当前位置:文档之家› 基于MATLAB的图像压缩感知毕业设计说明书

基于MATLAB的图像压缩感知毕业设计说明书

基于MATLAB的图像压缩感知毕业设计说明书
基于MATLAB的图像压缩感知毕业设计说明书

毕业设计(论文)

课题名称基于MATLAB的图像压缩感知

算法的实现

系:电气工程系专业:电子信息工程

目录

目录......................................................... I 第1章绪论.. (6)

1.1 研究背景和意义 (6)

1.2 数据压缩技术 (7)

1.2.1 传统数据压缩技术 (7)

1.2.2 压缩感知理论(Compressed/Compressive Sensing/Sampling, CS) (8)

1.3 无线传感器网络 (10)

1.3.1 无线传感器网络概述 (10)

1.3.2 无线传感器网络数据压缩的必要性 (12)

1.4 本文主要工作和内容安排 (13)

第2章压缩感知理论 (14)

2.1压缩感知的前提条件—稀疏性和不相干性 (14)

2.2 三个关键技术 (17)

2.3信号的稀疏表示 (18)

2.4 观测矩阵设计 (20)

2.5 稀疏信号的重构 (22)

2.6 重构算法 (23)

2.7 压缩感知优势及不足 (24)

2.8 压缩感知在传感网中的观测方式 (25)

第3章压缩感知理论应用概述 (27)

3.1 压缩成像 (27)

3.2 模拟信息转换 (27)

3.3 生物传感 (28)

3.4 本章小结 (28)

第4章 CS在无线传感网中的应用 (29)

4.1 研究背景 (29)

4.1.1 基于感知数据相关性的压缩 (29)

4.1.2传统压缩重构方法 (29)

4.1.3 图像压缩重构质量的评价 (30)

4.2 压缩感知理论算法对一维信号的实现 (32)

4.2.1 CS用于WSN的优势 (32)

4.2.2 观测重构模型 (33)

4.2.2 正交匹配追踪算法(OMP) (33)

4.2.3 算法的实现及结果分析 (34)

4.3 压缩感知理论算法对二维图像重构的实现 (38)

4.3.1 基于小波变换的分块压缩感知理论 (38)

4.3.2 实现步骤 (39)

4.3.3 重构结果及分析 (42)

4.4 本章小结 (45)

第5章总结与展望 (46)

5.1 工作总结 (46)

5.2 后续展望 (46)

参考文献 (47)

致谢 (49)

附录 (50)

摘要

数据压缩技术是提高无线数据传输速度的有效措施之一。传统的数据压缩技术是基于奈奎斯特采样定律进行采样,并根据数据本身的特性降低其冗余度,从而达到压缩的目的。近年来出现的压缩感知理论(Compressed Sensing,CS)则不受制于奈奎斯特采样定律,它是采用非自适应线性投影来保持信号的原始结构,以直接采集压缩后的数据的方式,从尽量少的数据中提取尽量多的信息。

本文阐述了压缩感知方法的基本原理,分析了CS理论框架及关键技术问题,介绍了压缩感知技术应用于无线传感的优势,并着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,对研究中现存的难点问题进行了探讨。并运用matlab软件,在离散傅里叶变换(DFT)和离散余弦变换(DCT)分块CS的基础上,采用正交匹配追踪算法(OMP)实现了对一维信号和二维图像的高概率重构。将重构结果与原始信号对比,结果表明,只要采样数M(远小于奈奎斯特定理所需要的采样率)能够包含图像所需要的有用信息时,CS算法就能精确的完成对图像的重构,并且重构效果也比较好。

关键词:压缩感知无线传感正交匹配稀疏表示观测矩阵

Abstract

The data compression technology is one of the efficient measures for increasing the speed of wireless data communication. Traditional data compression technology is based on Nyquist sampling theorem, reaching the goal of compression by decreasing redundancy of information. In recent years, Compressed Sensing(CS) comes out as a new sampling theory, it does not have to obey Nyquist sampling theorem, and it can keep the original structure of signals by attaining the non-adaptive linear projections. So, CS can gather the compressed data directly and get more information from less data.

This paper reviews the theoretical framework and the key technical problems of compressed sensing and introduces the latest developments of signal sparse representation, design of measurement matrix and reconstruction algorithm. Then this paper also discusses the existing difficult problems. Based on the discrete fourier transform (DFT) and discrete cosine transform (DCT), we use MATLAB software, realizes the accurate reconstruction of one-dimension signal two-dimension image by applying the OMP algorithm. Then make a comparison to the reconstruction of signal to original signals and make a conclusion. If only the sampling measurements M (far less than Nyquist sampling measurements ) contain the useful information of signals, CS algorithm can complete the accurate reconstruction, and the effect of reconstruction signal is good too.

Key words: compressed sensing wireless sensor networks orthogonal matching pursuit sparse presentation measurement matri

第1章绪论

在当今的信息社会,电脑、手机、传感器、驱动器等都要连接到因特网,这样的无线通信系统中,将会产生并且传播大量数据信息,从而对信号的采样、存储、传输和恢复造成巨大压力,增加了通信设备的成本。对人们来说,如何有效的处理这些数据,成为一个新的挑战。近几年来,在信号处理领域出现的压缩感知理论(CS)打破了传统采样过程中信号采样速率必须达到信号带宽两倍以上才能精确重构原始信号的奈奎斯特采样定理,使得信息存储、处理和传输的成本大大降低。

1.1 研究背景和意义

随着人们对信息需求量的增加,网络通信、多媒体技术、存储技术的发展越来越快,网络的规模也越来越大,寻找高效的信息技术来降低数据量成为无线传输系统中急需处理的问题之一。这是因为数字化的各类信息的数据量十分庞大,若不对其进行有效的压缩就难以得到实际的应用,因此,数据压缩技术成为人们研究的一项重要技术。无线传感器网络是近来研究的热点方向之一。它是由分布在监测区域内的大量微型传感器节点通过无线电通信而形成的一个自组织网络系统。这个系统的目的是协作的感知、采集和处理网络覆盖区域里被监测对象的信息,并将结果发送给用户。在一个传感器网络中,常常包含大量传感器节点,每个传感器都会采集大量的数据。这些数据将会被传输到一个控制中心,也会在各个节点之间传输,在这种分布式传感网络中,数据传输功耗和带宽需求非常大,所以,如何对这样的分布式信号进行压缩,从而减小通信开销已经成为非常紧迫的需求。

压缩感知理论与传统奈奎斯特采样定理不同,它指出,只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架下,采样速率不决定于信号的带宽,而决定于信息在信号中的结构和内容。事实上,压缩感知理论的某些抽象结论源于Kashin创立的范函分析和逼近论,最近由Candès,Romberg ,Tao和Donoho等人构造了具体的算法并且通过研究表明了这一理论的巨大应用前景。从信号分析角度来讲,傅立叶变换是信号和数字图像处理的理论基础,小波分析将信号和数字图像处理带入到一个崭新的领域。多尺度几何分析是继小波分析后的新一代信号分析工具,它具有多分辨、局部化和多方向性等优良特性,更适合于处理图像等高维信号。这些研究工作都为压缩感知理论奠定了基础。显然,在压缩感知理论中,图像/信号的采样和压缩同时以低速率进行,使传感器的

采样和计算成本大大降低,而信号的恢复过程是一个优化计算的过程。因此,该理论指出了将模拟信号直接采样压缩为数字形式的有效途径,具有直接信息采样特性。由于从理论上讲任何信号都具有可压缩性,只能找到其相应的稀疏表示空间,就可以有效地进行压缩采样,这一理论必将给信号采样方法带来一次新的革命。

1.2 数据压缩技术

数据压缩技术就是对原始数据进行数据编码或者压缩编码,从而用最少的数码来表示信源发出的信号。数据压缩的对象很广泛,可以是通信时间、传输带宽、存储空间甚至发射能量。数据压缩的作用是能够快速地传输各种信号;在已有的一些通信干线并行开通更多的多媒体业务;紧缩数据存储容量;降低发信机功率等等。

1.2.1 传统数据压缩技术

前较成熟的数据压缩技术有许多种,按照压缩后对信息的失真程度,主要分为无损压缩和有损压缩。

无损压缩是利用数据中的统计冗余进行压缩。数据中间存在的一些多余成分,称之为冗余度。例如,在某一份计算机文件中,一些符号会反复出现、一些符号比其它的符号出现得更频繁、一些符号总是出现在各数据块中的可预见的位置上,以上讲述的这些冗余部分便可在数据编码中除去或者减少。这种无损压缩机制可以完全恢复原始数据而不引起任何失真,但是压缩率却受到数据统计冗余度的理论限制,一般为2:1到5:1。这类方法可以广泛用于文本数据、程序以及特殊应用场景的图像数据(如医学图像)的压缩。它的主要压缩机制包括Huffman编码、算术编码、游程编码和字典编码等系列。

有损压缩是利用了人类对图像或者声音中的某些频率成分不敏感的特殊性质,允许压缩过程中损失一定的信息;尽管不能完全恢复出原始数据,但是所缺失的数据部分对于我们理解原始图像的影响很小,却使得压缩比大了许多。有损压缩广泛应用于语音,图像和视频数据的压缩。它一般有两种基本的压缩机制,一种是有损变换编解码(如傅立叶变换、离散余弦变换、小波变换),即首先对图像或者声音进行采样、切成小块、变换到一个新的空间、量化,接着对量化值进行熵编码;另外一种是预测编解码(如脉冲编码调制、差分脉冲编码调制、自适应差分脉冲编码调制等),即利用先前的数据和随后解码的数据来预测当前的声音采样或者图像帧,并对预测数据与实际数据之间的误差以及其它一些重现预测的信息进行量化与编码。

综合无损压缩和有损压缩的优点,还出现了第三类压缩技术:混合压缩。它主要是求取在压缩效率、压缩比以及保真度之间的最佳平衡,如静止图像压缩标准JPEG

和活动图像压缩标准MPEG 就是采用混合编码的压缩方法。

1.2.2 压缩感知理论(Compressed/Compressive Sensing/Sampling, CS )

在传统理论的指导下,信号主要的一些压缩方法都要基于奈奎斯特采样定律进行采样,即信息采样速率至少为信号带宽的两倍。信号的编解码过程如图1.1所示:编码端首先获得X 的N 点采样值,经变换后只保留其中K 个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或传输。解压缩仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K 值很小,但由于奈奎斯特采样定理的限制,采样点数N 可能会非常大,采样后的压缩是造成资源浪费的根本所在。 采样压缩传输信号X

采样数据N 压缩数据K 压缩数据K 采样数据N 信号

解压缩

CS 理论的信号编解码框架和传统的框架大不一样,如图1.2 所示。CS 理论对信号的采样、压缩编码发生在同一个步骤,利用信号的稀疏性,以远低于Nyquist 采样率的速率对信号进行非自适应的测量编码。测量值并非信号本身,而是从高维到低维的投影值,从数学角度看,每个测量值是传统理论下的每个样本信号的组合函数,即一个测量值已经包含了所有样本信号的少量信息。解码过程不是编码的简单逆过程,而是在盲源分离中的求逆思想下,利用信号稀疏分解中已有的重构方法在概率意义上实现信号的精确重构或者一定误差下的近似重构,解码所需测量值的数目远小于传统理论下的样本数。

压缩感知的核心思想是压缩和采样合并进行,并且测量值远小于传统采样方法的数据量,突破了香农采样定理的瓶颈,使高分辨率的信号采集成为可能。

压缩感知理论主要包括信号的稀疏表示、随机测量和重构算法等三个方面。稀疏表示是应用压缩感知的先验条件,随机测量是压缩感知的关键过程,重构算法是获取最终结果的必要手段。

图1.1 传统编解码理论框图

压缩感知测量

传输解码重构

特征提取

信号X

压缩测量值压缩测量值

压缩感知关键要素包括稀疏表示、测量矩阵和重构算法。

信号在某种表示方式下的稀疏性,是压缩感知应用的理论基础,经典的稀疏化的方法有离散余弦变换(DCT )、傅里叶变换(FFT )、离散小波变换(DWT )等。

最近几年,对稀疏表示研究的另一个热点是信号在冗余字典下的稀疏分解。 这是一种全新的信号表示理论:用超完备的冗余函数库取代基函数,称之为冗余字典,字典中的元素被称为原子。目前信号在冗余字典下的稀疏表示的研究集中在两个方面:一是如何构造一个适合某一类信号的冗余字典,二是如何设计快速有效的稀疏分解算法。目前常用的稀疏分解算法大致可分为匹配追踪(Matching Pursuit )和基追踪(Basis Pursuit )两大类。

压缩感知理论中,通过变换得到信号的稀疏系数后,需要设计压缩采样系统的观测部分,它围绕观测矩阵Φ展开。观测器的设计目的是如何采样得到M 个观测值,并保证从中能重构出长度为N 的信号X 或者稀疏基基ψ下等价的稀疏系数向量。

CandeS 和Tao 等证明:独立同分布的高斯随机测量矩阵可以成为普适的压缩感知测量矩阵。2007年Candes 等研究者建立了著名的约束等距性(RIP )理论,即要想使信号完全重构,必须保证观测矩阵不会把两个不同的 K 项稀疏信号映射到同一个采样集合中,这就要求从观测矩阵中抽取的每M 个列向量构成的矩阵是非奇异的。

Donoho 给出压缩感知概念的同时定性和定量的给出测量矩阵要满足三个特征:

(1)由测量矩阵的列向量组成的子矩阵的最小奇异值必须大于一定的常数;(2)测量矩阵的列向量体现某种类似噪声的独立随机性;(3)满足稀疏度的解是满足1范数最小

图1.2 CS 理论下数据的编解码过程

的向量。

目前常用的测量矩阵包括:

(1)随机高斯矩阵。矩阵每个元素独立地服从均值为0,方差为M

1的高斯分布。(2)随机贝努利矩阵。矩阵的每个元素独立地服从对称的贝努利分布,等概率为M

1

或-M

1。

(3)部分正交矩阵。先生成N×N的正交矩阵U(如傅里叶矩阵),然后在矩阵U中随机地选取M行向量,对M×N矩阵的列向量进行单位化得到测量矩阵。

(4)部分哈达玛矩阵。生成大小为N×N的哈达玛矩阵,然后在生成矩阵中随机地选取M行向量,构成一个M×N的矩阵。

(5)托普利兹和循环矩阵。首先生成一个向量u,由向量u生成相应的轮换矩阵或托普利兹矩阵U,然后在矩阵U中随机地选取其中的M行而构造的矩阵Φ。

(6)稀疏随机矩阵。首先生成一个零元素的矩阵Φ,在矩阵Φ的每一个列向量中,随机地选取d个位置,然后在所选取的位置的值赋为1。

压缩感知的重构算法主要分为两大类,一是贪婪算法,它是通过选择合适的原子并经过一系列的逐步递增的方法实现信号矢量的逼近,此类算法主要包括匹配跟踪算法、正交匹配追踪算法、补空间匹配追踪算法等。二是凸优化算法,它是把0范数放宽到1范数通过线性规划求解的,此类算法主要包括梯度投影法、基追踪法、最小角度回归法等。凸优化算法算法比贪婪算法所求的解更加精确,但是需要更高的计算复杂度。

此外,迭代阈值法也得到了广泛的应用,此类算法也较易实现,计算量适中,在贪婪算法和凸优化算法中都有应用。但是,迭代阈值法对于迭代初值和阈值的选取均较敏感,且不能保证求出的解是稀疏的。

就目前主流的两种重建算法而言,基于1范数最小的重建算法计算量巨大,对于大规模信号无法应用;贪婪算法虽然重建速度快,但是在信号重建质量上还有待提高。

目前,上述理论已经应用到各个领域,如传感网、频谱感知、雷达、医学信号处理、信道预测等方面,取得了很好的效果。以上是关于压缩感知理论与分布式压缩感知理论的简单介绍,详细阐述将在第二章和第三章进行展开。

1.3 无线传感器网络

无线传感器网络是计算、通信和传感器这三项技术相结合的产物,一开始在军事应用中收集数据,对战场情况和威胁及其重要程度进行适时的完整评价,后发展到民事运用,如监控大型设备,灾区临时通信,卫生保健等等。

1.3.1 无线传感器网络概述

无线传感器网络一般由若干传感器节点组成,节点是组成无线传感器网络的基本单位,它负责完成采集信息、融合并传输数据的功能。每一个传感器节点由数据采集模块(传感器、A/D 转换器)、数据处理和控制模块(微处理器、存储器)、通信模块(无线收发器)和供电模块(电池、DC/DC 能量转换器等)组成,如图1-3所示。 数据采集模块传感器A/D 转换器数据处理和控制模块微处理器存储器

通讯模块

无线收发器

供电模块电池AC/DC 转换器

其中,数据采集模块负责感知所需要的信息,数据处理和控制模块负责对感知所得的信息和接收信息进行处理,通信模块负责与其他节点进行通信,即发送或者接收信息,供电模块则负责提供所需要的能量。

根据节点在传感网网络体系中所起作用的不同,节点在网络中可以充当数据采集者、数据处理中转站或簇头节点几种角色:

(1)数据采集者,这类节点的数据采集模块专门采集周围的环境数据(如温度、压力),然后通过通信路由协议直接或间接地将采集到的数据传输给远方基站(Base Station ,BS )或汇聚节点(Sink );

(2)数据处理中转站,这类节点不仅要完成采集的任务,还要接收邻居节点的数据,一起转发给距离基站更近的邻居节点或者直接转发到基站或汇聚节点;

(3)簇头节点,这类节点负责收集节点采集的数据,经数据融合后,发送到基站或汇聚节点。

传感器节点都分散在特定的感知区域,相互合作、实时监测、感知和采集网络周边环境或监测对象的温度、声波等各种信息。这些信息一经采集,就将通过嵌入式系统进行处理,最终通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到

图1.3 无线传感器网络节点结构图

用户终端,使人们无论在何时、何地、何种情况下都能获取大量详实可靠的信息,实现人、物和事件之间的无缝连接,从而真正实现“无处不在的计算”理念。

与传统的网络不同的是,传统网络以传输数据为目的,而无线传感器网络则是以数据为中心;与传统的Ad Hoc网络相比,无线传感器网络具有以下几点特征:(1)网络节点密度高,传感节点数量多

(2)传感器节点由电池供电

(3)网络拓扑变化频繁

(4)网络具有容错能力

1.3.2 无线传感器网络数据压缩的必要性

因为在无线传感器网络中,每个传感节点体积很小,而且分布非常密集,若是对所有采集的数据直接进行传输,则所需传输的数据量将是非常惊人的,会导致网络拥塞,也会导致网络寿命缩短;又由于传感器节点由电池供电,所以节点能量有限,而且无线传感器网络所布置的地方一般为人们不便于到达的地方,因此传感器节点中的的电池很难更换。为了节约能量,延长传感器网络的寿命,需要采用能效高的网络通信协议和数据局部处理策略(如数据融合技术、数据压缩技术)。

在这里,我们将说明利用压缩技术来减少传输的数据量的必要性和可行性。相对于数据采集、数据压缩这两项功能,数据传输所需要的能量是最多的,所以,如果要节约传感器节点的电池能量,必定要减少传输的数据量,因此在无线传感器网络中运用数据压缩技术来减少数据量一直是一个值得深入研究的问题。无线传感器网络中的感知数据能够进行压缩是因为它具备数据压缩的前提条件:首先,传感器节点密度很大,节点之间感知的范围相互重叠,这种高密度的节点分布一方面使得感知数据可靠性增强,另一方面也引起了数据冗余,使得相邻节点之间所采集的数据具有高度相关性,称为空间相关性;其次,由于传感节点感知的物理数据大多数随着时间变化很缓慢,所以同一个传感器节点所感知的数据之间也有相关性,称为时间相关性。利用这两种相关性,可以对感知数据采取相应的数据压缩技术。

图1-4中监测区域中有大量的无线传感节点,传感节点可以感知各种物理环境,包括声音、温度、压力、地震等。人们将传感器节点采集的大量数据采用某种压缩技术压缩,压缩后的少量数据传送到sink节点(或者是融合中心),再由sink节点按照对应的恢复算法恢复出采集的数据。这样,通过传输少量数据就可以得到整个监测区域内的详细情况。

1.4 本文主要工作和内容安排

本文在介绍压缩感知理论/分布式压缩感知理论的基础上,将它们应用到无线传感数据压缩领域,用于压缩传感节点采集的信号,降低传输能耗,节约电池能量。

本文内容安排如下:

第一章 简单介绍了课题的研究背景,包括现有的数据压缩技术和有关无线传感网络的基本知识。

第二章 详细阐述了压缩感知理论,深入介绍了压缩感知理论的核心思想— 可压缩信号(信号稀疏化)、测量矩阵和重构算法,总结了压缩感知理论的优势及不足。

第三章 进一步介绍由压缩感知理论发展而来的分布式压缩感知理论,分别描述了三种联合稀疏模型及其应用范围,最后,将其与压缩感知理论作了仿真性能比较。

第四章 将传感网中数据传输与压缩感知理论结合,分别利用压缩感知和分布式压缩感知框架下的信号压缩、重构方法对实际的感知数据进行处理,给出了实际的应用效果,并重点研究了量化对于算法的影响。

第五章 对全文进行总结并展望下一步的研究工作。

图1.4 无线传感网通信体系结构

第2章压缩感知理论

传统通信系统中的采样遵循的是奈奎斯特抽样定理,该定理指出,为防止在获得信号时损失信息,抽样速率必须大于信号带宽的两倍。在许多应用中,包括数字图像和视频摄像中,奈奎斯特抽样速率太高,不利于数据存储和传输;在其他应用,包括图像系统(医疗浏览和雷达)、高速模数转换中,增加抽样速率代价也很昂贵。压缩感知则是保存原始信号结构的线性投影,然后再从这些投影中将信号重构出来,其速率远远低于奈奎斯特抽样率。CS理论系统与传统通信系统的类似关系如图2-1所示:

信源编码信道编码信道信道解码信源解码

CS测量CS恢复

图2.1 CS理论系统与传统通信系统的类似关系

由图2-1可知,在CS系统中,信源和信道编码被CS测量(即一个矩阵与信号矢量相乘的形式)代替;信道和信源解码则用CS恢复(即依赖于优化准则的恢复算法)替代。

压缩感知理论主要由三部分构成:稀疏信号、观测矩阵和重构算法。下面将从这三个方面详细讲述压缩感知的关键技术。

2.1压缩感知的前提条件—稀疏性和不相干性

CS隐含的两个基本前提:稀疏性和不相关性。前者属于信号的性质,后者和感知(观测)形式有关。

稀疏性:稀疏性表达了这样一个思想,一个连续时间信号的“信息速率”可能比由带宽所决定的香农采样率要低很多,或者,一个离散时间信号所依赖的自由度数目远远低于它的长度。更准确地说,CS利用了这样一个事实,即许多自然信号在某个合适的基Ψ下具有简洁的表达。

不相关性:不相关性说明用于采样信号的波在基Ψ下有很稠密的表达。不相关性表达了这样的思想,正如时间域的Dirac或者冲击信号可以在频域展开那样,在基Ψ下具有稀疏表示的信号一定可以在获得它们的某个域中展开。

1 稀疏性

众所周知,任意长度为N 的离散信号X 都可以表示为一系列基函数的叠加,

即可以在任何正交基下用下式表示:

(式2.1)

其中ψ由一组基向量{}N

i i 1=ψ构成的正交基,例如,sinusoids ,尖峰spikes 、B -splines ,wavelets 。Θ为展开系数。展开系数大,说明信号和基足够相似。如果信号在基ψ下的展开系数在很小的集合上有值,我们就说该信号在ψ域是稀疏的,如果有值序列集中在一个小范围内,那么我们就说该信号是可以压缩的。本章我们将集中研究具有稀疏表示的信号,其中X 是K 个基向量的线性组合,K<

,2,1N ψψψ=ψ下展开该向量,如(式3.4),其中ψ是,

,2,1...,N ψψψ为列向量构成的N N ?的矩阵,是正交基。图3.3(b )是coins 图像的9/7小波系数在一维下的表示。图2.3(c )展示了这样一个事实:将图像在9/7小波变换域丢掉93.75%的小系数后得到的逼近图像尽管PSNR 只有29.09dB ,但肉眼很难察觉到失真。由此可见,尽管原图中几乎所有的像素都是非零值,它在9/7小波域中却是稀疏的:大部分小波系数都很小,少数的大系数(1/16)就可以捕获信号的大部分信息。

本例中仅仅保留展开(式3.4)中Θ的())161(N K K =个大系数得到K K X ψΘ=,

其中K Θ表示系数向量的除K 个大系数外其余置0的向量。该向量从严格意义上说是稀疏的,因为K<

现在稀疏的含义很清楚了:如果x 在某个变换域下是稀疏或者可压缩的,就意味着将x 的系数N i i , (1)

=θ按幅值大小排列衰减很快,那么x 可以由K 个大系数很好地逼近K K X ψΘ=。图3.3(c )所示告诉我们,可以丢弃除了少数几个系数外的所有小系数而不会带来视觉上的损失。我们称至多有K 个非零项的向量为K -稀疏,且有K K X X Θ-Θ=-。稀疏性原理是大部分现代有损压缩编码算法和许多其它应用的基础。不过在传统编码中,这K 个大系数的位置必须事先确定。更一般地,稀疏性是一个基本的建模工具,可以进行信号的精确统计估计和分类、有效的数据压缩等等。而近几年来Candès 等人提出的压缩感知理论使得稀疏性有了更加令人惊奇的深远含义,即信号稀疏性对采样本身有重要意义,稀疏性决定了我们可以摆脱奈奎斯特采样频率的约束,并可以做到高效地非自适应地采样信号。

2 不相关性 Candès , Romberg 等人已经证明一个降维的投影集合包含了重构稀疏信号的足够信息。这就是压缩感知(CS )理论的核心内容。在CS 中,假定信号在某个变换域的系数是K 项稀疏的,我们不直接对K 个重要的系数i θ直接编码,而是将信号的系数

向量投影到另一个基函数集合{}M m m

,...,1,=φ上,观测得到M (<=

φ然后再编码。用矩阵表示,则有,X Y Φ=。其中Y 是一个1?M 的列向量,观测矩阵Φ是一个以每个基向量m φ作为行向量的N M ?矩阵。由于M<

CS 理论告诉我们,当满足一定条件时,也即是基n ψ不能稀疏表示m φ(该条件被称为两组基不相关)并且观测值个数M 足够大,那么就可以从一个相似规模的集合{}m y 中恢复大系数集合{}n

θ,继而也就可以得到信号X 。许多对基都满足不相关性质,例如,三角尖峰和傅里叶基中的正弦波不相关,傅里叶基和小波基不相关。重要的是,任意一个固定的基和一个随机产生的基也以高概率满足这种不相关。因此在CS 理论中随机矩阵被广泛应用于CS 观测中。在框架下或者基下可以找到稀疏表示的信号都可以以同样的方式从不相关观察中恢复。

文献[3]给出了相关性度量的具体定义,如下。

定义3.2:观测系统Φ和表示系统ψ之间的相关性度量用μ表示,则有如下式子成立:

(式2.2)

简单来讲,相关性度量的是两个矩阵Φ和ψ的元素之间的最大相关性。如果Φ和ψ

包含了相关的元素,则相关性很大;否则,就很小。相关系数取值范围为(b )coins 图像的9/7小波系>

1(c )1/16

系数重构图像

]

,1[),(N ∈ψΦμ。压缩采样研究的是具有低相关性的两个系统。下面给出一些例子。

(1)Φ是尖峰基)()(k t t k

-=δ?,ψ为傅立叶基n jt i j e n t /22/1)(π-=ψ,则有1

),(=ψΦμ。进一步讲,尖峰信号和正弦信号不仅在一维而且在任何维,例如2D ,3D 空间都具有最大的不相关性。

(2)ψ为小波基,Φ是noiselet 。这里,noiselet 和Haar 小波基间的相关系数是2,noiselet 和Daubechies db4及db8小波基间的相关性分别是2.2和2.9。这也可以扩展到高维情况。noiselets 也和尖峰信号及傅立叶基高度不相关。人们对noiselets 感兴趣基于以下两个事实:1)它们和为图像数据和其它类型的数据提供稀疏表示的系统不相关;2)它们具有快速算法。noiselet 变换的时间复杂度为O (N ),而且类似于傅立叶变换,noiselet 矩阵不需要存储。这一点对于高效的数字计算是至关重要的。如果没有高效的计算,CS 的实用性就会大打折扣。

(3)Φ为随机矩阵,则ψ可以是任何固定的基。此时它们之间具有极大不相关。例如,Φ可以通过在单位球面上独立均匀地采样并做规范正交化得到,此时,Φ和ψ

间的相关性以很高的概率为N log 2。各项服从独立同分布的随机波形{})

(t k ?,例如高斯分布或者1±,也表现出和任何固定基ψ具有很小的相关性。

研究者们通过大量的实验分析,得出如下结论:精确重构所需要的观测值个

数依赖于稀疏变换基和观测基之间的不相关性。不相关性越强,所需的个数越少;反之,相关性越强,例如ψ=Φ,则需要采样所有的系数才能保证精确重构。

2.2 三个关键技术

从以上压缩感知理论的介绍中我们可以看出,压缩感知理论主要包括以下三个方面的内容:

(1)信号稀疏表示;

(2)信号的编码测量即观测矩阵的设计;

(3)信号重构算法的设计。

信号的稀疏表示是指当将信号投影到某个正交变换基时,一般情况下绝大多数的变换系数的绝对值都是很小的,得到的变换向量也是稀疏的或者是近似稀疏的,这是原始信号的一种简洁的表达方式,也是压缩传感理论的先验条件。信号必须得在某种变换下才可以进行稀疏表示。通常我们可以选取的变换基有离散傅里叶变换基(DFT )、离散余弦变换基(DCT )、离散小波变换基(DWT )、Curvelet 变换基、Gabor 变换基还有冗余字典等。在信号的编码测量即观测矩阵的设计过程中,要选择稳定的观测矩阵,观测矩阵的选取必须满足受限等距特性(Restricted Isometry Property ,RIP)准则,才能保证信号的投影能够保持原始信号的结构特征。通过原始

信号与观测矩阵相乘我们可以获得原始信号的线性投影值。最后设计合适的重构算法从所得到的观测值和原来的观测矩阵来重构原始始号。

所以对压缩感知理论的研究也主要是基于这三个方面的内容:

(1)信号的稀疏表示。即对于信号N R X ∈ ,如何找到一个合适的正交基或者紧框架Ψ,以使得原始信号在Ψ上的表示是稀疏的。

(2)观测矩阵的设计。即如何设计一个平稳且满足受限等距特性条件或者与变换基Ψ 满足不相关约束条件的M × N 维观测矩阵Φ,以保证信号稀疏表示后的向量Θ能从原来的N 维降到M 维时所包含的重要信息没有受到破坏,从而保证原始信号的准确重构。这个过程也就是压缩感知理论中信号的低速采样过程。

(3)重构算法的设计。即如何设计快速有效且稳定的重构算法,从所得到的低维观测向量中准确地恢复原始信号。

下面我们对压缩感知理论的这三个关键技术做一个详细的总结和分析,以为后文对压缩感知理论在图像重构方面的研究打下基础。

2.3信号的稀疏表示

从傅立叶变换到小波变换再到后来兴起的多尺度几何分析(Ridgelet ,Curvelet ,Bandelet ,Contourlet ),科学家们的研究目的均是为了研究如何在不同的函数空间为信号提供一种更加简洁、直接的分析方式,所有这些变换都旨在发掘信号的特征并稀疏表示它,进一步研究用某空间的一组基函数表示信号的稀疏程度或分解系数的能量集中程度。

文献[23]给出稀疏的定义:信号X 在正交基ψ下的变换系数向量为X T ψ

=Θ,假如对于0 0,这些系数满足:

(式2.3)

则说明系数向量Θ在某种意义下是稀疏的。文献[34]给出另一种定义:如果变换系数

>ψ=

i i θ的势小于等于K ,则可以说信号X 是K -项稀疏。

如何找到信号最佳的稀疏域?这是压缩感知理论应用的基础和前提,只有选择合适的基表示信号才能保证信号的稀疏度,从而保证信号的恢复精度。在研究信号的稀疏表示时,可以通过变换系数衰减速度来衡量变换基的稀疏表示能力。Candès 和Tao 通过研究发现,满足幂定律衰减的信号,可利用压缩感知理论进行恢复,并且重构误差满足:

r r CS N K C X X E -?

≤-=))/(log (6 (式2.4) R p p N i i p ≤=Θ∑=/11)(θ

其中r=1/p-1/2,0

文献[30]指出光滑信号的Fourier系数、小波系数、有界变差函数的全变差范数、振荡信号的Gabor系数及具有不连续边缘的图像信号的Curvelet系数等都具有足够的稀疏性,可以通过压缩感知理论恢复信号。如何找到或构造适合一类信号的正交基,以求得信号的最稀疏表示,这是一个有待进一步研究的问题。Gabriel Peyré把变换基是正交基的条件扩展到了由多个正交基构成的正交基字典。即在某个正交基字典里,自适应地寻找可以逼近某一种信号特征的最优正交基,根据不同的信号寻找最适合信号特性的一组正交基,对信号进行变换以得到最稀疏的信号表示。

最近几年,对稀疏表示研究的另一个热点是信号在过完备字典下的稀疏分解。字典的选择应尽可能好地符合被逼近信号的结构,其构成可以没有任何限制。从

从过完备字典中找到具有最佳线性组合的K项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。

过完备库下的信号稀疏表示方法最早由Mallat和Zhang于1993年首次提出,并引入了MP算法。文献以浅显易懂的表达说明了过完备字典对信号表示的必要性,同时还指出字典的构成应尽量符合信号本身所固有的特性。

目前信号在过完备字典下的稀疏表示的研究集中在两个方面:(1)如何构造一个适合某一类信号的过完备字典;(2)如何设计快速有效的稀疏分解算法。这两个问题也一直是该领域研究的热点,学者们对此已做了一些探索,其中,以非相干字典为基础的一系列理论证明得到了进一步改进。

从非线性逼近角度来讲,信号的稀疏逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中挑选最好的K项组合。

从过完备字典的构成角度来讲,文献[38]中提出使用局部Cosine基来刻画声音信号的局部频域特性;利用bandlet基来刻画图像中的几何边缘。还可以把其它的具有不同形状的基函数归入字典,如适合刻画纹理的Gabor基、适合刻画轮廓的Curvelet基等等。

从稀疏分解算法角度来讲,在音视频信号处理方面,基于贪婪迭代思想的MP算法表现出极大的优越性,但不是全局最优解。Donoho等人另辟蹊径,提出了BP算法。BP算法具有全局最优的优点,但计算复杂度极高,例如对于长度为8192的信号,采用小波字典分解,等价于求解一个长度为8192*212992的线性规划。MP算法虽然收敛速度较BP快,但不具备全局最优性,且计算复杂度仍然很大。之后又出现了一系列同样基于贪婪迭代思想的改进算法,如正交匹配追踪算法(OMP),树形匹配追踪(TMP),分段匹配追踪(StOMP)算法等。

2.4 观测矩阵设计

观测部分的设计其实就是设计高效的观测矩阵,换句话说,就是要设计一个

能捕捉稀疏信号中有用信息的高效的观测(即采样)协议,从而将该稀疏信号压 缩成少量的数据。这些协议是非自适应的,仅仅需要用少量的固定波形和原信号 联系起来,这些固定波形和为信号提供简洁表示的基不相关。此外,观测过程独 立于信号本身。进一步讲,使用优化方法可以收集到的少量的观测值中重构信号。

压缩感知理论中,通过变换得到信号的稀疏系数向量X T ψ=Θ后,需要设计观

测部分,它围绕观测矩阵Φ展开。观测器的设计目的是如何采样得到M 个观测值,并保证从中能重构出长度为N 的信号X 或者基ψ下等价的稀疏系数向量Θ。显然,如果观测过程破坏了X 中的信息,重构是不可能的。观测过程实际就是利用N M ?观测矩阵Φ的M 个行向量{}M j j 1=φ对稀疏系数向量进行投影,即计算Θ和各个观测向量{}M j j 1=φ之间的内积,得到M 个观测值,

),...,2,1(,M j y j j =>Θ=<φ,记观测向量)

,...,,(21M y y y Y =,即

X A X Y CS T =Φψ=ΦΘ= (式2.5)

图3.4(a )是(式3.7)的形象描述。这里,采样过程是非自适应的,也就是说,Φ无须根据信号X 而变化,观测的不再是信号的点采样而是信号的更一般的线性泛函。

图3.4(a )随机高斯矩阵作为观测矩阵Φ,稀疏域选择DCT 变换域,对信号X 进行DCT 变换后再进行观测。(b )是(a )图的另一种表达,变换后的系数向量Θ是稀疏的,K =3,观测得到的Y 是非零系数i θ对应的四个列向量的线性组合。

对于给定的Y 从(式3.7)中求出Θ是一个线性规划问题,但由于M<< N ,即方程

(a ) (b )

图2.3 观测矩阵的图形表示

图像压缩算法的分析与研究本科毕业设计论文

图像压缩算法的分析与研究本科毕业设计论文 河南理工大学 本科毕业设计 图像压缩算法的分析与研究 摘? 要 随着多媒体技术和通讯技术的不断发展, 多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求, 也给现有的有限带宽以严峻的考验, 特别是具有庞大数据量的数字图像通信, 更难以传输和存储, 极大地制约了图像通信的发展, 因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩, 可以减轻图像存储和传输的负担, 使图像在网络上实现快速传输和实时处理。 本文主要介绍数字图像处理的发展概况,图像压缩处理的原理和特点,对多种压缩编码方法进行描述和比较,详细讨论了Huffman编码的图像压缩处理的原理和应用。 关键词:图像处理,图像压缩,压缩算法,图像编码,霍夫曼编码

Abstract With the developing of multimedia technology and communication technology, multimedia entertainment, information, information highway have kept on data storage and transmission put forward higher requirements, but also to the limited bandwidth available to a severe test, especially with large data amount of digital image communication, more difficult to transport and storage, greatly restricted the development of image communication, image compression techniques are therefore more and more attention. The purpose of image compression is to exhaust the original image less the larger the bytes and transmission, and requires better quality of reconstructed images. Use of image compression, image storage

基于DCT的数字图像压缩及Matlab实现

实验三基于DCT的数字图像压缩及Matlab实现兰州大学信息学院08级通信工程一班赵军伟 一、课程设计的目的和要求等内容 实验目的:掌握基于DCT变换的图像压缩的基本原理及其实现步骤;通过使用MATLAB,对同一幅原始图像进行压缩,进一步掌握DCT和图像压缩。 实验要求: 1、学生在实验操作过程中自己动手独立完成,2人为1组。 2、上机过程中由指导老师检查结果后方可做其他内容。 3、完成实验报告:按照实验的每个题目的具体要求完成 二、基本原理或方法 (一)图像压缩基本原理 图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。压缩技术分为无损压缩和有损压缩两大类,前者在解码时可以精确地恢复原图像,没有任何损失;后者在解码时只能近似原图像,不能无失真地恢复原图像。 假设有一个无记忆的信源,它产生的消息为{ai},1≤i≤N,其出现的概率是已知的,记为P(ai)。则其信息量定义为: 由此可见一个消息出现的可能性越小,其信息量就越多,其出现对信息的贡献量越大,反之亦然。 信源的平均信息量称为“熵”(entropy),可以表示为: 对上式取以2为底的对数时,单位为比特(bits):

根据香农(Shannon)无噪声编码定理,对于熵为H的信号源,对其进行无失真编码所可能达到的最低比特数为,这里为一任意小的正数,因此可能达到的最大压缩比为: 其中B是原始图像的平均比特率。 在图像压缩中,压缩比是一个重要的衡量指标。可以定义压缩比为: (二)图像压缩的基本模型 图像编码包括两个阶段,前一个阶段就是利用预测模型或正交模型对图像信号进行变换;后一个阶段是利用已变换信号的统计特性,对其分配适当的代码来进行编码传输。 编码器与解码器的结构分别如图(a)、(b)。 在发送端,输入的原始图像首先经过DCT变换后,其低频分量都集中在左上角,高频分量分布在右下角(DCT变换实际上是空间域的低通滤波器)。由于该低频分量包含了图像的主要信息,而高频分量与之相比就不那么重要了,所以可以忽略高频分量,从而达到压缩的目的。将高频分量去掉就要用到量化,这是产生信息损失的根源。 “量化”的主要任务是用有限个离散电平来近似表达已抽取出的信息。在此采用均匀量化,通过改变程序中的量化因子Q的值以得到不同压缩比的图像。Huffman编码时,首先对经DCT变换及量化后的图像收据扫描一遍,计算出各种像素出现的概率;然后按概率的大小指定不同长度的唯一码字,由此得到一张Huffman表。编码后的图像记录的是每个像素的码字,而码字与量化后像素值的对应关系记录在码表中。生成的一维字符矩阵即为实际中要传输的序列,压缩后

JPEG图像压缩毕设开题报告改

毕业设计(论文)附件课题名称JPEG图像压缩算法研究和实现 学生姓名潘永 目录 1.毕业设计(论文)任务书………………………………… 2.毕业设计(论文)开题报告……………………………… 3.毕业设计(论文)进度考核表…………………………… 4.毕业设计(论文)评阅表………………………………… 2014年5月20日

毕业设计(论文)开题报告书 课题名称JPEG图像压缩算法研究和实现 学生姓名潘永 学号1041303024 系、年级专业信息工程系、10通信工程 指导教师周晓燕 2013年12 月13 日

一、课题的来源、目的、意义(包括应用前景)、国内外现状及水平 (1)课题来源: 随着现代信息社会对通信业务要求的不断增长,图像通信与通信网的容量的矛盾日益突出。特别是具有庞大数据的数字图像通信,更难以传输与存储,极大地制约了图像通信的发展,已成为图像通信发展的“瓶颈”问题。图像压缩编码的目的就是以尽量少的比特数表征图像,同时保持复原图像的质量,使它符合特定应用场合的要求。 (2)课题目的: 掌握图像压缩算法的基本原理,编程实现对图像的压缩。 (3)课题意义: 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 (4)国内外现状及水平: 图像压缩编码技术可以追溯到1948年提出的电视信号数字,到今天已经有60年的历史了。Kunt提出了第一代数据压缩编码的概念,他把20世纪40年代中研究的以去除冗余为基础的编码方法称为第一代编码。直至五十年代和六十年代,图像压缩技术仅仅停留在预测编码法、亚采样以及内插复原等技术的研究上,而且还很不成熟。第二代数据压缩编码从20世纪90年代开始,设计出另一种更为精确,更能接近信息论中“熵”极限的编码法。第三代压缩编码技术主要从60年代至今,图像压缩技术的主要成果体现在小波编码、分形编码等。 为了解决JPEG压缩中存在的计算复杂和块效应的问题,近年来出现了很多新的压缩编码方法,如使用人工神经元网络的压缩编码算法:分形、小波、基于对象的压缩编码算法、基于模型的压缩编码算法等。 从国际数据压缩技术的发展尤其是MPEG的发展可以看出,基于内容的图像压缩编码方法是编码的发展趋势。它不仅能满足进一步获得更大的图像压缩比的要求,而且能够实现人机对话的功能。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。

基于DCT的图像压缩及Matlab实现

通信专业课程设计一 太原科技大学 课程设计(论文) 设计(论文)题目:基于DCT的图像压缩及Matlab实现 姓名____ 学号_ 班级_ 学院____ 指导教师____ 2010年12月31日

太原科技大学课程设计(论文)任务书 学院(直属系):时间: 学生姓名指导教师 设计(论文)题目基于DCT的图像压缩及Matlab实现 主要研究内容 掌握DCT变换实现图像压缩的基本方法,在不损害图像信源的有效信息量的情况下保证图像的质量,在MATLAB环境中进行图像压缩技术的仿真,并对仿真结果进行分析。 研究方法 主要运用实验法与观察法,通过编写程序实现对图像的DCT变换,观察图像结果进而实现对DCT变换的研究。 主要技术指标(或研究目标) 利用DCT变换编码方法进行图像压缩,提高信息传输的有效性及通信质量。 教研室 意见 教研室主任(专业负责人)签字:年月日

目录 摘要.............................................................................................................................................II 第1章绪论. (1) 第2章DCT变换概述 (2) 2.1DCT函数介绍 (2) 2.2DCT变换介绍 (2) 2.2.1DCT变换原理 (2) 2.2.2DCT变换编码的步骤 (3) 第3章程序运行及结果分析 (5) 3.1程序代码 (5) 3.2运行结果分析 (7) 第4章结论 (11) 参考文献 (12)

基于matlab的毕业论文题目参考

基于matlab的毕业论文题目参考 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。以下是基于matlab的毕业论文题目,供大家参考。 基于matlab的毕业论文题目一: 1、基于遗传算法的小麦收割机路径智能优化控制研究 2、零转弯半径割草机连续翻滚特性参数化预测模型 3、基于MATLAB的PCD铰刀加工硅铝合金切削力研究 4、基于状态反馈的四容水箱控制系统的MATLAB仿真研究 5、基于Matlab软件的先天性外耳道狭窄CT影像特点分析 6、Matlab仿真在船舶航向自动控制系统中的研究与仿真 7、基于MATLAB的暂态稳定措施可行性仿真与分析 8、基于MATLAB的某专用越野汽车动力性能分析 9、基于MATLAB的电力系统有源滤波器设计 10、基于MATLAB和ANSYS的弹簧助力封闭装置结构分析 11、基于Matlab的液力变矩器与发动机匹配计算与分析 12、运用MATLAB绘制接触网下锚安装曲线 13、基于MatlabGUI的实验平台快速搭建技术 14、基于MATLAB的激光-脉冲MIG复合焊过程稳定性评价

15、测绘数据处理中MATLAB的优越性及应用 16、基于MATLAB柴油机供油凸轮型线设计 17、基于MATLAB语言的TRC加固受火后钢筋混凝土板的承载力分析方法 18、MATLAB辅助OptiSystem实现光学反馈环路的模拟 19、基于MATLABGUI的电梯关门阻止力分析系统设计 20、基于LabVIEW与MATLAB混合编程的手势识别系统 21、基于MATLAB的MZ04型机器人运动特性分析 22、MATLAB在煤矿巷道支护参数的网络设计及仿真分析 23、基于MATLAB的自由落体运动仿真 24、基于MATLAB的电动汽车预充电路仿真 25、基于Matlab的消弧模型仿真研究 26、基于MATLAB/GUI的图像语义自动标注系统 27、基于Matlab软件GUI的机械波模拟 28、基于Matlab的S曲线加减速控制算法研究 29、基于Matlab和Adams的超速机柔性轴系仿真 30、基于Matlab与STM32的电机控制代码自动生成 31、基于Matlab的相机内参和畸变参数优化方法 32、基于ADAMS和MATLAB的翻转机构联合仿真研究 33、基于MATLAB的数字图像增强软件平台设计 34、基于Matlab的旋转曲面的Gif动画制作 35、浅谈Matlab编程与微分几何简单算法的实现

毕业设计用matlab仿真

毕业设计用matlab仿真 篇一:【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序) 基于matlab的人脸识别系统设计与仿真 第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。

如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人 类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,在不同的环境下拍摄所得到的人脸图像不同,有时更会有很大的差别,给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。 国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。 1.2 人脸图像识别的应用前景 人脸图像识别除了具有重大的理论价值以及极富挑战

基于MATLAB的图像压缩感知算法的实现毕业设计说明书论文

毕业设计(论文) 课题名称基于MATLAB的图像压缩感知 算法的实现 系:电气工程系 专业:电子信息工程 毕业设计(论文)原创性声明和使用授权说明

原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

最常用的matlab图像处理的源代码

最常用的一些图像处理Matlab源代 码 #1:数字图像矩阵数据的显示及其傅立叶变换 #2:二维离散余弦变换的图像压缩 #3:采用灰度变换的方法增强图像的对比度 #4:直方图均匀化 #5:模拟图像受高斯白噪声和椒盐噪声的影响 #6:采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波 #7:采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 #8:图像的自适应魏纳滤波 #9:运用5种不同的梯度增强法进行图像锐化 #10:图像的高通滤波和掩模处理 #11:利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理 #12:利用巴特沃斯(Butterworth)高通滤波器对受噪声干扰的图像进行平滑处理 1.数字图像矩阵数据的显示及其傅立叶变换 f=zeros(30,30); f(5:24,13:17)=1; imshow(f, 'notruesize'); F=fft2(f,256,256); % 快速傅立叶变换算法只能处矩阵维数为2的幂次,f矩阵不 % 是,通过对f矩阵进行零填充来调整 F2=fftshift(F); % 一般在计算图形函数的傅立叶变换时,坐标原点在 % 函数图形的中心位置处,而计算机在对图像执行傅立叶变换 % 时是以图像的左上角为坐标原点。所以使用函数fftshift进 %行修正,使变换后的直流分量位于图形的中心; figure,imshow(log(abs(F2)),[-1 5],'notruesize');

2 二维离散余弦变换的图像压缩I=imread('cameraman.tif'); % MATLAB自带的图像imshow(I); clear;close all I=imread('cameraman.tif'); imshow(I); I=im2double(I); T=dctmtx(8); B=blkproc(I,[8 8], 'P1*x*P2',T,T'); Mask=[1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; B2=blkproc(B,[8 8],'P1.*x',Mask); % 此处为点乘(.*) I2=blkproc(B2,[8 8], 'P1*x*P2',T',T); figure,imshow(I2); % 重建后的图像 3.采用灰度变换的方法增强图像的对比度I=imread('rice.tif'); imshow(I); figure,imhist(I); J=imadjust(I,[0.15 0.9], [0 1]); figure,imshow(J); figure,imhist(J);

基于DCT变换的图像压缩技术的研究

本科毕业设计论文 题目:基于DCT变换的图像压缩技术的研究 专业名称: 学生姓名: 指导教师: 毕业时间:

毕业 一、题目 基于DCT变换的图像压缩技术的研究 二、指导思想和目的要求 指导思想:图像信息给人们以直观、生动的形象,成为人们获取外部信息的重要途径。然而数字图像具有极大的数据量。在目前的计算机系统条件下,若图像信息不经过压缩,则会占用信道,传输速率变慢,而且传输成本变得昂贵,这对图像的储存、传输及使用都非常不利,同时也阻碍了人们对图像的有效获取和使用。因此,图像压缩技术的重要性也越来越高,在学习、生产、生活等方面的作用也越来越显著,对图像进行压缩成为图像研究领域的重要课题。 目的要求:基于DCT变换的图像压缩技术,首先介绍图像压缩的基本原理及方法,然后了解离散余弦变换的性质以及JPEG图像压缩算法,最后从DCT 变换、量化以及熵编码三个过程进行详细论述,利用MATLAB仿真软件实现基于DCT变换的图像压缩,去除冗余数据,节约文件所占的码字,降低原始图像数据量,解决图像数据量巨大的问题,以达到对图像进行压缩的目的。 三、主要技术指标 图像的质量评价方法主要有两种:一种是主观评价,另一种是客观评价。主观评价直接反映人眼的视觉感受,主要从亮度、色调、饱和度和细节分辨等方面入手,但因观察者个体差异、人力成本较高等原因而存在许多不足之处。通常客观评价的方法应用更广泛。常用的客观评价方法和标准有压缩比(CR)和峰值信噪比(PSNR)两种。再根据不同的量化系数得到不同的压缩比和峰值信噪比。 x,和标准图像f0()y x,的大小是M?N,常用客观评价指标定设待评价图像f()y 义如下: x,/f0()y x,不同的量化系数压缩比也不同(量化系数分压缩比:r=f()y

(完整版)matlab毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 本文概述了信号仿真系统的需求、总体结构、基本功能。重点介绍了利用Matlab软件设计实现信号仿真系统的基本原理及功能,以及利用Matlab 软件提供的图形用户界面(Graphical User Interfaces ,GUI)设计具有人机交互、界面友好的用户界面。本文采用Matlab 的图形用户界面设计功能, 开发出了各个实验界面。在该实验软件中, 集成了信号处理中的多个实验, 应用效果良好。本系统是一种演示型软件,用可视化的仿真工具,以图形和动态仿真的方式演示部分基本信号的传输波形和变换,使学习人员直观、感性地了解和掌握信号与系统的基本知识。随着当代计算机技术的不断发展,计算机逐渐融入了社会生活的方方面面。计算机的使用已经成为当代大学生不可或缺的基本技能。信号与系统课程具有传统经典的基础内容,但也存在由于数字技术发展、计算技术渗入等的需求。在教学过程中缺乏实际应用背景的理论学习是枯燥而艰难的。为了解决理论与实际联系起来的难题国内外教育人士目光不约而同的投向一款优秀的计算机软件——MATLAB。通过它可用计算机仿真,阐述信号与系统理论与应用相联系的内容,以此激发学习兴趣,变被动接受为主动探知,从而提升学习效果,培养主动思维、学以致用的思维习惯。以MATLAB 为平台开发的信号与系统教学辅助软件可以充分利用其快速运算,文字、动态图形、声音及交互式人机界面等特点来进行信号的分析及仿真。运用MATLAB 的数值分析及计算结果可视化、信号处理工具箱的强大功能将信号与系统课程中较难掌握和理解的重点理论和方法通过概念浏览动态演示及典型例题分析等方式,形象生动的展现出来,从而使学生对所学

基于DCT的图像压缩编码算法及其MATLAB实现【开题报告】

毕业设计(论文)开题报告 题目:基于DCT的图像压缩编码算法及其MATLAB实现 专业:电子信息工程 1选题的背景、意义 20世纪90年代世界信息化得到了快速的发展,信息化建设也获得了巨大的成就。信息科学与技术的进步促进了人类社会的持续发展,提高了人类的生活质量,改变了人类生产方式,“缩短了地球各地间的距离”。为了使信息得到及时的利用,对于信息数据的获取、存储、传输、加工处理、决策和执行等需要进行高新技术的革新,从而适应社会发展形势的需求。图像是信息获得和交流的最普遍的工具,如果没有新的技术和理论进行处理,它就会成为制约世纪信息高速公路和多媒体技术发展的瓶颈,更有可能成为限制社会发展的主要因素。科研人员就是要推动信息科学技术的发展而探索其新理论、新方法,对于理论和方法不遗余力地进行宣传、介绍,去实验和实现,去普及以及发展[1]。 随着信息技术的发展,图像信息被广泛应用于多媒体通信和计算机系统中,但是图像数据的一个显著特点就是信息量大。具有庞大的数据量,如果不经过压缩,不仅超出了计算机的存储和处理能力,而且在现有的通信信道的传输速率下,是无法完成大量多媒体信息实时传输的。为了更有效的存储、处理和传输这些图像数据,必须对其进行压缩,因此有必要对图像压缩编码进行研究。由于组成图像的各像素之间,无论是在水平方向还是在垂直方向上都存在着一定的相关性,因此只要应用某种图像压缩编码方法提取或者减少这种相关性,就可以达到压缩数据的目的[2]。 从信息传输发展的历史上可以得出,人们在信息传输的重点上慢慢的从声音转向了图像,然而图像是三种信息形式中数据量最大的,这给图像的传输和存储造成了极大的困难。比方说一幅640×480分辨率的24位真彩色图像所需要的数据量大概为900kb;一个100Mb的硬盘只可以储存l00幅左右的静止图像。针对如此大量的数字图像数据,如果不进行压缩,将会超出计算机的存储及处理能力,而且在现有的通信信道的传输速率下,是不能完成大量多媒体信息的实时传输的,数字图像高速传输和储存所需的巨大容量已经成为了推广数字图像通信的最主要的障碍。因此,为了储存、处理和传输这些数据,必须对其进行压缩[3]。 因为原始图像数据是高度相关的并且存在着很大的数据冗余,所以图像压缩才能够进行。数字图像所含有的冗余信息通常有以下几种:空间冗余、时间冗余、

一种基于MATLAB的JPEG图像压缩具体实现方法

一种基于MATLAB的JPEG图像压缩具体实现方法 说明:该方法主要是对FPGA硬件实现编码的一个验证,MATLAB处理时尽量选择了简单化和接近硬件实现需要。 JPEG编码解码流程:BMP图像输入、8*8分块、DCT变换、量化、Zig_Zag 扫描、获取DC/AC系数中间格式、Huffman熵编码、DC/AC系数Huffman熵解码,反zig_zag扫描、反量化、反DCT变换、8*8组合、解码图像显示。 下面根据具体代码解释实现过程。 1.BMP图像输入 A=imread('messi_b.bmp'); %读取BMP图像矩阵 R=int16(A(:,:,1))-128; %读取RGB矩阵,由于DCT时输入为正负输入, G=int16(A(:,:,2))-128; %使得数据分布围-127——127 B=int16(A(:,:,3))-128; 通过imread函数获取BMP图像的R、G、B三原色矩阵,因为下一步做DCT 转换,二DCT函数要求输入为正负值,所以减去128,使得像素点分布围变为-127~127,函数默认矩阵A的元素为无符号型(uint8),所以如果直接相减差值为负时会截取为0,所以先用int16将像素点的值转为带符号整数。网上很多都提到了第一步的YUV转换,但是由于MATLAB在实验时YUV转换后色差失真比较严重,这里没有进行YUV转换。个人理解为YUV转换后经过非R/G/B原理显示器显示效果可能会比较好,或者如果图像有色差可以选择YUV调整。为了方便,读入的图像像素为400*296,是8*8的50*37倍,所以代码里没有进行8*8的整数倍调整。 2. 8*8分块 R_8_8=R(1:8,1:8);%取出一个8*8块 这里以R色压缩解码为例,后边解释均为R色编码解码过程,最后附全部代码。R_8_8为: 3.DCT变换 R_DCT=dct2(R_8_8); 使用MATLAB函数dct2进行DCT变换,也可使用DCT变换矩阵相乘的方法,即R_DCT=A* R_8_8*A T,其中A为DCT变换矩阵。R_DCT为:

基于MATLAB的PID控制器设计毕业设计(论文)

毕业设计论文 基于MATLAB的PID控制器设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于MATLAB的图像压缩处理技术的研究与实现毕业设计

基于MATLAB的图像压缩处理技术的研究与实 现毕业设计 目录 第一部分毕业论文 一、毕业论文 第二部分外文资料翻译 一、外文资料原文 二、外文资料翻译 第三部分过程管理资料 一、毕业设计(论文)课题任务书 二、本科毕业设计(论文)开题报告 三、本科毕业设计(论文)中期报告 四、毕业设计(论文)指导教师评阅表 五、毕业设计(论文)评阅教师评阅表

六、毕业设计(论文)答辩评审表

2009 届 本科生毕业设计(论文)资料 第一部分毕业论文 -

(2009 届) 本科生毕业论文 基于MATLAB的图像压缩处理技术的研 究与实现 2009 年6 月

长沙学院本科生毕业论文 基于MATLAB的图像压缩处理技术的研究与实 现 系部:电子与通信工程系 专业:通信工程 学号:2005043204 学生姓名:马娟 指导教师:刘光灿教授 王路露助教 2009 年6月

目录 摘要................................................................................. 错误!未定义书签。ABSTRACT ........................................................................ 错误!未定义书签。第1章绪论 (1) 1.1 论文研究背景及意义 (1) 1.2 图像压缩技术的历史与现状 (1) 1.3 离散余弦变换及其在图象压缩中的应用 (2) 1.4 论文研究的主要内容 (2) 第2章图像压缩的基本原理 (4) 2.1 图象压缩评价标准 (4) 2.1.1 客观标准 (4) 2.1.2 主观标准 (5) 2.2 图像压缩技术标准 (5) 2.3 图像压缩的分类 (8) 2.4 图像压缩处理技术基本理论 (9) 2.4.1 图像压缩的基本原理 (9) 2.4.2 图像压缩的基本模型 (10) 第3章离散余弦变换的MATLAB实现 (12) 3.1 MATLAB图像处理工具箱 (12) 3.2 离散余弦变换的定义 (12) 3.3 离散余弦变换的基本原理与算法 (13) 3.3.1 离散余弦变换的基本原理 (13) 3.3.2 离散余弦变换算法 (15) 3.4 离散余弦算法的实现 (15) 第4章离散余弦变换的界面实现 (17) 4.1 图形用户界面简介 (17) 4.2 界面设计的MATLAB实现 (17) 4.2.1 界面设计总体概述 (17) 4.2.2 界面设计具体实现 (18) 第5章运行结果显示及分析 (20)

一种基于MATLAB的JPEG图像压缩具体实现方法

一种基于MATLAB的JPEG图像压缩具体实现方法说明:该方法主要是对FPGA硬件实现编码的一个验证,MATLAB处理时尽量选择了简单化和接近硬件实现需要。 JPEG编码解码流程:BMP图像输入、8*8分块、DCT变换、量化、Zig_Zag 扫描、获取DC/AC系数中间格式、Huffman熵编码、DC/AC系数Huffman熵解码,反zig_zag扫描、反量化、反DCT变换、8*8组合、解码图像显示。 下面根据具体代码解释实现过程。 1.BMP图像输入 A=imread('messi_b.bmp'); %读取BMP图像矩阵 R=int16(A(:,:,1))-128; %读取RGB矩阵,由于DCT时输入为正负输入,G=int16(A(:,:,2))-128;%使得数据分布范围-127——127 B=int16(A(:,:,3))-128; 通过imread函数获取BMP图像的R、G、B三原色矩阵,因为下一步做DCT 转换,二DCT函数要求输入为正负值,所以减去128,使得像素点分布范围变为-127~127,函数默认矩阵A的元素为无符号型(uint8),所以如果直接相减差值为负时会截取为0,所以先用int16将像素点的值转为带符号整数。网上很多都提到了第一步的YUV转换,但是由于MATLAB在实验时YUV转换后色差失真比较严重,这里没有进行YUV转换。个人理解为YUV转换后经过非R/G/B原理显示器显示效果可能会比较好,或者如果图像有色差可以选择YUV调整。为了方便,读入的图像像素为400*296,是8*8的50*37倍,所以代码里没有进行8*8的整数倍调整。 2.8*8分块 R_8_8=R(1:8,1:8);%取出一个8*8块 这里以R色压缩解码为例,后边解释均为R色编码解码过程,最后附全部代码。R_8_8为: 3.DCT变换 R_DCT=dct2(R_8_8); 使用MATLAB函数dct2进行DCT变换,也可使用DCT变换矩阵相乘的方法,即R_DCT=A*R_8_8*A T,其中A为DCT变换矩阵。R_DCT为:

本科毕业设计__基于matlab的通信系统仿真报告

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽 11042232 温 靖
班 级 学 号: 指 导 老 师:
二 O 一四年十月十五日

目录
一、引言 ....................................................................................................................... 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成................................................................................................................ 4 2.2 信道编译码......................................................................................................................... 4 2.2.1 卷积码的原理 ......................................................................................................... 4 2.2.2 译码原理................................................................................................................. 5 2.3 调制与解调........................................................................................................................ 5 2.3.1 BPSK 的调制原理 ................................................................................................... 5 2.3.2 BPSK 解调原理 ....................................................................................................... 6 2.3.3 QPSK 调制与解调................................................................................................... 7 2.4 信道..................................................................................................................................... 8 2.4.1 加性高斯白噪声信道 ............................................................................................. 8 2.4.2 瑞利信道................................................................................................................. 8 2.5 多径合并............................................................................................................................. 8 2.5.1 MRC 方式 ................................................................................................................ 8 2.5.2 EGC 方式................................................................................................................. 9 2.6 采样判决............................................................................................................................. 9 2.7 理论值与仿真结果的对比 ................................................................................................. 9
三、系统仿真分析 ..................................................................................................... 11
3.1 有信道编码和无信道编码的的性能比较 ....................................................................... 11 3.1.1 信道编码的仿真 .................................................................................................... 11 3.1.2 有信道编码和无信道编码的比较 ........................................................................ 12 3.2 BPSK 与 QPSK 调制方式对通信系统性能的比较 ........................................................ 13 3.2.1 调制过程的仿真 .................................................................................................... 13 3.2.2 不同调制方式的误码率分析 ................................................................................ 14 3.3 高斯信道和瑞利衰落信道下的比较 ............................................................................... 15 3.3.1 信道加噪仿真 ........................................................................................................ 15 3.3.2 不同信道下的误码分析 ........................................................................................ 15 3.4 不同合并方式下的对比 ................................................................................................... 16 3.4.1 MRC 不同信噪比下的误码分析 .......................................................................... 16 3.4.2 EGC 不同信噪比下的误码分析 ........................................................................... 16 3.4.3 MRC、EGC 分别在 2 根、4 根天线下的对比 ................................................... 17 3.5 理论数据与仿真数据的区别 ........................................................................................... 17
四、设计小结 ............................................................................................................. 19 参考文献 ..................................................................................................................... 20

相关主题
文本预览
相关文档 最新文档