当前位置:文档之家› 列车类型、线路坡度、最小曲线半径与设计速度的关系

列车类型、线路坡度、最小曲线半径与设计速度的关系

各级公路设计参数.

各等级设计参数表 各级公路设计平曲线长度不宜过短,从线形设计要求方面考虑,曲线长度按最小值的5-8倍即1 000-1 500m较适宜,故本次修订列出平曲线最小长度的“一般值”,取“最小值”长度的3倍。 平面设计中采用小转角、大半径圆曲线一般均属条件限制不得已而为之。小转角设置大半径圆曲线系曲线长度规定所致,否则路容将出现扭折,还会引起曲率看上去比实际大得多的错觉。鉴于小转角的不利的一面,对其使用还存在不同的看法,并把7°-10°转角亦归于小转角之列,要求少用。 以7°作为引起驾驶者错觉的临界角度也只是一种经验值,因为通过选择合适的圆曲线半径,或设置足够的长度的曲线可以改善视觉效果,这才提出小转角的最小曲线长度的限制问题。 驾驶者在大半径圆曲线上行驶时,方向盘几乎与直线上一样无须调整。当圆曲线半径大于9 000m时,视线集中的300-600m范围内的视觉效果同直线没有区别,因此圆曲线半径不宜过大。 回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于0.3%,即1/330。 仅规定“直线的长度不宜过长”,给设计人员留下空间去作分析、判断,以使设计更加符合实际。 如日本、德国规定直线最大长度不宜超过设计速度的20倍,即

72s行程;西班牙规定不宜超过80%的设计速度的90s行程;法国认为长直线宜采用半径5000m以上的圆曲线代替; 《标准》(2003)规定的圆曲线最小半径“极限值”系在超高最大值为8%时经计算调整的取值。 (1)回旋线长度最小按3s行程计。 (2)小圆曲线的回旋线内移值按行驶力学上要求的小于10cm 计。 本规范规定复曲线间回旋线的省略,以设缓和曲线两圆位移差小于0.10m为条件。理由是从一个圆曲线过渡到另一个圆曲线,驾驶者在方向盘操作上,比从直线过渡到圆曲线困难;设计速度大于或等于80km/h时,大圆半径与小圆半径之比,仍规定小于1.5时可省略回旋线,较澳大利亚推荐的半径比1.3有所提高。理由是只要满足半径比小于1.5,即能保证内移差不超过0.10m,同时半径比加大有利于复曲线半径组合的选择。 根据为修订《标准》(97)而立项的《公路横向力系数》专题研究结论,并参考美国及澳大利亚的经验,本规范规定高速公路、一级公路最大超高值为8%和10%,正常情况下采用8%;对设计速度高,或经验算运行速度高的路段宜采用10%。二、三、四级公路限定最大超高为8%是适宜的。但对于积雪冰冻地区,考虑我国以货车为主的特点,限定最大超高为6%比较安全。 回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于

浅谈高速公路隧道极限平曲线半径确定方法

文章编号:1009 6825(2010)29 0323 03 浅谈高速公路隧道极限平曲线半径确定方法 收稿日期:2010 06 27 作者简介:邓文龙(1980 ),男,工程师,安徽省交通规划设计研究院,安徽合肥 230088 毛洪强(1972 ),男,教授级高级工程师,安徽省交通规划设计研究院,安徽合肥 230088 邓文龙 毛洪强 摘 要:结合 公路隧道设计规范 ,从隧道结构特点和洞内行车瞬时环境入手,基于停车视距推导出了满足规范要求的最小平曲线半径,并进而推导出了经修正后的基于安全停车视距的平曲线极限半径,以期指导高速公路隧道设计和施工。关键词:隧道,停车视距,最小曲线半径中图分类号:U 452.2 文献标识码:A 1 问题的提出 公路隧道设计规范 中对公路停车视距作出了明确的规定,其中所采用的安全停车视距,与普通路基的停车视距是一致的。由于隧道内轮廓的限制,洞内的横净距(视点至洞壁或检修道等障碍物的距离)远小于普通路基的横净距值。考虑这些因素,结合隧道横断面组成,深入研究隧道内安全停车视距的确定方法是非常必要的,它是确定隧道平面线形最小安全半径的前提。 公路隧道设计规范 规定隧道不宜设有超高的平曲线,不应设需加宽的平曲线,限制隧道内最大超高不宜大于4%,并由此可以推导出隧道满足最大超高4%时的最小平曲线半径。这个半径是控制隧道平曲线半径的一个极限控制值。但是,隧道平曲线的最小半径究竟受安全停车视距控制,还是受4%最大超高控制,为弄清这个问题,分别基于以上两个出发点,确定隧道内最小平曲线半径并加以比较就显得相当必要了。 2 基于隧道内安全停车视距的最小平曲线半径2.1 隧道安全停车视距 足够的视距和清晰的视野是增强驾车者安全感和舒适感,绕避障碍物或制动停车的先决条件,是保证线形安全的关键因素。紧起倒角下部翻浆,致使该处混凝土质量差,易出现麻面、露筋等现象,振捣时要特别注意。 为减小混凝土的离析,在施工中应注意以下几项:1)选择混凝土配合比时,应选择混凝土试配强度高、和易性好、适于长距离泵送的理论配合比。2)混凝土浇筑时应根据现场实际情况及时调整混凝土的用水量,避免出现混凝土坍落度过大或过小。3)浇筑箱梁底板时,可将混凝土输送管绕过块段端头,直接将混凝土送至底板。4)腹板混凝土应分层浇筑,每层厚度为20cm ~40cm 。在浇筑时,混凝土输送管应平放于钢筋上,并不断移动输送管。 3.3 桥梁线型控制 1)为了精确确定待浇筑块段挂篮立模标高,必须计算出以下 几组数据(详细计算及控制方法):a.块段设计标高;b.施工段及以后浇筑的各块段对该点的挠度影响值,该计算值应在实测后进行修正;c.施工段顶板纵向预应力束张拉后对该点挠度影响值,该计算值应在实测后进行修正;d.挂篮的弹性变形对该施工段的影响值,此值可加载试压得出;e.混凝土收缩和徐变、恒载及活载、结构体系转换等产生的挠度计算值。 2)为了准确掌握每块段的各自计算值的修正值,在悬臂施工过程中要完成以下几方面工作:a.计算出箱梁块段各截面的预留拱度值。b.加强现场测量及量测。在箱梁顶板布设测点,并分别在混凝土浇筑前、预应力张拉前、预应力张拉后观测各截面处标 高变化。c.根据梁段实际发生的挠度,并对照理论计算值,对各挠度影响计算值进行修正。d.为了尽量减少温度变化对箱梁施工的影响,挠度观测安排在一天中温度相对变化小的时间进行。 4 悬臂浇筑混凝土施工技术要点 1)挂篮安装、试压、走行和拆卸必须遵循同 T 构 两端对称的原则。2)经常检查挂篮悬吊系统、锚固系统及走行系统的连接情况,挂篮每次就位后必须进行全面安全检查并办理签证后方能进入下道工序施工。3)保持 T 构 两端的平衡稳定, T 构 两端块段浇筑混凝土进度要同步,最大混凝土量差严格控制在设计要求以内。 T 构 上材料、机具等施工荷载的堆放尽量靠近初始块段。一侧不平衡重量不得大于设计要求。4)施工时应在挂篮处设置风雨篷,避免混凝土因日晒雨淋影响质量,冬季施工应注意保温。5)5级以上风时,不得移动挂篮,也不得进行悬臂块段混凝土的浇筑作业,并将挂篮固定于已浇的梁段上。参考文献: [1] 张继尧,王昌将.悬臂浇筑预应力混凝土连续梁桥[M ].北 京:人民交通出版社,2004.[2] 雷俊卿.桥梁悬臂施工与设计[M ].北京:人民交通出版社, 2000.[3] 韩红春.悬臂浇筑混凝土连续梁施工技术[J].四川建筑, 2008(1):95 96. Exploration on the technology of cantilever site cast construction in bridge engineering WANG Gen Abstract:T his paper intr oduces the application o f cantilever hanging basket in t he cantilever site cast const ruction of bridge eng ineering,clari fies its structur e form,and analyzes the cantilever co nstruct ion pr ocess and construction technique,with a view to prov ide guidance for similar bridge engineer ing construction. Key words:bridge engineer ing ,cantilever hanging basket,concr ete co nstruct ion 323 第36卷第29期2010年10月 山西建筑SHANXI ARCH ITECTURE Vol.36No.29Oct. 2010

小半径曲线梁桥的设计选型与结构分析

小半径曲线梁桥的设计选型与结构分析 随着社会经济的发展和人们对景观的要求不断提升,城市中大量涌现出具有景观要求的桥梁。但在受到城市交通功能和地形条件的限制时,时常会出现小半径的曲线桥梁。这种小半径的曲线桥梁具有斜、弯、异形等特点,给桥梁设计和构造处理造成很大困难。文章结合中山小榄镇某小区内车辆专用桥的设计,对小半径曲线梁桥的设计选型及结构分析进行探讨。 标签:Midas/Civil;小半径曲线梁桥;设计选型;结构分析 1 工程概述 本工程位于中山市小榄镇一新建小区内,供小区车辆进出车库专用,沿线跨越三条河涌。由于前期建设方已委托进行景观专业设计,按照景观设计要求,进行桥梁结构设计。同时根据现场地形条件、施工技术拟定桥梁方案。桥梁全长219m,跨径多处于20m左右,全桥4联(21.088+18.521)+(17.994+17.225)+(环岛:16.062+7.172+9.671+9.335+12.379)+(20.387+19.980)m。共桥梁全宽8.5m,其中环岛处最小曲线半径R=15.7m。桥梁上部结构采用现浇钢筋混凝土,下部采用桩柱式桥墩、埋置式桥台、钻孔灌注桩基础。全桥平面图如下所示。 上部结构箱梁横断面采用单箱双室,梁高140cm,箱梁顶宽830cm,两端悬臂各设10cm后浇段同护栏一起浇筑,底宽730cm,翼缘板悬臂长度100cm。顶板等厚20cm。底板厚度为40cm~20cm,腹板厚度60~40cm,横断面如下图所示: 2 计算参数 2.1 设计标准 设计荷载:城-B级; 温度荷载:结构体系温差±25度,梯度温度按照规范沥青铺装指标加载。 桥面净宽:7.5m。 设计车速:40km/h 2.2 主要材料及计算参数 3 结构选型与计算分析 运用Midas/Civil软件,对结构各联均建立模型进行分析,尤其是第3联环岛,最小半径仅有17.5m,常规做法很难满足抗扭承载力要求,必须通过计算通

汽车列车转向轮迹重合控制原理研究_唐岚

第27卷 第10期 2005年10月武 汉 理 工 大 学 学 报J OURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vo l .27 N o .10 Oct .2005 汽车列车转向轮迹重合控制原理研究 唐 岚,黄海波,邱小平 (西华大学交通与汽车工程学院,成都610039) 摘 要: 提出了全挂车跟踪牵引车而达到汽车列车轮迹重合的转向特性控制方案———轨迹再现,即先通过已知的牵引车转角数据和位移数据进行轨迹再现,然后用获得的轨迹数据来控制挂车的转向行驶,利用计算机进行仿真和模型试验,得到了预期的转向轮迹重合特性。 关键词: 汽车列车; 轮迹重合; 仿真; 模型试验 中图分类号: U 461.1文献标志码: A 文章编号:1671-4431(2005)10-0063-04 The Control Principle of Overlap Traced the Track of the Road Train TANG Lan ,HU ANG Hai -bo ,QIU Xiao -ping (School of T raffic and Automobile Engineering ,Xihua U niversity ,Chengdu 610039,China ) Abstract : In this paper the control principle of overlap traced the track of steer tire of the train was described . T he steering characteristics o f the full trailer were obtained by traced the track of the motor tractor .T he principle w as the road reappearance .Firstly ,the road reappearance w as obtained by the data already known of turning angle and displacement of the motor tracto r .Secondly the turning drive of the trailer w as g otten by the abo ve data .T he overlap peculiarity of the track of the steer tire of the train was obtained by model simulation and simulation on computer . Key words : train ;  overlap of the track ; simulation ; model simulation 收稿日期:2005-07-25. 基金项目:四川省科技厅应用基础研究经费资助(9713568).作者简介:唐 岚(1963-),女,副教授.E -mail :cs5765@https://www.doczj.com/doc/d39050370.html, 1 问题的提出 随着公路质量的不断提高,尤其在高等级公路大量建成之后,汽车列车运输以最佳的运输效益以及对长大笨重件、集装件、超长大笨重件的良好适应性,吸引着世界各地汽车制造业和汽车运输业竞相发展汽车列车运输。我国高速公路网的相继建成,为集装箱汽车列车运输提供了快速、直达的陆路运输条件。大力发展汽车列车运输,正作为挖掘汽车技术潜力、降低运输成本、提高运输效率和改善经济效益的重要途径。因此,从提高汽车列车主动安全性的角度出发,开发一种具有轮迹重合特性的高 机动性要求的汽车列车转向机构,提高汽车列车在狭窄弯曲路段上改变方向 或绕过障碍物的能力,在车站、货场、码头集装箱或大宗货物场内中转运输的 机动性和通过性,具有十分现实的意义。 评价汽车列车机动性的2个重要指标是最小转弯直径D min 和最大通道 宽度A max [1]。D min 是指汽车列车转向时,当内轮转到极限位置时,外侧车轮

桥梁工程中小半径曲线梁桥设计要点

桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。 关键词:桥梁工程;小半径曲线梁桥;设计要点 中图分类号:[tu997]文献标识码:a 文章编号: abstract: along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the bridges take the form of a curve type structure. the structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder bridges is more. this paper is small radius of the problem of the curved girder bridges related instructions, and these problems thoroughly discussed and the focus on the design to

公路平曲线超高计算

平曲线超高 一、超高及其作用 当汽车在弯道上行驶时,要受到离心力的作用,横向力是引起汽车不稳定行驶的主要因素。所以在平曲线设计时,常将弯道外侧边道抬高,构成与内侧车道同坡度的单向坡,这种设置称为平曲线超高。其作用是为了使汽车在圆曲线上行驶时能获得一个指向内侧的横向分力,用以克服离心力,减少横向力,从而保证汽车行驶的稳定性及乘客的舒适性。 二、超高横坡度的确定 超高横坡度的大小与公路等级、平曲线半径及公路所处的环境、自然条件、路面类型、车辆组成等因素有关。 超高横坡度可按下式计算: 即横向力系数的取值,主要考虑设置超高后抵消离心力的剩余横向力系数,其值的大小在0~ 之间,也与多种因素有关,如车速的大小、考虑快慢车的不同要求、乘客的舒适与路容之间的矛盾等。因此,对应于确定的行车速度,最大超高值的确定主要取决于曲线半径、路面粗糙率以及当地气候条件。 《规范》规定,高速公路、一级公路最大超高值为8%和10%,正常情况下采用8%;对设计速度高,或经验算运行速度高的路段宜采用10%。二、三、四级公路限定最大超高为8%是适宜的。但对于积雪冰冻地区,考虑我国以货车为主的特点,限定最大超高为6%比较安全。 《标准》规定,当平曲线半径小于不设超高的最小半径时,必须设置超高。超高值表见材料。 三、设置超高的一般规定和要求 1.各级公路当圆曲线半径小于不设超高的最小半径时,应在曲线上设置超高。一般地区的圆曲线最大超高值宜采用8%。

2.超高横坡度的大小按公路等级、圆曲线半径大小及公路所处的环境、自然条件、路面类型、车辆组成等因素合理确定。 3.各级公路圆曲线部分最小超高应于与该公路直线部分的正常路拱横坡度一致,以利于排水。 4.分向行驶的多车道公路位于纵坡较大的路段,其上、下坡的运行速度会有明显的差异,故可采用不同的超高值,以策安全。 5.二、三、四级公路混合交通量大且接城镇路段,或通过城镇作为街道使用的路段,当车速受到限制,按规定设置超高有困难时,可按表1-2-6规定设置超高。 6.位于曲线上的行车道、硬路肩,均应根据设计、圆曲线半径、自然条件等按表1-2-6规定设置超高值。 7.在有纵坡的弯道上设置超高时,应考虑合成纵坡 8.回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求超高渐变率不得小于0.3%,即1/330。 四、超高缓和段 (一)超高缓和段的过渡形式 从直线上的路拱双向坡断面,过渡到圆曲线上具有超高横坡度的单向坡断面,要有一个逐渐变化的区段,这一变化段称为超高缓和段。如图1-2-8所示,超高缓和段的形成过程,可根据不同的旋转基线可有二种情况(无中间带和有中间带公路)共六种形式。

小半径曲线梁桥设计体会

小半径曲线梁桥设计体会 但由于它是曲线梁桥,其结构受力的特点不同,在构造处理上也相应有其较多特点。 1、由于曲线梁桥比直线梁桥的受力复杂,对结构的抗弯、抗扭性能要求高于同跨径的直线梁桥,故采用整体性好、抗扭刚度大就地浇注的连续箱形梁桥比较好。 2、小半径曲线梁桥的梁高大于跨径的1/18时,是比较经济的。在特殊情况下也不应小于跨径的1/22。 3、由于混凝土的收缩、徐变涉及的因素较多,个工程中混凝土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A类构件即可。 4、与一般的直线桥相比,曲线箱梁桥顶板、底板和腹板中的纵向受力钢筋、横向钢筋、箍筋、水平分布钢筋都要考虑到全桥计算和构造上的需要,并适当加强。 5、在预应力混凝土曲线梁桥中设置防崩钢筋。 6、在支承形式上,小半径曲线梁桥通常三种布置形式:①全部采用抗扭支承。②两端设置抗扭支承,中间设单支点铰支承。③两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承,下部墩柱

当与之相匹配。 对于多跨小半径曲线连续梁桥,全部为抗扭支承与中间为点铰支承的,两者在荷载作用下的弯矩和剪力值差别甚小,而且曲率的变化对弯矩值的影响也只有1%~2%;,但对扭矩的影响,则随曲率的增大而加大。当各跨圆心角大于30度时,中间设单支点铰支承的扭矩控制值比全部为抗扭支承的扭矩控制值要大15%左右。在中间设独柱式单支点曲线连续梁内,上部结构的扭矩不能通过中间单支点支承传至基础,而只能由曲线桥两端设置的抗扭支承来传递。在此情况下连续梁的全长成为受扭跨度,这也是我们常常所说的扭矩的传递作用。必然造成曲线桥两端抗扭支承处产生过大的扭矩,造成曲线梁端部内侧支座脱空,所以在必要时,须对多跨桥梁中间墩设置两支点的抗扭支承。 如果在中间墩点支承向曲线外侧方向预设一定偏心值,就可以调整曲线梁桥的梁体恒载扭矩分布,有效地降低两端抗扭支承的恒载扭矩值。但这一措施对减少活载扭矩的影响较小,这是由于活载引起的扭矩中车辆偏载占了很大一部分。 7、必要时可在墩顶设置限挡块或采用墩梁固接的办法来限制曲线梁桥的梁体径向移。

最新火车轮结构基础知识

车轮结构完全由车轮直径,轮辋,轮毂尺寸,毂辋距,辐板形状,轮缘踏面外形所决定。每个尺寸或每部位形状都有其特殊意义。 一、直径 车轮直径对其本身及整个车辆都有较大影响。一方面车轮直径越大,车辆重心越高,车辆的动力性能越差。另一方面,增大车轮直径,可以降低轮轨的接触应力,降低车轮磨耗速度,增加车轮的热容量,提高踏面制动热负荷的承受能力。因此车轮直径大小应根据车辆情况综合确定。但总的来说,车辆轴重越大,车轮直径应越大,以提高车轮的热容量和增加轮轨的接触面积,减少踏面损伤和磨耗。另外,车轮直径的取值还应注意规格的标准化系列问题,以利于车轮制造和检修。目前我过货车车轮直径大多为840mm,特殊货车车轮直径为915。 二、轮辋 轮辋宽度尺寸主要取决于轮轨的搭载量。当轮对运行在曲线上时,外侧车轮轮缘靠近钢轨,内侧轮缘远离钢轨。只有内侧车轮踏面在钢轨上的搭载量足够,才能保证轮对不脱轨。 《铁路技术管理规程》规定,当曲线半径在300m以下时,轨距应加宽15mm。因此,最大轨距为1435+15+6=1456mm(其中:名义轨距L为1435mm,最大公差为6mm)。轮对最小内侧距为1354mm,轮缘最小厚度为23mm。车轮踏面外侧倒角5mm,钢轨头部圆弧半径为R13mm,钢轨内侧磨耗2mm,轨枕弯曲、道钉松动等引起轨距扩大8mm,重车时车轴微弯引起轮对内侧距离减小2mm,轮轨安全搭载量按7mm考虑,根据上述数据算得轮辋最小宽度为120mm,考虑到车辆过驼峰时实施的制动,车轮外侧面磨损5mm,则轮辋最小宽度应为125mm。目前我国铁路货车车轮轮辋宽度为135~140mm。 轮辋厚度通常指新轮辋厚度。我国铁路对正常服役的车轮的判废依据是轮辋剩余厚度,当轮辋剩余厚度小于等于23mm时车轮报废。新轮辋厚度与轮辋限度之差为轮辋的有效磨耗厚度。轮辋越厚有效磨耗厚度就越大。但车轮自重也大。

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

浅谈小半径曲线桥梁的设计要点

浅谈小半径曲线桥梁的设计要点 摘要:与直线桥不同的是,由于弯扭耦合作用,所以曲线桥在竖向荷载作用下 引起弯曲的同时会产生扭转变形,导致内外侧支座反力大小不同,甚至可能出现 负反力。本文首先分析了曲线梁桥的力学特性,然后详细阐述了小半径曲线桥梁 的设计方法,最后说明了小半径曲线桥梁设计中应注意的问题。 关键词:小半径;曲线桥梁;截面;支座;抗扭支承 一、曲线梁桥的力学特性 (一)梁内外侧受力不均由于扭矩的作用会造成外梁超载、内梁卸载等问题,致使弯梁桥外边缘弯曲应力大于内边缘,外边缘挠度大于内边缘,内梁和外梁受 力不均,反应到箱梁上则是内外腹板受力不均。当活载偏置时,内梁支点甚至可 能产生负反力,甚至会出现梁体与支座脱离的问题发生。 (二)挠曲变形曲线箱梁桥的挠曲变形一般要比相同跨径的直线桥大,弯桥 的挠曲变形是弯曲和扭转的迭加。 (三)横向水平力汽车在曲线梁桥上行驶时会对桥梁产生水平方向的离心力。预应力、混凝土收缩徐变及温度变化等不仅对桥梁会产生纵向水平力,也会产生 横向水平力。外荷载对桥梁产生的横向水平力会增大梁体截面扭矩和桥墩弯矩, 并有可能造成横向的位移或者是桥梁在平面的转动。 (四)翘曲与畸变对于弯箱桥梁,由于在弯扭耦合的作用下会出现综合截面 应力相对直线桥梁而言较大的问题,特别是在截面扭转以及畸变作用下,这一问 题更突出。但其数值往往只占基本弯曲应力和纯扭转剪应力的5%~10%,经过初 步的估算,在设计过程中可以采取增设横隔板的设计处理方式,尽可能的控制截 面畸变变形。 二、小半径曲线桥梁的设计要点 (一)箱梁的设计 1、箱梁跨径的选择弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着 直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于 弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。 所以在曲线梁桥中,宜选用低高度梁和抗扭惯矩较大的箱形截面。小半径曲线梁 桥的梁高大于跨径的1/18 时,是比较经济的。在特殊情况下也不应小于跨径的 1/22。 2、截面设计在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以 加强横桥向刚度并保持全桥稳定性。在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。 3、配筋设计在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布 置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗 扭箍筋。在预应力混凝土曲线梁桥中,应设置防崩钢筋。 4、混凝土结构由于混凝土的收缩、徐变涉及的因素较多,每个工程中混凝 土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁 桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于 预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不 大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A 类构件即可。 (二)支承方式的选择在曲线桥中,不同的支承方式对上、下部结构内力影 响较大,一般支承分为两种类型:抗扭支承和点铰支承。

高速铁路缓和曲线设计研究

-33- 科苑论谈 高速铁路缓和曲线设计研究 赵海燕 (铁道第二勘察设计院昆明院,云南昆明650000) 摘本:通过对高速铁路缓和曲线主要线形、长度计算主要参数选择的初步研究,探讨了高速铁路设计时缓和曲线的选择和长度的合理使用。关键词:高速铁路$缓和曲线$研究 高速铁路的主要特征为高速、高架、电气化。铁路高速化后,行车速度越高,平面曲线和竖曲线半径增幅也越大。此外,列车通过缓和曲线时产生的超高时变率和欠超高时变率也随列车的速度成正比增加,从而影响乘车的舒适性。因此,缓和曲线要有足够的长度,使线性过渡平缓,以保证列车运行平稳和旅客乘坐的舒适性,但过长的缓和曲线控制着平面选线和纵断面变坡点设置的灵活性,并引起工程数量的增大。因此,缓和曲线设计是高速铁路设计的重要参数之一。 1缓和曲线的主要线性 缓和曲线线性基本上可以归纳为两种基本类型:一种是线性缓和曲线,其超高和曲率变化成线性变化,如三次抛物线形;第二种是非线性缓和曲线,比如三次抛物线园、余弦改善形、半波正弦形、五次代数式、七次四项式、一波正弦式等。 缓和曲线线性的选择,主要从保证列车运行平稳和曲线上旅客乘坐的舒适性来考虑。从各种研究和实测结果表明,只要缓和曲线长度达到一定要求,各种线形的缓和曲线都能保证高速行驶安全和旅客乘坐舒适度的要求,国外高速铁路的运营实践也表明了这一点。由于传统的三次抛物线形简单、设计方便,平立面有效长度长,现场应用、养护经验丰富等特点,我国目前设计的高速铁路仍以三次抛物线形缓和曲线为首选线形。 2缓和曲线长度的计算 缓和曲线长度是高速铁路平面设计的主要参数之一,为保证列车运行的安全和旅客舒适度的要求,缓和曲线应该有足够的长度。但过长的缓和曲线将影响平面选线和纵断面设计的灵活性,引起工程投资的增加。所以,长度的选择要合理选用,结合现场实际,从长到短选择。缓和曲线长度的计算,主要取决于以下几个因素: 2.1超高顺坡率允许值 缓和曲线地段,由于外轨超高使车轮处于三点只承状态,必须限制超高顺坡率的最大值。这个值主要由转向架轴距、前后转向架中心距、轮缘高度来决定。国外(日、英、德)规定的超高顺坡率最大值分别为1/200~1/400不等,我国现行规定的最大超高顺坡率为不大于2‰即1/500。据此,三次抛物线形缓和曲线车辆脱轨安全因素决定的缓和曲线长度L1为 L1≥h/imax=0.5h 由上式可以看出,对于缓和曲线普遍较长的高速铁路,由脱轨安全要求计算的缓和曲线长度显然不起控制作用。故高速铁路缓和曲线长度主要取决于其他两个条件,即: 2.1.1乘坐舒适度允许的未被平衡横向加 速度时变率(即欠超高时变率限值[β])要求的缓和曲线长度L2 L2≥(Vmax.α未)/(3.6[β ])=(Vmax.hq.g)/(3.6[β ].S)式中:hq—圆曲线上计算的欠超高值(mm); Vmax—设计速度目标值(km/h); [β ]—未被平衡横向加速度时变率允许值 从相关试验得出的未被平衡横向加速度 在不同变率下舒适感觉概率表明,当[β ]=0.015g/sec时,旅客平均舒适指数为0.5,96%的乘客感觉在“轻微感觉”内;当[β]=0.025g/sec时,旅客平均舒适指数为1.0,80%的乘客感觉在“轻微感觉”内,20%的乘客感觉在“明显感觉”内;当[β]=0.034g/sec时,旅客平均舒适指数为1.3,“轻微感觉”与“明显感觉”的旅客各占一半。 2.1.2乘坐舒适度允许的车体倾斜角速度(即超高时变率限值[f])要求的缓和曲线长度 L3 L3≥(Vmax.h)/(3.6[f])=k.Vmax.h式中:k—1/(3.6[f]); h—圆曲线上的设计超高值(mm);[f]—超高时变率允许值(mm/s) 日本东海道采用半波正弦形缓和曲线,[f]=34mm/sec,k平=8.2,fmax=53mm/sec时,kmax=5.2。法国TGV线采用三次抛物线改善形缓和曲线,设计速度目标为300km/h时,f=25~56mm/sec,k=11~5,设计速度目标为350km/h时,f=29~50mm/sec,k=9.5~5.5。我国现行规范规定,[f]一半条件下取25mm/sec,困难条件下取31mm/sec。 3小结 经计算分析,对于高速铁路而言,多以计算出的L3作为控制缓和曲线长度,把[f]代入L3的计算公式后可以简化为: 一般条件:L3≥11×10-3Vmax.h困难条件:L3≥9×10-3Vmax.h 可以看出,对于某一个曲线而言,Vmax为定值,故影响缓和曲线长度的要素只是设计超高h的取值问题,h值越大,缓和曲线越长,反之则短。因此在铁路选线和设计中,要综合考虑现场的实际情况,结合工程量大小、 投资等综合因素确定合理的缓和曲线长度。 责任编辑:杨帆

列车设计

金华AA工程交通影响评价 学院:工学院、职业技术教育学院 专业:交通运输112班 学生姓名:杨庆冬 学号: 11570225

目录第1章概述 1.1 项目背景 1.2 编制依据 1.3 项目概况 1.4 住宅项目交通影响分析的目标及研究的方法1.5 项目目标年交通影响分析范围的确定 第2章项目周边现状与规划 2.1 项目周边土地利用现状与规划 2.2 项目周边道路交通系统现状与规划 2.3 项目周边道路交通特征分析 2.4 项目周边公共交通系统现状与规划 2.5 项目周边交通现状评价 第3 章交通需求预测 3.1 背景交通量预测 3.2 拟建项目交通量预测 第4 章项目交通影响评价 4.1 交通系统服务水平影响分析 4.2 公共交通影响分析 4.3 非机动车影响分析 第5章项目配套设施分析 5.1 项目区内停车设施供需分析 5.2 项目出入口分析 第6章交通组织和相关措施 6.1 交通组织原则 6.2 机动车交通组织 6.3 非机动车交通组织 6.4 行人交通组织 第7 章结论与建议 7.1 分析结论 7.2 相关建议

第1章概述 1.1项目背景 交通影响分析(TLA)是在开发项目立项之前或者交通管理措施实施之前,评价和分析由新的土地开发、改造,规划的土地使用性质变更及重大的建设项目建成投入使用后,所产生的新增交通需求对周围范围内的交通环境产生何种程度的影响,从而在一定服务水平下确定对策,以减少因项目建设所带来的负面影响,缓解建设项目产生的交通量对周边道路产生的交通压力,交通影响分析是项目建设决策的重要依据。 金华市AA工程用地选址于BB地块,坐落于金华尖峰山南麓,用地范围北比邻被二环路,与浙江师范大学大学隔路相望,南比邻玉泉西路,与柳湖花园小区相对,东西分别与迎宾大道、师大街相邻。

公路设计

目录1 设计概述 1.1目的和要求: 1.2设计依据: 1.3公路设计概况: 1.4平面设计标准的确定 1.5路线起讫点 1.6沿线自然地理概况 2 设计参数 2.1 道路等级的确定 2.2 公路技术标准的确定 2.3 控制要素 2.4平面设计技术指标 2.4.1圆曲线最小半径 2.4.2圆曲线最大半径 2.4.3圆曲线半径的选用 2.4.4平曲线最小长度 2.4.5缓和曲线技术要求 2.5 路线方案的拟定与比较 2.6道路平面设计 2.6.1平面选线的原则: 2.7道路纵断面设计 2.8道路横断面设计 3设计图纸及计算说明部分 3.1计算说明部分(附表) 3.2图纸部分(附图) 4致谢 参考文献 1 设计概述 1.1目的和要求:

道路工程课程设计是专业教学的一个重要环节,包括道路路线设计和路面结构设计两部分。通过本设计,使学生对所学专业知识进行一次全面的、系统的综合运用,进而对所学知识加深理解、巩固和融会贯通。 根据设计所给资料,进行平、纵、横断面设计及其组合处理,完成土石方计算与调配,编制直线、曲线及转角一览表,路基设计表,路基土石方数量计算表;进行路面结构类型选择,并确定各结构层的合理厚度。 1.2设计依据: (1)根据四川交通职业技术学院道桥系道路与桥梁工程技术《道路勘测设计》。 (2)《工程建设标准强制性条文》(公路工程部分) 1.3公路设计概况: 公路等级:四级公路 交通量:平均昼夜交通量为300~400辆。 设计年限:20年 设计车速:20km/小时 1.4平面设计标准的确定 1、根据设计任务书要求,本路段按二级公路技术标准勘察、设计。设计车速为20公里/小时,路基双幅两车道,宽6.5米。其主要技术指标表见 主要技术指标表 序号指标名称单位规范 值 采用 值 备注 1 公路等级级 4 4 2 设计速度km/h 20 20 3 路面结构类型—水泥 混凝 土 水泥 混凝 土 4 最小平曲线半径一般m 30 85 5 极限m 15 6 不设超高的最小平曲线半径m 150 150 7 最大纵坡% 9 9

完整版道路设计

一、道路设计的步骤、方法 (一)纸上定线 1、拟定路线走向在给定的地形图上根据主要控制点研究线路总体布局,分析地形、地质及地物等情况,选择地势平缓、山坡顺直、河谷开阔等有利于展线的地点,拟定线路各种可能的走向。 2、试坡 当遇到纵坡的限制较严时,必须用平均纵坡i 沿各种可能的走向由上而下进行试坡,设等高线间距为h,取计算等高线的平均长度a, a=h/i ,用量规开度为a (比例与地形图同) 在图上试坡,得出均坡线。 3、定导向线分析均坡线,结合地形、地物及艰巨工程等情况,选择相应的中间控制,从而调整控 制 点相应线路的纵坡,重新试坡,得出导向线。 4、修正导向线 参照导向线作平面试线,注明平曲线半径,量出地形变化点桩号及标高,绘制纵断面图。并设计纵坡,得出各桩位概略设计标高。 5、定线在所定向线的基础上,按规定的技术标准反复试线才能得到满意的结果。 6、纵断面设计路线确定后,量出路中心线穿过每一等高线的标号和高程,绘制纵断面图和进行纵 断面 设计。纸上定线是个反复试定的过程,试线修改次数越多,最后所定路线的质量相对来说越高,直至取得最佳线路方案为止,纸上定线工作才能算完成。 (二)公路平面设计 1、圆曲线半径的原则 (1)确定圆曲线半径的原则 ①各级公路的圆曲线半径应尽量采用较大的半径,在一般情况下,宜选用大于《标准》所规定的该级一般最小半径。只有当地形、地物或其他条件限制时,方可采用小于一般最小半径,不要轻易采用极限最小半径。 ②圆曲线半径的选定,除要与弯道本身所在位置的地形、地物条件相适应,使曲线沿理想的位置通过外,还要考虑与弯道前后的线形标准相协调。 ③圆曲线半径过大也失去意义,因此最大半径不宜超过10000m,以利于设计与施工。 ④各级公路不论转角大小,均应设置曲线(包括圆曲线和缓和曲线)。 ( 2)确定路线导线交点转角 首先在地形图上,从起点由左向右编写转角号,即JD1、JD2、JD3……。确定路线导线 交点转角要用正切法。不得用量角器直接量取。 (3)考虑圆曲线半径选定的原则和转角值,确定该路段每个交点的圆曲线半径,并计算或查曲线册设用表确定圆曲线要素。 2、将各交点处圆曲线半径与教材或规范对比,当圆曲线半径小于不设超高的圆曲线最小半径,应在该交点处圆曲线两端设置缓和曲线,缓和曲线计算步骤如下: (1)利用教材相应公式确定缓和曲线最小长度,采用数值大者,并用整 5 米倍数。 (2)利用相应公式计算切线角、缓和曲线常数p和q。 (3)利用相应公式计算有缓和曲线的单曲线的切线长Th 、曲线长Lh 、外距Eh 、超距Dh 。 3、桩距采用20 米,加桩视地形变化而定,加桩采用整米数。

浅谈小半径曲线桥梁的设计要点

龙源期刊网 https://www.doczj.com/doc/d39050370.html, 浅谈小半径曲线桥梁的设计要点 作者:邓天琦 来源:《建筑工程技术与设计》2014年第35期 【摘要】随着我国基础建设投入不断加大,交通运输事业不断发展,尤其是高速公路、城市立交和高架道路日益增多。为使交通线路的规划能够很好的适应地形、地物限制的要求,使交通线路的布置趋于合理和科学,曲线梁桥的建造需求变得越来越多。然而,小半径曲线桥梁在设计时存在许多不容忽视的控制要点,如不充分考虑它空间受力的特性,将会使曲线桥在使用过程中出现严重的病害,如支座脱空、侧向位移甚至侧向倾覆等。本文将针对这些问题以及问题产生的原因进行分析,为曲线桥梁的设计积累经验。 【关键词】小半径;曲线桥梁;偏心 一、小半径曲线桥梁的结构受力特点 小半径曲线桥梁由于主梁的平面弯曲使得下部结构墩柱的支承点不在同一条直线上,形成了其独有的受力特点:(1)主梁受曲率影响,梁截面发生竖向弯曲的同时会产生扭转,而产生的弯矩和扭矩相互影响,使梁处于弯扭耦合状态;(2)由于弯扭耦合作用,弯桥的变形比同跨径的直桥要大,主梁外边缘的挠度大于内边缘的,而且曲率半径越小,桥越宽,这一趋势越明显。同时在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势;(3)曲线桥梁上汽车荷载的偏心布置及其行驶时的离心力,也会造成曲线梁桥向外偏转并增加主梁扭矩和扭转变形。另外,曲线桥梁即使在对称荷载作用下也会产生较大的扭矩,该扭矩通常会使得外梁超载,内梁卸载;(4)主梁的扭转传递到梁端部时,会造成端部各支座横向受力分布严重不均,通常呈曲线外侧支反力变大,内侧变小的趋势,有时内侧支座甚至会出现负反力。(5)曲线桥的中横梁是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大。(6)采用连续梁体系的曲线桥,预应力效应对支反力的分配有较大的影响,在计算支座反力时必须考虑预应力效应的影响。 二、小半径曲线桥梁的设计要点 (一)小半径曲线桥梁支座的布置形式 曲线箱梁桥支座的布置型式通常采用三种形式(如下图):a. 全部采用抗扭支承, b. 两 端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。 近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能

道路设计平曲线和竖曲线半径的确定

道路设计平曲线和竖曲线半径的确定道路设计平曲线和竖曲线半径的确定 1)平曲线与竖曲线应相互重合,且平曲线应稍长于竖曲线。 这种组合是使竖曲线和平曲线对应,最好使竖曲线的起、终点分别放在平曲线的两个缓和曲线内,即所谓的“平包竖”。 对于等级较高的道路应尽量做到这种组合,并使平、竖曲线半径都大一些才显得协调,特别是凹形竖曲线处车速较高,二者半径更应该大一些。 2)平曲线与竖曲线大小应保持均衡 所谓均衡,是指平、竖曲线几何要素要大体平衡、匀称、协调,不要把过缓与过急、过长与过短的平曲线和竖曲线组合在一起。 根据德国计算统计,若平曲线半径小于1000m,竖曲线半径大约为平曲线半径的10,20倍时,便可达到均衡的目的。 3)暗弯、明弯与凸、凹竖曲线 暗弯与凸形竖曲线及明弯与凹形竖曲线的组合是合理的组合。 对暗与凹、明与凸的组合,当坡差较大时,会给 1 / 3 人以错觉:舍弃平坦坡道及近路不走,而故意爬坡、绕弯的感觉。此种组合在山区难以避免,只要坡差不大,矛盾也不很突出。 4)平、竖曲线应避免的组合 设计车速?40km/h的公路,凸形竖曲线的顶部和凹形竖曲线的底部,不得插入小半径平曲线。 凸形竖曲线的顶部或凹形竖曲线的底部,不得与反向平曲线的顶点重合。 小半径竖曲线不宜与缓和曲线相互重叠。

平面转角小于7?的平曲线不宜与坡度角较大的凹形竖曲线组合在一起。 5)在完全通视的条件下,长上坡路段的平面线形多次转向形成蛇形的组合线形,应极力避免。 直线上一次变坡是较好的平、纵组合,从美学观点讲以包括一个凸形竖曲线为好,而包括一个凹形线次之;直线中短距离内二次以上变坡会形成反复凸凹的“驼峰”和“凹陷”,看上去线形既不美观也不连贯,宜使驾驶员的视线中断。 道路作为一种线形构造物,应将其视为景观对象来研究。修建道路会对自然景观产生影响,有时甚至产生一定破坏作用。而道路两侧的自然景观会影响道路上汽车的行驶,特别是对驾驶员的视觉、心理以及 2 / 3 驾驶操作等都有很大影响 3 / 3

相关主题
相关文档 最新文档