当前位置:文档之家› 恒等变形与同解变形

恒等变形与同解变形

恒等变形与同解变形
恒等变形与同解变形

恒等变形与同解变形

容易看出

m+2m-3m=(1+2-3)m

是一个恒等式,也就是说,把式子

m+2m-3m

改变为

(1+2-3)m

的这步变形,使变形前后的两个式子恒等,我们把这样的变形叫做恒等变形,我们通常所做的数、式运算都是恒等变形。例如

2×3=6,

2(a+1)=2a+2

中,从等式左边到等式右边的变形都是恒等变形。了解到数、式运算的这个特点,就可以利用特殊值代入法来检查运算结果是否有误。假定计算2(a+l)得到2a+1。把a=0代入 2(a+1),得结果 2;把 a=0代入2a+1,得结果1。如果计算正确,把a=0代入 2(a+1),2a+1所得的结果应该相同,这说明运算有误。运用这种方法时需要注意,把一个特殊值代入变形前后的式子,如果两个式子的值不相同,我们就可以判定变形有误;如果两个式子的值相同,也不能肯定变形正确。例如,假定计算2(1+x)得到2+x,把x=0代入2(1+x),得结果2;把x=0代入2+x,也得结果2。但由此并不能肯定运算正确,因为由2(1+x)得2+x实际上是错的(换一个数,比如把x=-1分别代入,就可以看出结果不同)。

判断两个一元多项式f(x),g(x)是否恒等,可用下面的结论:

如果f(x),g(x)是n次多项式,并且有n+l个值使f(x)=g(x),那么f(x)与g(x)恒等。其原因是一元n次方程最多有n个根。

我们用上述结论来看下面的变形

因为当x=a,x=b时,都有两边的值相等,我们就可以断定上述变形正确。

总之,进行数、式运算时,要保证每一步都是恒等变形。而解方程时,则要保证每一步都是同解变形,也就是保证变形前后的两个方程是同解方程。由方程同解原理可知:

方程两边都加上(或减去)同一个数或同一个整式,所得方程与原方程是同解方程。

方程两边都乘以(或除以)不等于0的同一个数,所得方程与原方程是同解方程。

也就是说,方程两边都加上(或减去)同一个数或同一个整式,方程两边都乘以(或除以)不等于0的同一个数,都是同解变形。

关于同解变形,下面作几点说明。

1.方程两边都加上(或减去)同一个分式不是同解变形。例如在方程

3x=2x-1

的两边都加上得

可以得出,x=-1是方程3x=2x-1的解。而方程

无解。

所以方程两边都加上(或减去)同一个分式不是同解变形。

2.方程两边都加上(或减去)同一个二次根式不是同解变形。例如在方程

3x=2x-1

的两边都加上得

3x+=2x-1+

可以得出x=-1是方程3x=2x-1的解,而方程

3x+=2x-1+

无解。

所以方程两边都加上(或减去)同一个二次根式不是同解变形。

3.方程两边都乘以0不是同解变形。例如在方程

4x=1

的两边都乘以0,得

0·4x=0。

可以得出,x=-1是方程4x=1的解,而方程

0·4x=0。

有无数多个解。

所以方程两边都乘以0不是同解变形。

4.方程两边都乘以(或除以)同一个整式不是同解变形。例如在方程

3x=2x-1。

的两边都乘以x,得

可以看出,方程3x=2x-1的解是x=-1,方程的解是

所以方程两边都乘以(或除以)同一个整式不是同解变形。

5.方程两边开平方不是同解变形。例如方程

2x=1

两边平方,得

4x2=1。

可以看出,方程2x=1的解是,方程4x2=1的解是。所以方程两边平方不是同解变形。

6.方程两边平方不是同解变形。将方程

3x=2x-1

两边开平方,得

。可以看出,方程3x=2x-1的解是x=-1,方程

无解。

所以方程两边开平方不是同解变形。

常见的三角恒等式

常见的三角恒等式及其证明 设A,B,C是三角形的三个内角 (1) tanA+tanB+tanC=tanAtanBtanC 证明: tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tan(π-c)(1-tanAtanB)+tanC=-ta nC(1-tanAtanB)+tanC=tanAtanBtanC (2) cotAcotB+cotBcotC+cotCcotA=1 证明: tanA+tanB+tanC=tanAtanBtanC cotX*tanX=1 tanA*cotAcotBcotC+tanB*cotAcotBcotC+tanC*cotAcotBcotC=tanAtanBtanC* cotAcotBcotC cotAcotB+cotBcotC+cotCcotA=1 (3) (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 证明: (cosA)^2+(cosB)^2+x^2+2cosAcosBx=1 x^2+2cosAcosBx+(cosA)^2+(cosB)^2-1=0 x={-2cosAcosB+-√[(2cosAcosB)^2-4((cosA)^2+(cosB)^2-1)]}/2 x=-cosAcosB+-√[(cosAcosB)^2-((cosA)^2+(cosB)^2-1)] x=-cosAcosB+-√[1-(cosA)^2][1-(cosB)^2] x=-cosAcosB+-√[(sinA)^2(sinB)^2] x=-cosAcosB+-sinAsinB x=-cos(A+B)或x=-cos(A-B) x=cosC或x=-cos(A-B) 所以 cosC是方程的一个根 所以 (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 (4) cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) 证明: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) cos(180-B-C)+cosB+cosC=1+2sin(A/2)[2sin(B/2)sin(C/2)] cos(180-B-C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)] -cos(B+C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)]

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

高考总复习三角恒等变换专题习题附解析

高考总复习三角恒等变换专题习题附解析 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

三角恒等变换专题习题 一、选择题(本大题共6小题,每小题5分,共30分) 1.已知α为锐角,cosα=,则tan=( ) A.-3 B.- C.-D.-7 解析依题意得,sinα=,故tanα=2,tan2α==-,所以tan==-. 答案B 2.已知cos=-,则cos x+cos的值是( ) A.-B.± C.-1 D.±1 解析cos x+cos=cos x+cos x+sin x=cos x+sin x==cos=-1. 答案C 3.已知cos2θ=,则sin4θ+cos4θ的值为( ) A. B. C. D.-1 解析∵cos2θ=,∴sin22θ=,∴sin4θ+cos4θ=1-2sin2θcos2θ=1-(sin2θ)2=. 答案B 4.已知α+β=,则(1+tanα)(1+tanβ)的值是( ) A.-1 B.1 C.2 D.4 解析∵α+β=,tan(α+β)==1, ∴tanα+tanβ=1-tanαtanβ. ∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ =1+1-tanαtanβ+tanαtanβ=2. 答案C 5.

(2014·成都诊断检测)如图,在平面直角坐标系xOy中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为和,则cos(α+β)的值为( ) A.-B.- C.0 D. 解析cosα=,sinα=,cosβ=-,sinβ=,cos(α+β)=cosαcosβ-sinαsinβ=·(-)-·=-.选A. 答案A 6.若=-,则sinα+cosα的值为( ) A.-B.- C. D. 解析∵(sinα-cosα)=-(cos2α-sin2α), ∴sinα+cosα=. 答案C 二、填空题(本大题共3小题,每小题5分,共15分) 7.若tan=,则tanα=________. 解析∵tan==, ∴5tanα+5=2-2tanα. ∴7tanα=-3,∴tanα=-. 答案- 8.(2013·江西卷)函数y=sin2x+2sin2x的最小正周期T为________. 解析y=sin2x+2sin2x=sin2x-cos2x+ =2sin(2x-)+,所以T=π. 答案π 9.(2013·新课标全国卷Ⅰ)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=________. 解析f(x)=sin x-2cos x=(sin x-cos x)=sin(x-φ)而sinφ=,cosφ=,当x -φ=+2kπ(k∈Z)时,f(x)取最大值,即θ=φ++2kπ时,f(x)取最大值.cosθ=cos(φ++2kπ)=-sinφ=-=-.

最常用三角公式(精心简洁整理,可直接打印)

最常用三角公式 1. 诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) = cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = - sin(a) cos(π + a) = - cos(a) 2. 两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) - sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]

三角函数及恒等变换高考题大全

三角函数题型分类总结 一.求值 1、sin330?= tan690° = o 585sin = 2、(1)(07全国Ⅰ) α是第四象限角,12 cos 13 α= ,则sin α= (2)(09北京文)若4 sin ,tan 05 θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12 cot 5 A =- ,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) (07陕西) 已知sin ,5 α= 则44sin cos αα-= . (2)(04全国文)设(0,)2 π α∈,若3sin 5α= )4 π α+= . (3)(06福建)已知3( ,),sin ,25π απα∈=则tan()4 π α+= 4(07重庆)下列各式中,值为 2 3 的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+o o o o = (2)(06陕西)cos 43cos77sin 43cos167o o o o += 。 (3)sin163sin 223sin 253sin 313+=o o o o 。 6.(1) 若sin θ+cos θ= 1 5 ,则sin 2θ= (2)已知3 sin()45 x π-=,则sin 2x 的值为 (3) 若2tan =α ,则 α αα αcos sin cos sin -+= 7. (08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.(07浙江) 已知cos( )2 π ?+= ,且||2 π ?<,则tan ?= 9. 若 cos 2π2sin 4αα=- ?? - ? ? ?cos sin αα+=

三角函数恒等变形公式

三角函数恒等变形公式-CAL-FENGHAI.-(YICAI)-Company One1

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asi nα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法 一.知识分析 1. 三角函数恒等变形公式 (1)两角和与差公式 (2)二倍角公式 (3)三倍角公式 (4)半角公式 (5)万能公式 ,, (6)积化和差 , , ,

(7)和差化积 , , ,2.网络结构

3. 基础知识疑点辨析 (1)正弦、余弦的和差角公式能否统一成一个三角公式? 实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同: 。

(2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点: ①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。 ②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函 数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最 小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么? 先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,, 分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易 证明。 4. 三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三 角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

三角函数恒等变换

§6.3 两 角 和 与 差 的 三 角 函 数 【复习目标】 1.掌握两角和与差的三角函数公式,掌握二倍角公式; 2.能正确地运用三角函数的有关公式进行三角函数式的求值. 3.能正确地运用三角公式进行三角函数式的化简与恒等式证明. 【双基诊断】 (以下巩固公式) 1、163°223°253°313°等于 ( ) A.-2 1 B.2 1 C.- 2 3 D. 2 3 2、在△中,已知2,那么△一定是 ( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形 3、??-?70sin 20sin 10cos 2的值是 ( ) A.2 1 B. 2 3 C. 3 D.2 4、已知α-β=2 1,α-β=3 1,则(α-β).

5、已知5 3sin ),,2 (=∈αππα,则=+)4 tan(πα 。 6、若 t =+)sin(απ,其中α是第二象限的角,则 =-)cos(απ 。 7、化简 1tan151tan15 +-等于 ( ) ()A () B () C 3 () D 1 8、(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++= ( ) ()A 2 ()B 4 ()C 8 ()D 16 9、已知α和(4 π-α)是方程2 0的两个根,则a 、b 、c 的关系是 ( ) B.2 10、0015tan 75tan += 。 11、设14°14°,16°16°, 6 6,则a 、b 、c 的大小关系是 ( ) <b <c <c <b <c <a <a <c 12、△中,若2a ,60°,则.

13、f (x )= x x x x cos sin 1cos sin ++的值域为 ( ) A.(-3 -1,-1)∪(-1, 3 -1) B. (21 3-- ,2 13-) C.[2 1 2--,-1]∪(-1, 2 12-) D. [21 2-- ,2 12-] 14、已知∈(0,2 π),β∈(2 π,π),(α+β)=65 33,β=- 13 5 ,则α. 15、下列各式中,值为2 1的是 ( ) 15°15° B.2 2 12 π- 1 C. 2 30cos 1? + D. ? -?5.22tan 15.22tan 2 16、已知2θ 2θ3 32,那么θ的值为,2θ的值为. 17、=000080cos 60cos 40cos 20cos 。

三角恒等变形与三角函数的图像与性质典型题,复习课用教案

三角恒等变形与三角函数的图像与性质 一、 诊断练习 1、 若 sin α+cos α sin α-cos α =3,tan(α-β)=2,则tan(β-2α)=________. 2、 化简 1+cos 20°2sin 20°-sin 10°(1 tan 5? -tan 5°)=________. 3、 函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))的图象如图所示,则φ=________. 4、求sin cos y x x =+在 (0,]2 x π∈的值域是--------------- 二、 典型例题 例1已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-3 5 (1) 用α+β,α-β表示2α;(2)求sin 2α,cos 2α的值. 变式:已知sin ? ? ???x +π6=14,则sin ? ????56π-x +sin 2? ????11π6-x 的值为________

例2已知函数f (x )=sin 2? ? ???x -π6+cos 2? ?? ??x -π3+sin x cos x ,x ∈R . (1)求f (x )的最大值及取得最大值时的x 的值; (2)求f (x )在[0,π]上的单调增区间. 变式:(1)求f (x )的对称轴和对称中心 (2)求f (x )的最小正周期 (3)函数f (x )的图像是由sin y x =经过怎样的变换得到的。 (4)若f (x )向左平移m (m>0)个单位,再向下平移1个单位后得到()g x ,若()g x 关于原点对称,求m 的最小值 练习:已知函数f (x )=sin ? ????2x +π6-cos ? ? ? ??2x +π3+2cos 2x . (1)求f ???? π12的值;(2)求f (x )的最大值及相应x 的值.

3-2-2 三角恒等式的应用

能 力 提 升 一、选择题 1.函数y =sin x 1+cos x 的周期等于( ) A.π2 B .π C .2π D .3π [答案] C [解析] y =2sin x 2cos x 2 2cos 2x 2=tan x 2,T =π 1 2=2π. 2.函数y =1 2sin2x +sin 2x 的值域是( ) A.??????-12,32 B.???? ??-32,12 C.??????-22+12,22+12 D.? ????? -22-12,22-12 [答案] C [解析] ∵y =12sin2x +sin 2x =12sin2x +1-cos2x 2=12+22sin ? ? ? ??2x -π4, ∴值域为??????12 -22,12+22. 3.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π 3,则

函数g (x )=a sin x +cos x 的最大值是( ) A.223 B.23 3 C.43 D.263 [答案] B [解析] 由于函数f (x )的图象关于x =5π 3对称, 则f (0)=f ? ?? ??10π3,∴a =-32-a 2, ∴a =-3 3, ∴g (x )=-3 3sin x +cos x =233sin ? ????x +2π3, ∴g (x )max =23 3. 4.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π 4)的一个单调递增区间是( ) A .[-π2,π 2] B .[5π4,9π4] C .[-π4,3π4] D .[π4,5π4] [答案] B [解析] y =cos 2ωx -sin 2ωx =cos2ωx (ω>0), 因为函数的最小正周期为π,故 2π 2ω=π,所以ω=1.则

三角函数恒等变换

三角函数恒等变换 一、三角函数的诱导公式 1、下列各角的终边与角α的终边的关系 角 2k π+α(k ∈Z) π+α -α 图示 与α角终边的关系 相同 关于原点对称 关于x 轴对称 角 π-α 2π -α 2 π +α 图示 与α角终边的关系 关于y 轴对称 关于直线y=x 对称 2、六组诱导公式 组数 一 二 三 四 五 六 角 2k π+α (k ∈Z) π+α -α π-α 2 π -α 2 π +α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α - cos α cos α - cos α sin α -sin α 正切 tan α tan α - tan α - tan α 口诀 函数名不变 符号看象限 函数名改变 符号看象限 注:诱导公式可概括为的各三角函数值的化简公式。记忆规律是:奇变偶不变,

符号看象限。其中的奇、偶是指的奇数倍和偶数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号。 二、两角和与差的正弦、余弦和正切公式 1、两角和与差的正弦、余弦和正切公式 2、二倍角的正弦、余弦、正切公式 . sinα= 2 2tan 2 1tan 2 α α + , cosα= 2 2 1tan 2 1tan 2 α α - + 3、形如asinα+bcosα的化简 asinα+bcosα=22 a b +sin(α+β).其中cosβ= 22 a a b + ,sinβ= 22 b a b +三、简单的三角恒等变换

三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos( a + 3)=cos a ? cos 3 -sin a ?sin 3 cos( a - 3)=cos a ? cos 3 +sin a ?sin 3 sin( a ±3 )=sin a ? cos 3 ±cos a ? sin 3 tan( a + 3)=(tan a +tan 3 )/(1-tan a ? tan 3 ) tan( a - 3)=(tan a -tan 3 )/(1+tan a ? tan 3 ) 三角和的三角函数: sin( a + 3 +Y )=sin a ? cos 3 ? cos 丫+cos a ? sin 3 ? cos 丫+cos a ? cos 3 ? sin 丫-sin a ? sin 3 ? sin 丫cos( a + 3 + Y )=cos a ? cos 3 ? cos 丫-cos a ? sin 3 ? sin Y -sin a ? cos 3 ? sin 丫-sin a ? sin 3 ? cos 丫 tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a ?tan 3 ? tan 丫)/(1-tan a ? tan 3 -tan 3 ? tan 丫-tan 丫? tan a ) 辅助角公式: Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中 si nt=B/(A2+B2)A(1/2) cost=A/(A2+B2)A(1/2) tan t=B/A As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B 倍角公式: sin (2 a )=2sin a? cos a :=2/(tan a +cot a ) cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a ) tan (2 a )=2tan a/[1- tan2( a )] 三倍角公式: sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a ) cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a ) tan(3 a )=tan a ? tan( n /3+a) ? tan( n /3-a) 半角公式: Sin( a /2)= ±V((1 -cos a )/2) cos( a /2)= ±V ((1+cos a )/2) tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式 sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2 cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan2( a )=(1-cos(2 a ))/(1+cos(2 a )) 万能公式: sin a =2tan( a /2)/[1+tan2( a /2)] cos a =[1- tan2( a /2)]/[1+tan2( a /2)] tan a =2tan( a /2)/[1- tan2( a /2)] 积化和差公式:

高考总复习简单的三角恒等变换习题

高考总复习简单的三角恒等变换习题 (附参考答案) 一、选择题 1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π 4),x ∈R ,则函数f (x ) 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2的偶函数 [答案] A [解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π 2=π. (理)(2010·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2π B .π C.π2 D.π3 [答案] B [解析] y =sin 2x +sin x cos x = 1-cos2x 2+1 2 sin2x =12+2 2sin ????2x -π4,∴最小正周期T =π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为3 2 ,则cos2α=( ) A .-1 4 B .-1 2 C.12 D.3 2 [答案] B [解析] ∵|a |2=cos 2α+?? ? ?222 =cos 2α+12=34, ∴cos 2α=14,∴cos2α=2cos 2α-1=-1 2. 3.已知tan α 2=3,则cos α=( ) A.45 B .-45 C.4 15 D .-35 [答案] B

[解析] cos α=cos 2α2-sin 2α 2=cos 2α2-sin 2 α2cos 2α2+sin 2α2 =1-tan 2 α 21+tan 2 α2 =1-91+9=-4 5 ,故选B. 4.在△ABC 中,若sin A sin B =cos 2C 2,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .既非等腰又非直角的三角形 [答案] B [解析] ∵sin A sin B =cos 2C 2 , ∴12[cos(A -B )-cos(A +B )]=1 2(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1, ∵-πcos x ,

高考总复习三角恒等变换专题习题附解析

三角恒等变换专题习题 一、选择题(本大题共6小题,每小题5分,共30分) 1.已知α为锐角,cosα=,则tan=( ) A.-3 B.- C.-D.-7 解析依题意得,sinα=,故tanα=2,tan2α==-,所以tan==-. 答案 B 2.已知cos=-,则cos x+cos的值是( ) A.-B.± C.-1 D.±1 解析cos x+cos=cos x+cos x+sin x=cos x+sin x==cos=-1. 答案 C 3.已知cos2θ=,则sin4θ+cos4θ的值为( ) A. B. C. D.-1 解析∵cos2θ=,∴sin22θ=,∴sin4θ+cos4θ=1-2sin2θcos2θ=1-(sin2θ)2=. 答案 B 4.已知α+β=,则(1+tanα)(1+tanβ)的值是( ) A.-1 B.1 C.2 D.4 解析∵α+β=,tan(α+β)==1, ∴tanα+tanβ=1-tanαtanβ. ∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ =1+1-tanαtanβ+tanαtanβ=2. 答案 C 5. (2014·成都诊断检测)如图,在平面直角坐标系xOy中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为和,则cos(α+β)的值为( ) A.-B.- C.0 D. 解析cosα=,sinα=,cosβ=-,sinβ=,cos(α+β)=cosαcosβ-sinαsinβ=·(-)-·=-.选A. 答案 A 6.若=-,则sinα+cosα的值为( ) A.-B.-

第10讲 三角恒等式一(数学竞赛)

第10讲 三角恒等式与三角不等式(一) 【赛点突破】 1. 诱导公式:奇变偶不变,符号看象限。 2. 同角函数基本关系:平方关系,倒数关系,商关系。 3. 三角公式:和差倍半,和差化积,积化和差。 【范例解密】 例1若x 是锐角,证明:(1)sin tan x x x <<;(2) sin tan 2 x x x +>。 分析与解:(1)如图,在单位圆中, OAB OAB OBC S S S ??<<扇形,即sin tan x x x <<; (2)224tan tan 2tan sin tan 22 221tan 1tan 1tan 222 x x x x x x x x +=+= +-- 2tan 222 x x x >>?=。 注:(2)的变形值得回味。 例2 2tan x =-,求x 的取值范围。 解:原式左边= 1sin 1sin 2sin cos cos cos x x x x x x -+--=,故cos 0x >或者sin 0x =,则 22,22 k x k k Z π π ππ- <<+ ∈或者,x k k Z π=∈。 注:本题非常容易漏解,考查思维的严谨性。 例3 求15 ()()44f x x = ≤≤的最小值。 分析与解:sin()2 ()x f x π π-+=54x =取得最大值,分子当54x =取得最小值,故5 4 x = 原式取得最小值。 注:解决问题的思维值得借鉴。 例4求 1 tan10cos50 +的值。

分析与解: 1cos802cos 40cos80cos402cos60cos 20 sin40sin80sin80sin80 ++ += = 2cos30cos10 3 sin80 ==。 注;tan10cot80 =是一个很好的变形,另外2cos40 cos802cos(12080) + =- cos802sin120sin80 +=是一个更启发思路的方法。 例5()sin2)sin()23,[0,] 42 f x x x a x ππ =-+++∈,若 () cos() 4 f x x π > - 恒成立,求a的取值范围。 分析与解:设sin cos x x t +=∈,则2 sin21 x t=-,原不等式化为 2 4 (2)22 t a t a t -+++>,即 2 (2)()0 t t a t -+-<,故 2 a t t >+恒成立,则3 a>。注:其中的三角换元是常用的重要方法,高次方程的分解因式是稍高的技巧。例6ABC ?中,求cos cos cos A B C ++的最大值。 分析与解:原式2 2cos cos cos2sin12sin 2222 A B A B C C C +- =+≤+-= 2 13 2(sin) 222 C --+,故当 3 A B C π ===时原式的最大值是 3 2 。 注(1)如果求cos cos cos A B C ++的值域呢? (2)3 cos cos cos cos2cos2cos 322 C A B A B C π π+ + +++≤+≤ 3 3 4cos 42 A B C π +++ =是很好的方法,由此如何解决sin sin sin A B C ++的最值问题,并和其他的方法比较。 例7,a b是正实数,且 sin cos8 55tan 15 cos sin 55 a b a b ππ π ππ + = - ,求 b a 的值。 分析与解:设tan, b x x a =是锐角,则 tan tan8 5tan 15 1tan tan 5 x x π π π + = - ,即 8 tan()tan 515 x ππ +=, 故 8 , 5153 x x πππ +==, b a = 注:本解法比较灵巧,还有多种基本的方法,请自己探索。

三角函数恒等变换含答案及高考题

三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=2 2 b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan == x x x ,又sin 2x +cos 2x =1, 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=?? ?????==x x x x 2.求 ) 330cos()150sin()690tan()480sin()210cos()120tan(ο ο ο οοο----的值. 解:原式 ) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3.若 ,2cos sin cos sin =+-x x x x ,求sin x cos x 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ), 得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,?????? ?=-=?? ? ????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =103 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ),

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

三角恒等变换 - 最全的总结· 学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用 两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β βαβαβαtan tan 1tan tan )tan(?±=± 倍角公式 sin2α=2sin α·cos α cos2α=cos 2α-sin 2α =2cos 2α-1=1-2sin 2α α α α2tan 1tan 22tan -= 半角公式 2 cos 12 sin αα -± =,2 cos 12 cos αα +± = α αα cos 1cos 12tan +-± ==αααα cos 1sin sin cos 1+=- 升幂公式 1+cos α=2 cos 22 α 1-cos α=2 sin 22 α 1±sin α=(2 cos 2 sin α α ±)2 1=sin 2α+ cos 2α sin α=2 cos 2 sin 2α α 降幂公式 sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2 α=1 sin α·cos α=α2sin 2 1 平方关系 sin 2α+ cos 2α=1, 商数关系 α α cos sin =tan α

相关主题
文本预览
相关文档 最新文档