当前位置:文档之家› 材料现代分析技术讲义-扫描探针显微分析法

材料现代分析技术讲义-扫描探针显微分析法

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

《扫描探针显微镜》讲义

《扫描探针显微镜》讲义 2007/11/13 丁喜冬 目次 一扫描探针显微镜(SPM)概述 二扫描力显微镜(SFM)概述 三SFM中的力及其检测技术 四几种常见的SPM 五商品化的SPM仪器的例子 六SPM的应用举例 参考文献: (1)白春礼、田芳、罗克著,扫描力显微术,科学出版社,2000 (2)白春礼编著,扫描隧道显微术及其应用,上海科学技术出版社,1992.10 (3)G..Binning,C.F.Quate,Ch.Gerber. Phys.Rev.Lett 56,930(1986) (4)J. K. H. Ho¨rber1 and M. J. Miles,Scanning Probe Evolution in Biology,Volume302, Science, 7.Nov 2003 (5)Werner A.Hofer, Adam S.Foster, Alexander L.Shluger, Theories of scanning probe microscopes at the atomic scale, Reviews of Modern Physics, V olume75, October 2003.

一扫描探针显微镜(SPM)概述 1、发展背景 1982年,国际商用机器公司(IBM)苏黎世实验室的宾尼(Binning)和罗雷尔(Rohrer)及其同事们研制成功了世界上第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunning Microscope, STM)。宾尼和罗雷尔因此而获得1986年的诺贝尔物理学奖。它的出现,使人类第一次能够实时的观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,被国际科技界公认为80年代十大科技成就之一。随后,STM仪器本身及其相关仪器获得了蓬勃发展,诞生了一系列在工作模式、组成模式及主要性能与STM相似的显微仪器,用来获取STM无法获取的各种信息。这些仪器目前统称为扫描探针显微镜(Scanning Probe Microscope, SPM)。这些仪器的共同特点是:采用尖锐的探针在样品表面扫描的方法来获取样品表面的一些性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同。这些仪器的发明,使人们跨入了原子和分子世界,成为人们认识微观世界的有力工具,在科技和工业方面已经、并且必将继续产生深刻的影响,在材料科学、微电子学、物理、化学、生物学等领域有着重大的意义和广阔的应用前景。 2、SPM的种类 扫描探针显微镜(SPM)家族中目前有近20个成员。由于其技术还在不断发展之中,所以其成员将继续增加。按照工作原理,大致可以分为:与隧道效应有关的显微镜、扫描力显微镜、扫描离子电导显微镜、扫描热显微镜等几类。与隧道效应有关的显微镜是基于量子隧道效应工作的。STM是SPM家族的第一个成员,也是与隧道效应有关的显微镜的典型代表。其成员还包括扫描噪声显微镜(SNM)、扫描隧道电位仪(STP)、弹道电子发射显微镜(BEEM)、光子扫描隧道显微镜(PSTM)等。扫描力显微镜(Scanning Force Microscope,SFM)通过检测探针与样品之间的相互作用力而成像,除了宾尼等人于1986年发明的原子力显微镜(Atomic Force Microscope,AFM)外,应用较广的还有:磁力显微镜(MFM)、静电力显微镜(EFM)、摩擦力显微镜(LFM)、化学力显微镜(CFM)等。 3、SPM的工作原理 扫描探针显微镜采用尖锐的探针在样品表面扫描的方法来获取样品表面的电、磁、声、光、热等物理的或化学的性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同,即各种扫描探针显微镜除了探针部分外,工作原理是基本一样的。 4、SPM的应用前景 SPM具有的原子和分子尺度上的探测材料性质的能力,因此,SPM无论在基础项目研究还是在技术领域的应用都具有独一无二的优势。目前,SPM已广泛应用于材料科学、物理、化学、生命科学等科研领域,取得了许多重要的研究成果,并推动着这些学科向前发展,出现了一系列新的交叉学科。另外,扫描探针显微镜的应用已不仅仅局限于基础研究方面,它已迅速向工业应用领域扩展。 图1-1 SPM的分类 图1-2 SPM的工作原理

材料现代分析方法北京工业大学

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

扫描探针显微镜(scanning

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介: 该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。 ●分辨率 原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能 样品尺寸:最大可达直径12mm,厚度8mm 扫描范围:125X125μm,垂向1μm ●型号: Veeco NanoScope MultiMode扫描探针显微镜 本次培训着重介绍该设备常用模式:Contact Mode AFM 二、AFM独特的优点归纳如下: (l)具有原子级的超高分辨率。理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。,从而可获得物质表面的原子晶格图像。 (2)可实时获得样品表面的实空间三维图像。既适用于具有周期性结

构的表面,又适用于非周期性表面结构的检测。 (3)可以观察到单个原子层的局部表面性质。直接检测表面缺陷、表面重构、表面吸附形态和位置。 (4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。 三、AFM的基本原理: AFM基于微探针与样品之间的原子力作用机制。以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。原子力变化的梯度约为10-13N/nm。原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

实验六 电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法 一、实验内容及实验目的 1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、电子探针的分析方法 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。 1.实验条件 (1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。 (4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

(完整版)材料现代分析方法考试试卷

班级学号姓名考试科目现代材料测试技术A 卷开卷一、填空题(每空1 分,共计20 分;答案写在下面对应的空格处,否则不得分) 1. 原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为_辐射跃迁__ 跃迁或_无辐射跃迁__跃迁。 2. 多原子分子振动可分为__伸缩振动_振动与_变形振动__振动两类。 3. 晶体中的电子散射包括_弹性、__与非弹性___两种。 4. 电磁辐射与物质(材料)相互作用,产生辐射的_吸收_、_发射__、_散射/光电离__等,是光谱分析方法的主要技术基础。 5. 常见的三种电子显微分析是_透射电子显微分析、扫描电子显微分析___和_电子探针__。 6. 透射电子显微镜(TEM)由_照明__系统、_成像__系统、_记录__系统、_真空__系统和__电器系统_系统组成。 7. 电子探针分析主要有三种工作方式,分别是_定点_分析、_线扫描_分析和__ 面扫描_分析。 二、名词解释(每小题3 分,共计15 分;答案写在下面对应的空格处,否则不得分) 1. 二次电子二次电子:在单电子激发过程中被入射电子轰击出来的核外电子. 2. 电磁辐射:在空间传播的交变电磁场。在空间的传播遵循波动方程,其波动性表现为反射、折射、干涉、衍射、偏振等。 3. 干涉指数:对晶面空间方位与晶面间距的标识。 4. 主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线 5. 特征X 射线:迭加于连续谱上,具有特定波长的X 射线谱,又称单色X 射线谱。 三、判断题(每小题2 分,共计20 分;对的用“√”标识,错的用“×”标识) 1.当有外磁场时,只用量子数n、l 与m 表征的原子能级失去意义。(√) 2.干涉指数表示的晶面并不一定是晶体中的真实原子面,即干涉指数表示的晶面上不一定有原子分布。(√) 3.晶面间距为d101/2 的晶面,其干涉指数为(202)。(×) 4.X 射线衍射是光谱法。(×) 5.根据特征X 射线的产生机理,λKβ<λK α。 (√ ) 6.物质的原子序数越高,对电子产生弹性散射的比例就越大。(√ ) 7.透射电镜分辨率的高低主要取决于物镜。(√ )8.通常所谓的扫描电子显微镜的分辨率是指二次电子像的分辨率。(√)9.背散射电子像与二次电子像比较,其分辨率高,景深大。(× )10.二次电子像的衬度来源于形貌衬度。(× ) 四、简答题(共计30 分;答案写在下面对应的空格处,否则不得分) 1. 简述电磁波谱的种类及其形成原因?(6 分)答:按照波长的顺序,可分为:(1)长波部分,包括射频波与微波。长波辐射光子能量低,与物质间隔很小的能级跃迁能量相适应,主要通过分子转动能级跃迁或电子自旋或核自旋形成;(2)中间部分,包括紫外线、可见光核红外线,统称为光学光谱,此部分辐射光子能量与原子或分子的外层电子的能级跃迁相适应;(3)短波部分,包括X 射线和γ射线,此部分可称射线谱。X 射线产生于原子内层电子能级跃迁,而γ射线产生于核反应。

材料现代分析方法试题 6

材料现代分析方法试题 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 2.当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl)晶面衍射线的 波程差是多少?相邻两个HKL干涉面的波程差又是多少? 3.测角仪在采集衍射图时,如果试样表面转到与入射线成30 0角,则计数管 与入射线所成角度为多少?能产生衍射的晶面,与试样的自由表面是何种几何关 系? 4.宏观应力对X射线衍射花样的影响是什么?衍射仪法测定宏观应力的方法 有哪些? 5.薄膜样品的基本要求是什么? 具体工艺过程如何? 双喷减薄与离子减薄 各适用于制备什么样品? 6.图说明衍衬成像原理,并说明什么是明场像、暗场像和中心暗场像。 7.说明透射电子显微镜成像系统的主要构成、安装位置、特点及其作用。 8.何为晶带定理和零层倒易截面? 说明同一晶带中各晶面及其倒易矢量与 晶带轴之间的关系。 9.含苯环的红外谱图中,吸收峰可能出现在哪4个波数范围? 10.陶瓷纳米/微米颗粒的红外光谱的分析样品该如何制,为什么? 二、综合及分析题(共5题,每题10分) 1.请说明多相混合物物相定性分析的原理与方法? 2.对于晶粒直径分别为100,75,50,25nm的粉末衍射图形,请计算由于晶粒细化引起的衍射线条宽化幅度B(设θ=450,λ=0.15nm)。对于晶粒直径为25nm的粉末,试计算θ=100、450、800时的B 值。 3.二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处? 4.何为波谱仪和能谱仪?说明其工作的三种基本方式及其典型应用,并比较波谱仪和能谱仪的优缺点。要分析钢中碳化物成分和基体中碳含量,应选用哪种电子探针仪? 为什么? 5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题(参考答案) 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 答:光电效应是指:当用X射线轰击物质时,若X射线的能量大于物质原子 对其内层电子的束缚力时,入射X射线光子的能量就会被吸收,从而导致其内层 电子被激发,产生光电子。材料分析中应用光电效应原理研制了光电子能谱仪和 荧光光谱仪,对材料物质的元素组成等进行分析。 2.什么叫干涉面?当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl) 晶面衍射线的波程差是多少?相邻两个HKL干涉面的波程差又是多少? 答:晶面间距为d’/n、干涉指数为nh、nk、nl的假想晶面称为干涉面。当波 长为λ的X射线照射到晶体上发生衍射,相邻两个(hkl)晶面的波程差是nλ, 相邻两个(HKL)晶面的波程差是λ。

电子探针、扫描电镜显微分析2

图8-12 电子探针结构的方框图 2.4.1 电子光学系统 电子光学系统包括电子枪、电磁透镜、消像散器和扫描线圈等。其功能是产生一定能量的电子束、足够大的电子束流、尽可能小的电子束直径,产生一个稳定的X 射线激发源。 2.4.1.1 电子枪 电子枪是由阴极(灯丝)、栅极和阳极组成。它的主要作用是产生具有一定能量的细聚焦电子束(探针)。从加热的钨灯丝发射电子,由栅极聚焦和阳极加速后,形成一个10μm ~100μm 交叉点(Crossover),再经过二级会聚透镜和物镜的聚焦作用,在试样表面形成一个小于1μm 的电子探针。电子束直径和束流随电子枪的加速电压而改变, 加速电压可变范围一般为1kV ~30kV 。 2.4.1.2 电磁透镜 电磁透镜分会聚透镜和物镜,靠近电子枪的透镜称会聚透镜,会聚透镜一般分两级,是把电子枪形成的10μm -100μm 的交叉点缩小1-100倍后,进入样品上方的物镜,物镜可将电子束再缩小并聚焦到样品上。为了挡掉大散射角的杂散电子,使入射到样品的电子束直径尽可能小,会聚透镜和物镜下方都有光阑。 为了在物镜和样品之间安置更多的信号探测器,如二次电子探测器、能谱仪等,必须有一定的工作距离( 物镜底面和样品之间的距离)。工作距离加长必然会使球差系数增大,从而使电子束直径变大,如果电子束几何直径为dg, 由于球差系数的影响,最终形成的电子束 直径d 应为:d 2=dg 2+ds 2 ,ds 为最小弥散圆直径,它和球差系数Cs 的关系为: ds = 2 1Cs 2 α (8·2) α为探针在试样表面的半张角。因此,增加工作距离受到球差的限制。为了解决这一矛盾,设计了一种小物镜,是这类仪器的一项重要改进。小物镜可以在不增加工作距离的情况下,在物镜和样品之间安放更多的信号探测器,如JCXA -733电子探针,工作距离为11mm ,可同时安装四道波谱仪(WDS),一个能谱仪,一个二次电子探测器和一个背散射电子探测器,并使X 射线出射角增加到40°。高出射角减小了试样对X 射线的吸收和样品表面粗糙所造成的影响,但小物镜要获得足够的磁场必须在其线圈内通以大电流,为了解决散热问题要进行强制冷却,一般用油冷却。

材料现代分析方法知识点

材料现代分析方法知识点 1.什么是特征X射线? 当管压增至与阳极靶材对应的特定值U k时,在连续谱的某些特定波长位置上出现一系列陡峭的尖峰。该尖峰对应的波长λ与靶材的原子序数Z存在着严格的对应关系,尖峰可作为靶材的标志或特征,故称尖峰为特征峰或特征谱。 2.什么是电子探针的点分析、线分析、面分析? ①点分析:将电子束作用于样品上的某一点,波谱仪分析时改变分光晶体和探测器的位置,收集分析点的特征X射线,由特征X射线的波长判定分析点所含的元素;采用能谱仪工作时,几分钟内可获得分析点的全部元素所对应的特征X射线的谱线,从而确定该点所含有的元素及其相对含量。②线分析:将探针中的谱仪固定于某一位置,该位置对应于某一元素特征X射线的波长或能量,然后移动电子束,在样品表面沿着设定的直线扫描,便可获得该种元素在设定直线上的浓度分布曲线。改变谱仪位置则可获得另一种元素的浓度分布曲线。③面分析:将谱仪固定于某一元素特征X射线信号(波长或能量)位置上,通过扫描线圈使电子束在样品表面进行光栅扫描(面扫描),用检测到的特征X射线信号调制成荧光屏上的亮度,就可获得该元素在扫描面内的浓度分布图像。 3. XRD对样品有何要求? 粉末样品应干燥,粒度一般要求约10~80μm,应过200目筛子(约0.08mm),且避免颗粒不均匀。块状样品应将其处理成与窗孔大小一致,可扫描宽度宜大于5mm,小于30mm,至少保证一面平整。 4.电子探针分析原理? 电子探针是一中利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器。其结构与扫描电竞基本相同,所不同的只是电子探针检测的是特征X射线,而不是二次电子或背散射电子。 5.结构因子的计算?P68 (1)简单点阵:简单点阵的晶胞仅有一个原子,坐标为(0,0,0),即X=Y=Z=0,设原子的散射因子为f,则(公式3-69) (2)底心点阵:底心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,0)各原子的散射因子为f,则(公式3-70) (3)体心点阵:体心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,1/2)各原子的散射因子为f,则(公式3-71) (4)面心点阵:面心点阵的晶胞有4个原子,坐标分别为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)各原子的散射因子为f,则(公式3-72) 6.X射线衍射与电子衍射的关系(比较)?P150 (1)电子波的波长短,远远小于X射线,同等衍射条件下,它的衍射半角很小,衍射束集中在前方额,而x射线的衍射半角可接近90度。 (2)电子衍射反射球半径大 (3)电子衍射散射强度高,物质对电子的散射比对x射线散射强约1000000倍 (4) 电子衍射不仅可以进行微区结构分析,还可以进行形貌观察,而x射线衍射却无法进行形貌分析 (5)薄晶样品的倒易点阵为沿厚度方向的倒易杆,大大增加了反射球与倒易杆相截的机会,即使偏离布拉格方

扫描探针显微镜原理及其应用-精工

扫描探针显微镜原理及其应用

扫描探针显微镜的历史 General term of a type microscope, which performs surface form observation in minute domain by detecting the physics properties between probe and sample . STM (1981 invention 1987 utilization) AFM (1986 invention 1990 utilization) DFM (Dynamic Force Mode )FFM (Friction Force Microscope)MFM (Magnetic Force Microscope)VE-AFM (Viscoelasticity AFM)KFM (Surface potential)SNOM Probe Sample surface physical interaction

10 mm 10μm 10 nm 10 nm 10 mm X,Y resolution/m 10μm Z r e s o l u t i o n /m SEM Optical Microscope 10 pm SPM TEM 扫描探针显微镜与其他显微镜在分辨能力上的比较 0.2nm 800μm 15μm Reference :NIKKEI MICRDEVICES 86.11

High Resolution in 3D image Atomic Image (HOPG)STM(~2nm□) Magnet-Optical Disk MFM(10μm□) Lung cancer cell among culture solution DFM(100μm□) AFM Lithography by oxidization with elec. field Vector Scan(1μm□) ~ In Air ,High Vacuum ,Liquid ,Heat ,Cool ,Magnetic Field 扫描探针显微镜的优势 Observation?Analysis ?Processing Topography & Physical property Measurement in various environment Before After

材料现代分析方法

第一章 6.什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”?答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长λ称为K系的吸收限。 ⑸当原子中K层的一个电子被打出后,它就处于K激发状态,其能量为E k。如果一个L层电子来填充这个空位,K电离就变成了L电离,其能由Ek变成El,此时将释Ek-El的能量,可能产生荧光χ射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层的一个空位被L层的两个空位所替代,这种现象称俄歇效应。 (6)俄歇电子: (7)光电子: 第二章 2. 下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(12-3), (100),(200),(- 311),(121),(111),(-210),(220),(130),(030),(2-21),(110)。 答:它们的面间距从大到小按次序是:(100)、(110)、(111)、(200)、(- 210)、(121)、 (220)、(2- 21)、(030)、(130)、( - 311)、(12 - 3)。 3. 什么叫干涉面?当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl)晶面衍射线的波程差是多少?相邻两个HKL干涉面的波程差又是多少? 答:晶面间距为d/n、干涉指数为nh、 nk、 nl的假想晶面称为干涉面。当波长为λ的X 射线照射到晶体上发生衍射,相邻两个(hkl)晶面的波程差是nλ,相邻两个(HKL)晶面的波程差是λ。 4.a-Fe属于立方晶系,点阵参数啊a=0.2866nm。如用CrKaX射线(入=0.2291nm)照射,试求(110)(200)及(211)晶面可发生衍射的掠射角。

扫描探针显微镜(SPM)原理简介及操作(修正版)

扫描探针显微镜(SPM)原理简介 庞文辉 2012.2.22 一、SPM定义 扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,包括多种成像模式,他们的共同特点是探针在样品表面扫描,同时针尖与样品间的相互作用力被记录。 SPM的两种基本形式: 1、扫描隧道显微镜(Scanning Probe Microscope,STM) 2、原子力显微镜(Atomic Force Microscope,AFM) AFM有两种主要模式: ●接触模式(contact mode) ●轻敲模式(tapping mode) SPM的其他形式: ●侧向摩擦力显微术(Lateral Force Microscopy) ●磁场力显微镜(Magnetic Force Microscope) ●静电力显微镜(Electric Force Microscope) ●表面电势显微镜(Surface Potential Microscope) ●导电原子力显微镜(Conductive Atomic Force Microscope) ●自动成像模式(ScanAsyst) ●相位成像模式(Phase Imaging) ●扭转共振模式(Torisonal Resonance Mode) ●压电响应模式(Piezo Respnance Mode) ●…… 二、STM原理及应用

基于量子力学中的隧穿效应,用一个半径很小的针尖探测被测样品表面,以金属针尖为一电极,被测固体表面为另一电极,当他们之间的距离小到1nm左右时,形成隧道结,电子可从一个电极通过量子隧穿效应穿过势垒到底另一个电极,形成隧穿电流。在极间加很小偏压,即有净隧穿电流出现。隧穿电流与两极的距离成指数关系,反馈原理是采用横流模式,当两极间距不同(电流不同),系统会调整Z轴的位置从而成高度像。 应用范围:导电样品 ●形貌像 ●扫描隧道谱(STS) 三、AFM原理及应用 AFM的反馈原理:探针在样品表面扫描,针尖顶部原子的电子云压迫样品表面原子的电子云时,会产生微弱的排斥力,如:范德华力、静电力等,力随样品表面形貌的变化而变化。同时针尖与样品表面的相互作用力被记录,通过激光光束探测针尖的位移,从而得到样品的形貌。 ●接触模式(contact mode) 反馈原理:针尖与样品距离比较近,靠悬臂梁的偏折量反馈,扫描过程中要 保持恒定的偏折量,当样品表面的高低变化时,悬臂的偏折量也会随之变 化,要保证恒定的偏折量,就要改变Z轴的位置从而成高度像。 ●轻敲模式(tapping mode) 反馈原理:扫描过程中悬臂以一定的频率和振幅在振动,轻敲模式靠振幅反 馈,扫描过程要保持恒定的振幅,当样品表面高低变化时,悬臂的振幅也会 随之变化,要保证恒定的振幅,就要改变Z轴的位置从而成高度像。 两者的优势和劣势: ●接触模式扫描速率快,适合做一些相对比较粗糙的样品,且对样品表面和针 尖的损伤都较大,成像质量不如轻敲模式。 ●轻敲模式的扫描速率相对较慢,适合测试比较平整的样品,对样品盒针尖的 损伤较小,图像质量好。

扫描探针与近场光学显微技术

扫描探针与近场显微技术
Karl Wang
上海迈培光电技术有限公司

技术背景
? 自从1982年Binning与Robher等人共同发明扫描 穿隧显微镜(scanning tunneling microscope, STM)之后,人类在探讨原子尺度上向前跨出了一 大步,对于材料表面现象的研究也能更加的深入 了解。在此之前,能直接看到原子尺寸的仪器只 有场离子显微镜(Field ion microscopy, FIM)与电 子显微镜(Electron microscope, EM)。 ? STM其原理主要是利用电子穿隧的效应来得到原 子影像,材料须具备导电性,应用上有所限制。

技术背景
? 1986年Binning等人利用探针的观念又发展出原子力 显微镜(Atomic force microscope, AFM) ,AFM不但 具有原子尺寸解析的能力,亦解决了STM在导体上的 限制,应用上更为方便。 ? 自扫描式穿隧显微镜问世以来,许多类型的探针显微 镜不断被开发出来。如:扫描式穿隧显微镜(STM), 近场光学显微镜(NSOM),磁力显微镜(MFM),化学 力显微镜(CFM),扫描式热电探针显微镜(SThM), 相位式探针显微镜(PDM),静电力显微镜(EFM),侧 向摩擦力显微镜(LFM),原子力显微镜(AFM)等。

SPM家族
**其中,AFM、SNOM/NSOM是最为常用的扫描探针显微镜。

原子力显微镜(AFM)
? AFM是以针尖与样品之间的属于原子级力场作用 力作为探测手段获取表面形貌的显微工具。 ? AFM可适用于各种的物品,如金属材料、高分子 聚合物、生物细胞等,并可以操作在大气、真空、 电性及液相等环境,进行不同物性分析,所以它 可以用于获得包括绝缘体在内的各种材料表面上 原子级的分辨率,其应用范围无疑比其它显微分 析技术更加广阔。

材料现代分析方法(1)

材料现代分析方法重点(彭美勋部分) 名词解释部分 1,石墨单色器与分光晶体 石墨单色器:利用衍射方法过滤杂色X射线的晶体单色器,比较滤波片更有效的消除x射线背底。 2,明场像与暗场像 明场像:在电子显微镜中,用透过样品的非散射电子以及在物镜孔径角区域内的散射电子的电子束对样品所形成的像 暗场像:在电子显微镜中,仅利用透过样品的散射电子束对样品所形成的像。 3,质厚衬度与衍射衬度以及原子序数衬度 质量衬度:由于样品不同微区间存在原子序数或厚度的差异而形成的 衍射衬度:由样品各衍射束强度差异形成的衬度。影响因素主要是晶体取向和结构振幅 原子序数衬度:由于试样表面物质原子序数或化学成分差别而引起的衬度 4,wds与eds Wds:波谱仪 Eds:能谱仪 能谱仪的优点有:分析速度快,灵敏度高,谱线重复性好。缺点有:能量分辨率低,峰背比低。工作条件要求严格。 波谱仪的优点有:波长分辨率很高。 5,二次电子与背散射电子 二次电子成:在单电子激发过程中被入射电子轰击出来的核外电子 背散射电子成:被固体样品原子反射回来的一部分入射电子 5.1,二次电子像与背散射电子像 答:二次电子象:是表面形貌衬度,它是利用对样品表面形貌变化敏感的物理信号作为调节信号得到的一种象衬度 背散射电子像:背散射电子像的形成,就是因为样品表面上平均原子序数Z大的部位而形成较亮的区域,产生较强的背散射电子信号;而平均原子序数较低的部位则产生较少的背散射电子,在荧光屏上或照片上就是较暗的区域,这样就形成原子序数衬度。 6,物相定性分析与物相定量分析 物相定性分析:鉴定试样中各种组成的构成,包括的元素、根或官能团等的分析。 物相定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作。 6.1,单晶衍射和多晶衍射 单晶衍射:每一个斑点对应一个衍射面 多晶衍射:每一个圆环是一系列等间距的衍射面 问答部分 7,扫描电子显微镜与透射电子显微镜异同 答:相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等等。 不同之处: 1、结构差异:主要体现在样品在电子束光路中的位置不同。透射电镜的样品在电子束中间,电子源在样品上方发射电子。;扫描电镜的样品在电子束末端,电子源在样品上方发射的电

《材料现代分析方法》总结

X射线:波长很短的电磁波 特征X射线:是具有特定波长的X射线,也称单色X射线 连续X射线:是具有连续变化波长的X射线,也称多色X射线。 荧光X射线:当入射的X射线光量子的能量足够大时,可以将原子内层电子击出,被打掉了内层的受激原子将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线 二次特征辐射:利用X射线激发作用而产生的新的特征谱线 Ka辐射:电子由L层向K层跃迁辐射出的K系特征谱线 相干辐射:X射线通过物质时在入射电场的作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散射X射线,称之为经典散射。由于散射波与入射波的频率或波长相同,位相差恒定,在同一方向上各散射波符合相干条件,称为相干散射 非相干辐射:散射位相与入射波位相之间不存在固定关系,故这种散射是不相干的 俄歇电子:原子中一个K层电子被激发出以后,L层的一个电子跃迁入K层填补空白,剩下的能量不是以辐射 原子散射因子:为评价原子散射本领引入系数f (f≤E),称系数f为原子散射因子。他是考虑了各个电子散射波的位相差之后原子中所有电子散射波合成的结果 结构因子:定量表征原子排布以及原子种类对衍射强度影响规律的参数,即晶体结构对衍射强度的影响 多重性因素:同一晶面族{ hkl}中的等同晶面数 系统消光:原子在晶体中位置不同或种类不同引起某些方向上衍射线消失的现象 吸收限 1 x射线的定义性质连续X射线和特征X射线的产生 X射线是一种波长很短的电磁波 X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。对动物有机体能产生巨大的生理上的影响,能杀伤生物细胞。 连续X射线根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。 特征X射线处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。 2 x 射线方向理论布拉格方程和艾瓦尔德图解 3 试述解决X射线衍射方向问题常用方法有哪些并进行比较 4 简述材料研究X射线试验方法在材料研究中的主要应用 精确测定晶体的点阵常数物相分析宏观应力测定测定单晶体位相测定多晶的织够问题 5 试推导布拉格方程,解释方程中各符号的意义并说明布拉格方程的应用 假设: 1)晶体视为许多相互平行且d相等的原子面 2)X射线可照射各原子面 3)入射线、反射线均视为平行光 一束波长为λ的平行X射线以θ照射晶体中晶面指数为(hkl)的各原子面,各原子面产生反射。 当Ⅹ射线照射到晶体上时,考虑一层原子面上散射Ⅹ射线的干涉。 当Ⅹ射线以θ角入射到原子面并以θ角散射时,相距为a的两原子散射x射的光程差为: 即是说,当入射角与散射角相等时,一层原子面上所有散射波干涉将会加强。与可见光的反射定律相类似,Ⅹ射线从一层原子面呈镜面反射的方向,就是散射线干涉加强的方向,因此,常将这种散射称

相关主题
文本预览
相关文档 最新文档