稳定不变,用C 500以上高温可擦抹。光纤光栅的作用实质是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜,利用这一特性可构成许多性能独特的光纤无源器件,且光纤光栅(FBG)具有体积小、重量轻、波长选择性好、不受非线性效应影响、极化不敏感、带宽范围大、附加损耗小、器件微型化、耦合性能好、可与其他光纤器件融成一体等特性,其制作工艺比较成熟,易于形成规模生产,成本低,具有很好的实用性,其优越性是其他许多器件无法替代的,这使得光纤光栅以及基于光纤光栅的器件成为光学领域理想的关键器件之一。 光纤光栅的传统应用主要集中在光纤

相关主题
文本预览
相关文档 最新文档