当前位置:文档之家› DSC 结晶度计算方法

DSC 结晶度计算方法

DSC 结晶度计算方法

结晶度测试方法及研究意义

高分子结晶度的分析方法研究进展 ……专业聂荣健学号:……指导老师:…… 摘要:综述聚合物结晶度的测定方法,包括:差示扫描量热法;广角X衍射法;密度法;红外光谱法;反气相色谱法等,并对不同方法测定结晶度进行分析比较 , 同时对结晶度现代分析技术的发展作出展望。 关键词:结晶度;测试方法;分析比较

引言 高分子材料是以聚合物为主体的多组分复杂体系 , 由于具有很好的弹性、塑性及一定的强度,因此有多种加工形式及稳定的使用性能。由于聚合物自身结构的千变万化 , 带来了性能上的千差万别,正是这一特点 , 使得高分子材料应用十分广泛,已成为当今相当重要的一类新型材料[1]。 结晶度是表征聚合物性质的重要参数,聚合物的一些物理性能和机械性能与其有着密切的关系。结晶度愈大,尺寸稳定性愈好,其强度、硬度、刚度愈高;同时耐热性和耐化学性也愈好,但与链运动有关的性能如弹性、断裂伸长、抗冲击强度、溶胀度等降低。因而高分子材料结晶度的准确测定和描述对认识这种材料是很关键的。所以有必要对各种测试结晶度的方法做一总结和对比[2]。 1.结晶度定义 结晶度是高聚物中晶区部分所占的质量分数或体积分数 . ( )%100*W Wc Xc = 式中 : W ———高聚物样品的总质量 ; W c ———高聚物样品结晶部分的质量 结晶度的概念虽然沿用了很久,但是由于高聚物的晶区与非晶区的界限不明确,有时会有很大出入。下表给出了用不同方法测得的结晶度数据,可以看到,不同方法得到的数据的差别超过测量的误差。因此,指出某种聚合物的结晶度时,通常必须具体说明测量方法。 表1.1用不同方法测得的结晶度比较 结晶度(%) 方法 纤维素(棉花) 未拉伸涤纶 拉伸过的涤 纶 低压聚乙烯 高压聚乙烯 密度法 60 20 20 77 55 X 射线衍射法 80 29 2 78 57 红外光谱法 -- 61 59 76 53 水解法 93 -- -- -- -- 甲酰化法 87 -- -- -- -- 氘交换法 56 -- -- -- --

x射线测结晶度和晶粒尺寸

X 射线测结晶度和晶粒尺寸 一、实验目的 1、利用X 射线衍射仪测结晶度及其计算方法; 2、掌握晶粒尺寸的计算方法和测试方法。 二、实验原理 X 射线衍射法的理论依据是:由N 个原子所产生的总得相干散射强度是一个常数,而与这些原子相互间排列的有序程度无关。假设为两相结构,总相干散射强度等于晶区与非晶区相干散射强度之和。即 ds s I s ds S I s ds s I s a C )()()(222???+= (1) (1)式中I c 和I a 分别为晶相和非晶相的相干散射强度,设总原子数为N ,则 N=N c +N a ,N c 、N a 分别为晶相和非晶相的原子数,于是,结晶度Xc 等于: ???+=+=002202)()()(ds s I s ds s I s ds s I s N N N X a c c a C C C )(p q k kA A A qA pA pA a c c a c c =+=+= (2) 式中Ac 、Aa 分别为衍射曲线下,晶体衍射峰面积和无定形峰面积。P 、q 为各自的比例系数。在进行相对比较时也可以认为K=1,则: %100?+=a c c c A A A X (3) 因此,只要设法将衍射曲线下所包含的面积分离为晶区衍射贡献和非结晶区相干散射的贡献,便可利用(3)式计算结晶度。 按照两相结构理论,高聚物由晶相与非晶相所组成。高聚物X 射线衍射谱图由晶区衍射峰与非晶区散射峰叠加构成。从叠加谱中划分出晶区衍射贡献,计算结晶度是有一定困难的。 Challa 做了两个假设(1)样品中非晶散射曲线与完全无定形样品散射谱相同。(2)指定某两相邻晶峰之间的峰谷为非晶散射强度,按相对高度法划定两相贡献的分界线。这一方法所得结晶度值偏低,主要是由于将部分微晶衍射及晶格畸变宽化划归非晶散射所致。完全无定形样品的制备在一

XRD结晶度数据分析

Jade 专题讲座-结晶度计算 宽角X射线衍射数据结晶度分析 小木虫出品 Bloveocean原创 2007-3-27

宽角X射线衍射数据结晶度分析 1、调出数据及图。 2、平滑曲线:点击 “BG”,出窗口框。 ②下移“”,选“Line Fit”。 ③在“ooooooo”中点击右2位使呈“⊙”,即基本上 为照顾谱线两边位。 ④点击“Apply”。 ⑤调整基线使与谱线两边位相切: a、点击取消2个“√”,使仪器作非自动调节。 b、点击各“ ,在图上显示峰位,如未全部显示,用 1次,屏幕上显示文字:L-click to Move or Add, R-click to Erase;Ctrl Drag Up/Dn toAlter FWHM, Drag left/Right to skew. ③、键入无定形峰:pp的无定形峰因试样状态(历史)而略有不同,一般在16-17(2θ)之间, 故设定其2T=16.5o。 a、左手按住键盘上的“ctrl”键,右手按住鼠标左键,移动“+”至2T=16.5o处时放开按 键,在该处定位加入一个新峰。 b、用“↖”对准新加的峰位,左手按住键盘上的“ctrl”键,右手按住鼠标左键,上下 左右移动“”符号,至无定形峰左、右端与实验谱线在低、高θ(2T)端相切→放开 双键,完成无定形峰的初步设定。 ④、结晶峰分峰:右手按住鼠标左键,用“+”符点击各结晶峰中心线及适当高度,分出形、 高大约与原始峰相似的各独立新结晶峰。

⑤、用鼠标右击

8、点击“Print”打出报告。 * 每次“Refine”后应检查无定形峰状态:有时计算机会把低于16.5°峰高的小峰均改为无定形峰。应把除16.5°外的无定形峰认定标记点击除去(即消去列前的“√”),结晶度会自动更正。如此“Refine”至结晶度值稳定。消除多余的“√”后直接“Print”打出报告或者“copy” 报告即可。

聚合物密度和结晶度的测定

聚合物密度和结晶度的测定 聚合物密度和结晶度的测定一、实验目的 1. 掌握密度计测定聚合物密度和结晶度的基本原理。 2. 用密度计测定聚合物的密度,并由密度计算结晶度。二、实验原理 聚合物密度是聚合物物理性质的一个重要指标,是判断聚合物产物、指导成型加工和探索聚集态结构与性能之间关系的一个重要数据。对于结晶性聚合物,常用结晶度表征内部结构规则程度,而密度与结晶度有密切的关系。因此,可通过聚合物密度和结晶度的测定来研究结构状态,进而控制材料的性质。 密度天平利用阿基米德原理测定物质的密度,可测固体、液体、浮体、颗粒、粉末、粘稠体、海棉体,具有操作简单、直接的优点。 结晶性聚合物都是部分结晶的,即晶区和非晶区共存。而晶区和非晶区的密度不同。因此,同一聚合物由于结晶度不同,样品的密度不同。如采用两相结合模型,并假定比容(密度的倒数)具有加和性,即结晶性聚合物的比容等于晶区和非晶区比容的线性加和,则有: 111 (公式 1) ,,,f,1,fcc ,,, ca 式中,fc为结晶度,ρc为晶区密度,ρa为非晶区密度 则从测得的聚合物试样密度可计算出结晶度: ,,,,,,caf,,100%c (公式 2) ,,,,,,ca 三、实验仪器及试剂 实验仪器:密度天平(型号AND EK-300iD,产地:日本) 实验试剂:锡粒、聚氯乙烯板。高密度聚乙烯(粒料) 四、实验步骤

(一)聚合物密度测定: 1. 按电源键打开密度天平。 2. 观察密度天平的示数,若不为零,按“RE-ZERO”清零。 3. 将准备好的样品置于密度天平顶部称量处,示数稳定后按“SAMPLE”键。此时屏幕上端显示“LO”。 4. 将样品小心的置于密度天平内部,带示数稳定后按SAMPLE” 键。此时屏幕上端显示的数值即为样品的密度。 (二)结晶度的计算: 从文献查得: 聚乙烯的晶区密度、非晶区密度,根据公式 2 计算结晶度。 五、注意点 一定要熟读仪器说明书,没有疑问后,才开始操作仪器~~一,内容: a,通过密度天平测量三种物质的密度:锡粒(?99.9%)、矩形的PVC板、HDPE(粒料)。 b,通过液体比重天平测量参考液-----一次蒸馏水的密度。 c,密度的测量,至少测两次以上,后取平均值。 d,样品在空气中的质量、在参考液中的质量也要记录下来---------- 做实验报告时,根据实际测得的参考液密度,通过公式来计算出样品密度。 e, 矩形的PVC板可以用游标卡尺量出长、宽、高后,计算出体积,从而算出其密度。 二,仪器: (1)密度天平 a,我们实验室的密度天平是用来测量固体密度的--------虽然它可以固液两测,但我们并没有测量液体密度的配件。b,“上秤盘”指的是水槽的最上方的有机玻璃。 c,实验完成后,请将铁秤盘、铁网球用电吹风吹至干燥-----------

DSC测定结晶度

结晶度的测定 对于结晶聚合物,用DSC(DTA)测定其结晶熔融时,得到的熔融峰曲线和基线所包围的面积,可直接换算成热量。此热量是聚合物中结晶部分的熔融热△H f。聚合物熔融热与其结晶度成正比,结晶度越高,熔融热越大.如果已知某聚合物百分之百结晶时的熔融热为△H f*,那么部分结晶聚合物的结晶度θ可按下式计算: 式中θ为结晶度(单位用百分表示),△H f是试样的熔融热,△H f*为该聚合物结晶度达到100%时的熔融热. △H f可用DSC(DTA)测定,△H f*可用三个方法求得: (1)取100密结晶度的试样,用Dsc(DTA)测其溶融热,即AH2. (2)取一组已知结晶度的试样(其结晶度用其他方法测定,如用密度梯度法,X射线衍射法等),用DSC(DTA)测定其熔融热,作结晶度对熔融热的关系图,外推到结晶度为100%时,对应的熔融热△H f*.此法求得的高密度聚乙烯的△H f*=125.9 J/g,聚四氟乙烯的△ H f*=28.0J/g。 (3)采用一个模拟物的熔融热来代表△H f*.例如为了求聚乙烯的结晶度,可选择正三十二碳烷的熔融热作为完全结晶聚乙烯的熔融热,则 必须提出,测定时影响DSC(DTA)曲线的因素,除聚合物的组成和结内外,还有晶格缺陷、结晶变态共存、不同分子结晶的共存、混晶共存、再结晶、过热、热分解、氧化、吸湿以及热处理、力学作用等,为了得到正确的结果,应予分析. 利用等速降温结晶热△H c,还可计算结晶性线型均聚物的分子量.其计算依据一是过冷度(T m一T c),过冷度超大,结晶速率越快。二是分子量,在一定范围内,分子量越大,分子链的迁移越困难,结晶速率越慢.如用规定的降温速率使过冷度保持一定,则结晶速率就是某一试样在该速率下能结晶的量(以结晶时放出的热量表示).1973年T. Suwa等研究了聚四氟乙烯(PTFE)的结晶和焙融行为,发现聚合物熔体的结晶热与它的分子量密切相关,并求得聚四氟乙烯的数均分子量M n与结晶热△H c之间的关系为 试验的分子量范围在5.2×105—4.5×107之间.这一关系为不溶不熔的聚四氟乙烯分子量的测定提供了非常方便的方法. 70年代后,DSC的发展为用量热法研究结晶聚合物的等温结晶动力学创造了条件,因为结晶量可用放热量来记录,因此就可分析结晶速度. 描述等温下结晶总速率变化的动力学关系式是众所周知的A v r ami-Erofeev方程,即 式中θ为结晶度,z为结晶速率常数,t为结晶时间,n是表征成核及其生长方式的整数。如应用热响应快的DSC曲线,将熔融状态的试样冷却到熔点以下某个温度,并在恒温下测定其结晶速率,则dH/dt随时间变化的曲线如图1.44(a)所示.

测结晶度与晶粒尺寸

利用X 射线衍射仪测定涤纶长丝的结晶度及晶粒尺寸 一、实验目的 1、了解纤维样品的制样方法; 2、学会利用计算机分峰法计算涤纶长丝的结晶度及利用Scherrer 公式计算晶粒尺寸。 二、实验原理 1、结晶度计算公式及“分峰”原理 X 射线衍射法的理论依据是:由N 个原子所产生的总的相干散射强度是一个常数,而与这些原子相互间排列的有序程度无关。假设为两相结构,总相干散射强度等于晶区与非晶区相干散射强度之和。即 ds s I s ds S I s ds s I s a C )()()(222???+= (1) 式中I c 和I a 分别为晶相和非晶相的相干散射强度,设总原子数为N ,则 N=N c +N a ,N c 、N a 分别为晶相和非晶相的原子数,于是,结晶度Xc 等于: ???+=+=002202)()()(ds s I s ds s I s ds s I s N N N X a c c a C C C )(p q k kA A A qA pA pA a c c a c c =+=+= (2) 式中Ac 、Aa 分别为衍射曲线下,晶体衍射峰面积和无定形峰面积。p 、q 为各自的比例系数。在进行相对比较时也可以认为K=1,则: %100?+=a c c c A A A X (3) 因此,只要设法将衍射曲线下所包含的面积分离为晶区衍射贡献(A C )和非结晶区相干散射的贡献(A α),便可利用(3)式计算结晶度。上述过程常称之为“分峰”(即将结晶衍射峰与无定形衍射峰分开)。 2、Scherrer 公式计算晶粒尺寸 根据X 射线衍射理论,在晶粒尺寸小于100nm 时,随晶粒尺寸的变小衍射峰宽变化得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸

实验 密度梯度管法测定聚合物的密度和结晶度

实验 密度梯度管法测定聚合物的密度和结晶度 密度梯度法是测定聚合物密度的方法之一。聚合物的密度是聚合物的重要参数。聚合物结晶过程中密度变化的测定,可研究结晶度和结晶速率;拉伸、退火可以改变取向度和结晶度,也可通过密度来进行研究;对许多结晶性聚合物其结晶度的大小对聚合物的性能、加工条件选择及应用都有很大影响。聚合物的结晶度的测定方法虽有X 射线衍射法、红外吸收光谱法、核磁共振法、差热分析、反相色谱等等,但都要使用复杂的仪器设备。而用密度梯度管法从测得的密度换算到结晶度,既简单易行又较为准确。而且它能同时测定一定范围内多个不同密度的样品,尤其对很小的样品或是密度改变极小的一组样品,需要高灵敏的测定方法来观察其密度改变,此法既方便又灵敏。 一、实验目的: 1.掌握用密度梯度法测定聚合物密度、结晶度的基本原理和方法。 2.利用文献上某些结晶性聚合物PE 和PP 晶区和非晶区的密度数据,计算结晶度。 二、基本原理: 由于高分子结构的不均一性,大分子内摩擦的阻碍等原因,聚合物的结晶总是不完善的,而是晶相与非晶相共存的两相结构,结晶度f w 即表征聚合物样品中晶区部分重量占全部重量的百分数: 在结晶聚合物中(如PP 、PE 等),晶相结构排列规则,堆砌紧密,因而密度大;而非晶结构排列无序,堆砌松散,密度小。所以,晶区与非晶区以不同比例两相共存的聚合物,结晶度的差别反映了密度的差别。测定聚合物样品的密度,便可求出聚合物的结晶度。 密度梯度法测定结晶度的原理就是在此基础上,利用聚合物比容的线性加和关 系,即聚合物的比容是晶区部分比容与无定形部分比容之和。聚合物的比容V 和结晶度w f 有如下关系: ()1c w a w V V f V f =+- --------------------------------- (2) 式中c V 为样品中结晶区比容,可以从X 光衍射分析所得的晶胞参数计算求得; a V 为样品中无定形区的比容,可以用膨胀计测定不同温度时该聚合物熔体的比

第九章 聚合物材料结晶度

第九章聚合物材料结晶度 聚合物系部分结晶或非晶. 前者如PE、PET、PP等,后者如无规立构PS、PMMA等,部分结晶聚合物习惯上称为结晶聚合物. 结晶度是表征聚合物材料的一个重要参数,它与聚合物许多重要性质有直接关系. 随着聚合物材料被日益广泛应用,准确测定聚合物结晶度这个重要参数越来越受到人们的重视. 目前在各种测定结晶度的方法中, X射线衍射法被公认具有明确意义并且应用最广泛. 本文将重点介绍此方法. §9.1 结晶聚合物结构模型 §9.1.1 樱状胶束模型 对结晶聚合物分子链在晶体中的形态,早期用“经典两相模型”—樱状胶束模型(fringed micelle model)(图9.1)解释. 这个模型的特点是结晶的聚合物分子链段主要属于不同晶体,即一个分子链可以同时穿过若干个晶区和非晶区,分子链在晶区中互相平行排列,在非晶区相互缠结卷曲无规排列. 这个模型似乎解释了早期许多实验结果,受到高分子科学工作者近30年的偏爱. 图9.1 结晶聚合物樱状胶束模型 §9.1.2 插线板模型 60年代初Flory等提出“插线板”模型(Switchboard model),与Keller等的邻位规则折叠模型(图9.2(a))相比,此模型主要特点是组成片晶的杆(Stem)为无规连接. 即从一个片晶出来的分子链,并不在其邻位处回折到同一片晶,而是在非邻位以无规方式再折回,也可能进入另一片晶(图9.2(b)).

(a) (b) 图9.2 结晶聚合物分子链折叠模型 (a) 邻位规则折叠(b) 非邻位无规折叠 §9.1.3 结晶-非晶中间层 随着对聚合物结晶结构研究的深入,“两相模型”结构已不能满意解释聚合物的结晶结构,已证明在PE的晶区与非晶区间存在一个过渡区(transition zone),或称中间层(中间相)(interphase)(图9.3). 不久前Flory等从统计力学出发,将晶格理论应用到高分子界面,指出半结晶聚合物片层间存在一个结晶—非晶中间相(Crystal-amorphous interphase).中间相的性质既不同于晶相,也不同于非晶相(各向同性),即高聚物结晶形态由三个区域组成: 片层状三维有序区、非晶区、中间层(过渡层). 有关结晶聚合物中间层研究的进展, 笔者已有研究报道及综述. (喻龙宝, 张宏放, 莫志深. 功能高分子学报, 1997, 10(1): 90-101) 图9.3 结晶聚合物结晶-非结晶中间层示意图 综上所述, 无论经典樱状胶束还是折叠链模型, 都忽略中间层的存在, 把结晶聚合物视为晶相及非晶相“两相”组成. “两相模型”理论是测定聚合物结晶度的理论基础. §9.2 结晶度概念 结晶度是表征聚合物材料,结晶与非晶在质量分数或体积分数大小的直观数值. IUPAC(1988) 推荐用W c,α表示质量分数结晶度, c,α表示体积分数结晶度. 为区别不同方法测得的结晶度,

材料密度的测定及结晶度计算

材料密度的测定及结晶度计算 一、实验目的 1.掌握用密度梯度法测定聚合物密度,结晶度的基本原理和方法。 2.利用文献上某些结晶性聚合物如PE 和PP 晶区和非晶区的密度数据,计算结晶度。 二、基本原理 由于高分子结构的不均一性,大分子内摩擦的阻碍等原因,聚合物的结晶总是不完善的,而是晶相与非晶相共存的两相结构,可用结晶度(w f )来表示,即表征聚合物样品中晶区部分重量占全部重量的百分数。 在结晶聚合物中(如PP 、PE 等)晶相结构排列规则,堆砌紧密,因而密度大;而非晶结构排列无序,堆砌松散,密度小。所以晶区与非晶区以不同比例两相共存的聚合物,结晶度的差别反映了密度的差别。测定聚合物样品的密度,便可求出聚合物的结晶度,利用聚合物比容的线性加和关系,即聚合物的比容V 是晶区部分比容w V 与无定形部分比容Va 之和,聚合物的比容和结晶度有如下关系: )1(w a w w f V f V V -+= 根据上式,比容为密度的倒数,因此样品的结晶度可按下式计算: ()a w w w f f ρρρ-+=11 这里w ρ为被测聚合物完全结晶(即100%结晶)时的密度,a ρ为无定形时的密度,从测得聚合物试样的密度ρ可算出结晶度w f 。 密度梯度法是测定聚合物密度的方法之一,将两种密度不同,又能互相混溶的液体置于管筒状玻璃容器中,高密度液体在下,低密度液体轻轻沿壁倒入,由于液体分子的扩散作用,使两种液体界面被适当地混合,达到扩散平衡,形成密度从上至下逐渐增大,并呈现连续的线性分布的液柱,俗称密度梯度管。将已知准确密度的玻璃小球投入管中,标定液柱密度的分布,以小球密度对其在液柱中的高度作图,得到玻璃管高度—密度标准曲线。向管中投入被测试样后,试样下沉至与其密度相等的位置就悬浮着,测试试样在管中的高度后,由高度—密度直线关系求出试样的密度。 三、仪器与试剂

聚合物密度和结晶度的测定

聚合物密度和结晶度的测定 一、实验目的 1. 掌握密度计测定聚合物密度和结晶度的基本原理。 2. 用密度计测定聚合物的密度,并由密度计算结晶度。 二、实验原理 聚合物密度是聚合物物理性质的一个重要指标,是判断聚合物产物、指导成型加工和探索聚集态结构与性能之间关系的一个重要数据。对于结晶性聚合物,常用结晶度表征内部结构规则程度,而密度与结晶度有密切的关系。因此,可通过聚合物密度和结晶度的测定来研究结构状态,进而控制材料的性质。 密度天平利用阿基米德原理测定物质的密度,可测固体、液体、浮体、颗粒、粉末、粘稠体、海棉体,具有操作简单、直接的优点。 结晶性聚合物都是部分结晶的,即晶区和非晶区共存。而晶区和非晶区的密度不同。因此,同一聚合物由于结晶度不同,样品的密度不同。如采用两相结合模型,并假定比容(密度的倒数)具有加和性,即结晶性聚合物的比容等于晶区和非晶区比容的线性加和,则有:(公式1) 式中,fc为结晶度,ρc为晶区密度,ρa为非晶区密度 则从测得的聚合物试样密度可计算出结晶度: (公式2) 三、实验仪器及试剂 实验仪器:密度天平(型号AND EK-300iD,产地:日本) 实验试剂:锡粒、聚氯乙烯板。高密度聚乙烯(粒料) 四、实验步骤 (一)聚合物密度测定: 1. 按电源键打开密度天平。 2. 观察密度天平的示数,若不为零,按“RE-ZERO”清零。 3. 将准备好的样品置于密度天平顶部称量处,示数稳定后按“SAMPLE”键。此时屏幕上端显示“LO”。 4. 将样品小心的置于密度天平内部,带示数稳定后按SAMPLE”键。此时屏幕上端显示的数值即为样品的密度。 (二)结晶度的计算: 从文献查得:聚乙烯的晶区密度、非晶区密度,根据公式2 计算结晶度。 五、注意点 一定要熟读仪器说明书,没有疑问后,才开始操作仪器!! 内容: a,通过密度天平测量三种物质的密度:锡粒(≥99.9%)、矩形的PVC板、HDPE(粒料)。b,通过液体比重天平测量参考液-----一次蒸馏水的密度。 c,密度的测量,至少测两次以上,后取平均值。 d,样品在空气中的质量、在参考液中的质量也要记录下来----------做实验报告时,根据实际测得的参考液密度,通过公式来计算出样品密度。 e, 矩形的PVC板可以用游标卡尺量出长、宽、高后,计算出体积,从而算出其密度。 二,仪器:

结晶度和取向度

结晶度和取向度 ——X射线衍射分析 东华大学分析测试中心,朱育平 一.结晶度 结晶度是表征聚合物材料的一个重要参数,它与聚合物许多重要性能有直接关系。为了研究聚合物材料结构与性能的关系,准确测定聚合物这个参数越来越受到人们的重视。目前在各种测定结晶度的方法中,人们已公认用X射线衍射法测定的结晶度具有明确的物理意义。自分峰程序问世以来,人们就把分峰方法广泛用于计算结晶度。尤其是Jade软件中的分峰程序使用非常方便,使X射线衍射法计算结晶度更为快捷和普遍。 1.1结晶度的定义 图1.1是SiO2的X射线衍射谱图,图中呈现一个个尖锐的衍射峰,这是典型的多晶体物质结晶完善的X射线衍射谱图。那么,非晶物质的X射线衍射谱图是怎样的图形呢?请看图1.2,此图是玻璃的X射线衍射谱图,玻璃基本上完全是非晶,其组成也是SiO2。从图1.2可以看到:非晶物质的X射线衍射谱图并不是一根直线,而是呈现一个很宽的峰,称作非晶峰,由于其形如鼓包,因此又常常称作“非晶包”。非晶峰的特征是:(1)峰弱而宽;(2)峰的中心一般在15~25?之间;(3)峰的分布无规则,并且有的非晶物质在40~50?之间还存在一个很小的二级非晶峰。 对于有的非晶物质或半结晶物质在小角(8?以下)处,曲线还呈现向上翘,并且背景散射较高(见图1.2中基线以下部分,称作背景散射),这是由非晶相和晶相内微小电子密度涨落产生的热漫散射引起的。

图1.1 结晶SiO2的X射线衍射谱图图1.2 非晶SiO2的X射线衍射谱图由图1.1和图1.2可以看到:对于同一种物质,不论是晶体还是非晶体,对X射线的总散射强度是一常数。也就是说,完全非晶的散射峰积分强度∑a I与完全结晶的总衍射峰积分强度∑c I是相等的,即 ∑a I=∑c I(1)图1.3是聚乙烯随温度的变化。在常温(27℃)时(见图a),聚乙烯是半结晶物质,图中呈现几个明锐的衍射峰,非晶峰(图中用虚线显示)较小,说明结晶度较高。随着温度升高,衍射峰逐渐变弱,非晶峰逐渐增大,表明晶相在试样中的比例越来越小,结晶度随温度升高而降低。至120℃时(见图d), 聚乙烯成为完全的非晶体,衍射峰消失,仅出现一个非晶峰。聚乙烯非晶峰的形状也是如此:(1)峰弱而宽;(2)峰的中心在18?左右;(3)峰的分布无规则,在40~50?之间存在一个二级非晶峰。由图a~图d可以看到,每个图所有峰的积分面积是相等的。从而进一步表明:对于同一种物质,结晶和非晶共存时,不管结晶或非晶的数量比多少,对X射线的总散射强度是一常数。

结晶度测试方法及研究意义

结晶度测试方法及研究意义 郑 浩 武汉科技大学材料与冶金学院 金材系 学号:201102710056 摘要:本文主要对结晶度的定义进行了概括,总结了目前用于计算聚合物结晶度的常用方法,包括:差示扫描量热法;广角X 衍射法;密度法;红外光谱法;反气相色谱法等,并且对这些方法进行了对比分析,最后对研究聚合物结晶度的意义进行了总结。 关键词:结晶度; 测试方法; 研究意义 引言 结晶度时表征聚合物性质的重要参数,聚合物的一些物理性能和机械性能与其结晶度 有着密切的关系。结晶度愈大,尺寸稳定性愈好,其强度、硬度、刚度愈高;同时耐热性和耐化学性也愈好,但与链运动有关的性能如弹性、断裂伸长、抗冲击强度、溶胀度等降低。因而高分子材料结晶度的准确测定和描述对认识这种材料是很关键的。所以有必要对各种测试结晶度的方法做一总结和对比[1]。 1.结晶度定义 结晶就是指材料中的原子、离子或分子按一定的空间次序排列形成长程有序的过程。结 晶度就是材料中结晶部分含量的量度,通常以重量百分数c w f 或体积分数v c f 。 %100?+=Wa Wc Wc c w f %100?+=Va Vc Vc c w f 上式中,W 表示重量,V 表示体积,下标c 表示结晶,a 表示非晶。 结晶度的概念虽然沿用了很久,但是由于高聚物的晶区与非晶区的界限不明确:在一个样品中,实际上同时存在着不同程度的有序状态,这自然要给准确确定结晶部分的含量带来了困难,由于各种测试结晶度的方法涉及不同的有序状态,或者说,各种方法对晶区和非

晶区的理解不同,有时甚至会有很大出入。下表给出了用不同方法测得的结晶度数据,可以看到,不同方法得到的数据的差别超过测量的误差。因此,指出某种聚合物的结晶度时,通常必须具体说明测量方法。 表1.1用不同方法测得的结晶度比较 结晶度(%)方法纤维素(棉 花) 未拉伸涤纶拉伸过的涤 纶 低压聚乙烯高压聚乙烯 密度法60 20 20 77 55 X射线衍射法80 29 2 78 57 红外光谱法-- 61 59 76 53 水解法93 -- -- -- -- 甲酰化法87 -- -- -- -- 氘交换法56 -- -- -- -- 由表1.1我们可以清楚的看到采用不同方法测试所得结晶度的差异。我们有必要对各种测试方法进行分析比较,以便得到各种测试方法的优势与不足,在测试材料结晶度的过程中选择合适的测试方法以减小误差[2]。 2. 结晶度测试方法 目前测试材料结晶度的方法主要有四种:1)差示扫描量热法(DSC);2)广角X衍射法( WAXD);3)密度法;4红外光谱法(IR)。除了以上四种方法之外,还可以通过反气相色谱法(IGC)来测试聚合物的结晶度。此外,还有一些间接地方法,如上表中的水解法,甲酰化法等,一般是基于晶像和非晶相中发生化学反应或物理变化的差别来进行测量。下面将分别介绍这几种测试方法的工作原理及优缺点。 2.1差示扫描量热法 2.1.1测试原理 差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。 结晶聚合物熔融时会放热,DSC测定其结晶熔融时,得到的熔融峰曲线和基线所包围

结晶度求解

实验二 结晶度求解(上)(3学时) 实训原理: 结晶度可以描述为结晶的完整程度或者完全程度。这里包含两层意思,一是结晶的完全度。物质从完全非晶体转变为晶体的过程是连续变化的过程。理想的晶体产生衍射,理想的非晶体产生非相干散射。试样中晶体是绝大多数的,衍射增强而非相干散射减弱,结晶度高;反之结晶度低。另一层意思是结晶的完整度。畸变的结晶将导致本应产生的衍射变为不同程度的弥散散射。结晶完整的晶体,晶粒尺寸较大,内部质点排列比较规则,衍射峰高,尖锐且对称,衍射峰的半高宽接近于仪器测量的宽度。结晶度差的晶体,往往是晶粒过于细小,晶体位错等缺陷,使衍射峰宽而且弥散结晶度较差,衍射能力减弱,衍射峰宽,直到消失在背景当中。 对结晶聚合物分子链在晶体中的形态,早期用“经典两相模型”—樱状胶束模型(fringed micelle model)解释. 这个模型的特点是结晶的聚合物分子链段主要属于不同晶体,即一个分子链可以同时穿过若干个晶区和非晶区,分子链在晶区中互相平行排列,在非晶区相互缠结卷曲无规排列. 这个模型似乎解释了早期许多实验结果,受到高分子科学工作者近30偏爱。 结晶度是表征聚合物材料,结晶与非晶在质量分数或体积分数大小的直观数值。 用X射线衍射方法测得的结晶度,用xcW,表示,xcW,用下式求得 中cI及aI分别为在适当角度范围内的晶相及非晶相散射积分强度;xK系校正常数; 若样存在各向异性,样品必须适当被消除取向,求取平均倒易空间的衍射强度. 教学要求:

1、结晶度计算公式的学习 2、结晶度求解 重点: 结晶度求解(下)(3学时) 实训原理: 打开菜单Report-Peak Profile Report 命令,计算衍射峰的面积。 读入实验排品的衍射谱,选定同样的拟合范围,不作平滑处理选择同样的背景。

密度测结晶度

实验2 密度法测定聚合物结晶度 一.实验目的 1.学习密度法测定聚合物结晶度的原理和方法。 2.区别和理解用体积百分数和重量百分数表示的结晶度。 2.掌握比重瓶的正确使用方法。 二.实验原理 在聚合物的聚集态结构中,分子链排列的有序状态不同,其密度就不同。有序程度愈高,分子堆积愈紧密,聚合物密度就愈大,或者说比容愈小。聚合物在结晶时,分子链在晶体中作有序密堆积,使晶区的密度c ρ高于非晶区的密度a ρ。如果采用两相结构模型,即假定结晶聚合物由晶区和非晶区两部分组成,且聚合物晶区密度与非晶区密度具有线性加和性,则: a V c c V c f f ρρρ)1(?+= (23-1) 进而可得: a c a V c f ρρρρ??= (23-2) 若假定晶区和非晶区的比容具有加和性,则: a W c c W c f f υυυ)1(?+= (23-3) 得: c a a c a a W c f ρρρ ρυυυυ111 1 ?? =??= (23-4) 式中:

ρ,c ρ,a ρ分别为聚合物、晶区和非晶区的密度; υ,c υ,a υ分别为聚合物、晶区和非晶区的比容; V c f :用体积百分数表示的结晶度; W c f :用重量百分数表示的结晶度。 由式(23-3)和式(23-4)可知,若已知聚合物试样完全结晶体的密度c ρ和聚合物试样完全非结晶体的密度a ρ,只要测定聚合物试样的密度ρ,即可求得其结晶度。 本实验采用悬浮法,测定聚合物试样的密度,即在恒温条件下,在加有聚合物试样的试管中,调节能完全互溶的两种液体的比例,待聚合物试样不沉也不浮,而是悬浮在混合液体中部时,根据阿基米德定律可知,此时混合液体的密度与聚合物试样的密度相等,用比重瓶测定该混合液体的密度,即可得聚合物试样的密度。 三.仪器和试剂 1.25 ml 比重瓶一只;50ml 试管一支;玻璃搅拌棒一根; 滴管2支;卷筒纸和电子天平。 2.聚乙烯试样A (粒状);聚乙烯试样B (片装);蒸馏水;95%乙醇(CP )。 四.准备工作 1.筛选聚合物试样。 2.洗净并烘干比重瓶。 3.开启电子天平预热。 (为了节约时间,以上准备工作可由指导教师事先做好) 五.实验步骤 1.在试管中加入95%乙醇15ml ,然后加入一至二粒聚乙烯试样,用滴管加入蒸馏水,同时上下搅拌,使液体混合均匀,直至样品不沉也不浮,悬浮在混合液中部,保持数分钟,此时混合液体的密度即为该聚合物样品的密度。试验装置如图23-1所示。 2.混合液体密度的测定。先用电子天平称得干燥的空比重瓶的重量(图23-2为 0W

用TOPAS计算结晶度

用TOPAS计算”730.raw”的结晶度 Xiaodong (Tony) Wang (仪器信息网iangie) Centre of Material Research, Curtin University, Perth, WA 6150, Australia 用TOPAS计算结晶度: 计算结晶度要求至少定义两个相分别描述来自样品中晶相和无定形相的强度贡献. Peaks Phases(峰相)(单线拟合), hkl Phases(晶胞相)(Pawley拟合或者Le Bail拟合), Structures(晶体结构)(Rietveld精修)可以任意地组合使用. 描述晶相或者非晶相的"相(phase)"的个数不受限制. 1.载入raw数据 根据用户仪器的不同,在Emission Profile项目上选择对应的XRD光管的光源峰形.在本例中只选用CuKα线.(精确的拟合要求用户清楚是否使用Ni滤片,是否使用入射束单色器.) 如下图所示: 2.由于计算结晶度要求非晶馒头峰的面积准确.在背景(Background)一栏只用一阶Chebychev多项式模拟背景. 低角 高背景用1/x函数拟合. 如下图所示:

3.按F3 F4, 调出插峰对话框和GUI(界面模式)选项对话框, 首先拟合非晶馒头峰, 在馒头粉的最高点插入PV(pseudo Voigt)峰形的峰.将此峰相(Peaks Phases)命名为"amorphous". (可以重命名为任意字符串,这里只是标记此峰代表无定形相). F6拟合. 无定形峰应该拟合得很好. 如下二图所示:

4. 再插入晶相峰. 在"730a.raw"这个谱(range)上右击, 添加峰相(peaks phase), 重命名为"crystalline". 选中该峰相成 高亮状态, 在每个晶相峰最高点插入PV 峰形的峰(如果仪器基本几何参数已知的话, 可以使用Fundamental parameter 峰形的峰, 此功能能够精确计算峰形, 不在本例中展示), 按F6拟合. 全谱都应该拟合得很好.

相关主题
文本预览
相关文档 最新文档