当前位置:文档之家› 单片机控制实现短信收发课程设计

单片机控制实现短信收发课程设计

单片机控制实现短信收发课程设计
单片机控制实现短信收发课程设计

数理与信息工程学院课程设计

题目:单片机控制实现短信收发

专业:计算机科学与技术(专升本)班级:056

姓名:黄丹丹学号:05191112

成绩:

( 2006.6 )

目录

摘要 (1)

第1节引言 (1)

第2节工作原理及其软件设计 (2)

2.1串口控制SMS的工作原理 (2)

2.2软件实现 (3)

2.3短信数据的处理—ExecData函数 (6)

第3节系统硬件介绍 (6)

3.1 系统核心部分---闪电存储型器件AT89C51 (6)

3.2 GSM模块MZ28 (10)

3.3 单片机MSC1210 (10)

第4节SMS的体系结构 (13)

第5节SMS应用新领域 (15)

5.1 SMS在银行中间业务领域中的通知功能 (15)

5.2 SMS在保险公司客户服务体系中的定时提醒功能 (15)

5.3 SMS在证券交易中的成交回复与价格预警功 (15)

第6节结语 (16)

参考文献 (17)

附录一程序 (18)

附录二 (21)

单片机控制实现短信收发

信息科学与工程学院计算机专升本班黄丹丹

【摘要】借助系统模型,阐明GSM模块收发短信的基本概念以及串口控制SMS的基本原理。详细介绍用单片机AT89C51控制GSM模块工作的硬件和软件实现过程,介绍了单片机AT89C51和MSC1210内部结构和性能,并对AT89C51和MSC1210的性能、用途进行了比较,特别提出了MSC1210在高精度温度采集中所体现出别的芯片所不及的优势。对怎样用单片机控制GSM模块收发短信进行探讨,也对程序设计的主体思想作了细致的分析。大致介绍了SMS的体系结构以及在当今社会中SMS应用的新领域.本系统技术较先进,科技含量高运行速度快,精度高。

【关键词】单片机短信收发GSM SMS

第1节引言

中国联通数字移动电话(GSM)网是向社会公众提供通信服务的公用通信网,与中国电信网同为国家通信网的有机组成部分。两网互联互通,自动接续,共享国家通信资源。目前,中国联通数字移动电话业务由GSM网130、131业务和CDMA网133业务组成。GSM是目前基于时分多址技术的移动通信体制中,比较成熟完善,且应用最广泛的一种系统。目前已建成的覆盖全国的GSM 数字蜂窝移动通信网,是我国公众移动通信网的主要方式。基于GSM的短信信息服务,是一种在移动网络上传送简短信息的无线应用,是一种信息在移动网络上存储和转寄的过程。由于公众GSM 网络在全球范围内实现了联网和漫游,上述系统不需再组建专用通信网络,所以具有实时传输数据功能的短信应用将得到迅速普及。本软件的设计基于GSM网络的温度数据采集与无线传输系统正是借助该网络平台,利用短信息业务实现数据的自动双向传递。系统模型图如图1-1所示。

本系统由数据采集部分、数据接收和发送部分、终端处理部分三个模块组成。数据采集模块将采集到的温度数据存入存储器中。数据收发模块采用双单片机共用EERPOM的方式,单片机2控制数据从存储器转存入EEPROM中;单片机1负责将数据从EEPROM中读出,并经GSM模块2借助GSM网络将数据发送出去。单片机1不仅控制数据的发送,也控制数据的接收。在这里,EEPROM 是温度数据临时存储和上传的中转站。终端处理模块负责将接收到的数据交给计算机处理,并将处理后的结果存放到数据库中,以供查询。当终端处理模块需要向GSM模块2发送控制命令时,GSM模块2接收过程正好与上述过程相反,从而实现数据的自动双向传递。

图1-1系统模型

系统中,三个模块相互独立,彼此又相互依赖,共同完成数据的传输。数据收发模块在系统中起着承上启下的作用,是系统的核心模块。该模块以双单片机为核心,以RS232通信接口,在物理层上实现与GSM模块的连接。由于篇幅的限制,本文主要介绍单片机控制这一模块工作的软件实现过程,旨在对怎样用单片机控制GSM模块收发短信息进行探讨。

第2节工作原理及其软件设计

2. 1 串口控制SMS的工作原理

单片机与GSM模块一般采用串行异步通信接口,通信速度可设定,通常为19200bps。采用这种RSM232电缆方式进行连接时,数据传输的可靠性较好。RS232接口方式连接,通过串行接口集成电路和电平转换电路与GSM模块连接,电路比较简单,所涉及的芯片包括单片机89C51和电平转换芯片MAX232,是非常常见的接口电路。需要说明的是,该接口通过I2C总线扩展了一个EEPROM 存储器芯片AT24C64,它的主要作用是存储数据,而且断电信息也不会丢失,这些特性正是存储数据所必须的。

GSM的短信息业务SMS利用信令信道传输,这是GSM通信网所特有的。它不用拨号建立连接,把要发的信息加上目的数据发送到短信息服务中心,经短信服务中心完成存储后再发送给最终的信宿。所以当目的GSM终端没开机时信息不会丢失。每个短信的信息量限制为160字节。

现在市场上大多数手机均支持GSM07.05规定的AT指令集。该指令集是ETSI(欧洲通信技术委员会)发布的,其中包含了对SMS的控制。利用GSM手机的串行接口,单片机向手机收发一系列的AT命令,就能达到控制GSM模块收发SMS的目的。必须注意的是,用单片机实现时,编程必须注意它发送指令与接收到的响应都是字符的ASCII码。用单片机控制GSM模块收发短信息所涉

及以的AT指令如表2-1所列。

2.2软件实现

2. 2. 1 上位机模块和下位机模块半双工通信协议的实现

2.2.1.1应答和重发

上位机模块和下位模块的通信双方遵照半双工通信方式进行,即数据传送是双向的。但是,任何时刻只能由其中的一方发送数据,另一方接收数据,因为EEPROM的读出和写入不能同时进行。为了避免一方在发送信息帧时(这里的信息帧指的是下位机模块发送的数据帧和上位机模块发送的命令帧,下同),另一方也会发送数据,必须把信道变成半双工方式。尽管这样效率可能不如全双工方式,但通过此举牺牲效率可以换取模块工作性能的稳定。双方采取的顺序是:发→收到应答后→再发。

按照整个系统的设计思路,上位机模块(即图1-1中的GSM模块1,下同)发送的帧包括命令帧、确认帧和非确认帧;下位机模块(即图1-1中的GSM模块2,下同)发送的帧包括数据帧、确认帧和非确认帧。其中确认帧和非确认帧是发送数据后等待对方发送的应答帧,以此作为继续发送下一帧和重新发送上一帧的依据。命令帧和数据帧是信息帧,当一方先发送完信息帧,如果收方接收到对方的信息帧,而又没有信息帧需要发送,那么情况就比较简单,收方将根据信息帧的正确与否决定发送确认帧还是非确认帧,以使对方决定是继续发送还是重新发送;如果此刻收方也有信息帧需要发送,那么收方将不立即发送应答帧,而是立即发送本方的信息帧给对方,并等待对方对此帧的应的应答帧,在收到对方的应答帧后,收方将依据应答帧的内容(即确认帧或者是非确认帧,下同)决定是继续发送下一信息帧,还是重新发送原来的信息帧。如果由于链路本身不可靠等因素造成应答帧的丢失,收方将在一定时间内因为没有收到应答帧而延时重发原来的信息帧。在收到对方的应答帧后,收方将继续发送下一信息帧,并等待对方的应答帧,如此反复,直到收方全部发送完信息帧。在本方收到对方最后一个应答帧后,表明本方全部的信息帧发送完毕。然后收方将发送对方仍然等待的应答帧,通知对方收到的信息帧正确与否。

2.2.1.2延时重发

在双方通信过程中,有两个时间t1和t2,分别表示重新发送信息帧的最大延时。t1表示一方发送完信息帧到收到对方应答帧的时间,如果等待应答帧的时间超过了t1,则发方会重新发送原来的信息帧;当收方接收到对方发送的信息帧,如果收方此时有需要发送的信息帧,则收方此时不发送应答帧,而是发送信息帧给对方。也就是说,利用对方等待收方应答帧的时间t1内,收

方插入发送本文的信息帧,同样本方的发送也存在一个延时重发的问题。在规定的时间内,如果没有收到对方应答帧,收方也同样需要重发原来的信息帧,这个规定的时间就是t2。显然由于收方是利用间隙时间发送本方信息帧,所以t2

图2-1以下位机模块先发数据帧为例,阐述双方通信的具体实现过程。

图2-1

需要说明的是,由于版面的限制,图2-1所示的通信过程没有涉及到发送非确认帧的情况,如果收方发送非确认帧,发方的发送过程跟发送数据帧是一样的,只不过这种情况下需要重发同一帧号的数据帧。如果上位机模块先发命令帧,双方通信的实现过程跟图2-1类似,所不同的是数据帧此时变成命令帧,命令帧变成数据帧。在延时的时间上,无论是下位机发送数据帧还是上位机发送命令帧,t2的大小都应该是一样的,都是利用时间间隔t2发送收方信息帧,延时的时间是相同的。然而,对于t1而方,情况就有所不同。因为下位机模块先发送数据帧时,利用t1的间隔时间上位机模块发送的命令帧可靠较少,因此当下位机模块先发送数据帧时所定义的t1应该小于当上位机模块先发送命令帧时,所定义的t1。这是因为当上位机模块先发送命令帧时,利用t1的间隔时间下位机模块发送的数据帧可能比较多。

2.2.2 帧格式

GSM模块通过异步通信接口实现对SMS的控制共有三种接入协议:Block Mode;基于AT指令的Text Mode;基于AT指令PDU Mode。本系统发送和接收的数据都是基于数字的温度数据和命令字,为了保证系统的适用性,SMS的收发采用TEXT模式。TEXT模式是基于字符的,更具体地说是基于ASCII码的一种结构模式。在该模式下,模块发送和接收的信息帧格式如下:

信息帧包括数据帧和命令帧。

帧头表示数据帧的标记,是由固定的字符“WQ”构成。

帧序号表示数据帧的序号,由两个字节组成。帧序号表示下位机模块发送的递增数据帧序号和上位机模块发送的命令帧序号。为了简化帧结构,命令帧的序号统一为00H。

数据字段的长度为154字节,最多发送77个字符(采用TEXT模式,不能发送汉字)。

检验子为数据字段所有字节累加和的初码(原码取反加1),由一个字节组成。

除了信息帧外,双向传递的还有应答帧,它包括确认帧和非确认帧。确认帧是双方反馈给发方的应答帧,表示收方已经正确接收到了发方发送的信息帧。确认帧格式仅包括两个字段,且两个字段的内容都是固定的,即帧头“WQ”和数据字段“ACK”,确认帧格式如下。

WQ ACK

非确认帧是收方给发方的应答帧,表示收方收到的是无效的信息帧,其格式与确认帧格式类似,帧格式如下。

WQ NACK

2.2.3 EEPROM空间的分配

采用8KB的EEPROM,按照每77个字节为一个块进行划分,共106块,如图2-2所示。

第00、01块留作系统使用,第02块~第105块是数据块,用作存放数据。

图2-2 EEPROM空间的分配

2.2.4 收发端与采集端的握手协议

收发端与采集端共用一个存储器,即双CPU对同一个EEPROM进行操作。实现方案是分别使两个微处理器的一个I/O脚相连,两个CPU采用查询方式对此I/O端进行查询。如果某时候收发端查询到本地I/O端为高电平,则单片机1拥有此存储器的操作权,可以对EEPROM进行读写操作。如果采集端查询到本地I/O端为高电平,则单片机2拥有此存储器的操作权,可以对它进行写操作。一方操作完毕后将I2C总线置为高电平,表明本端已经释放I2C总线,EEPROM目前处于可用状态。

2.2.5 程序的设计

2.2.5.1主函数的设计思路

开机上电后,程序在主函数中运行,单片机和GSM模块分别进行初始化。单片机的初始化包括设置串口工作方式、波特率,并初始化变量参数和标志位。GSM模块初始化包括重新启动、关闭回显、设置在TEXT模式下的返回值中不显示详细的头信息、选择短信格式为TEXT模式、开发串口中断准备接收数据。

2.2.5.2 GSM返回参数的处理—SHELL函数

SHELL函数是进入时钟中断程序时被调用时,该函数是对GSM模块返回参数进行处理的函数。根据系统设计的要求,需要对GSM模块进行下列操作:呼叫对方模块号码、发送数据、阅读短信、删除短信。基于以上操作指令,如果操作成功GSM模块会分别返回不同的参数:>、+CMGS、+CMGR、OK。根据接收到的不同参数,下位机模块将转向不同的操作步骤,判断并改变标志位的值。比如,如果某时刻接收到>,这表明呼叫对方模块号码获得成功,接下来需要发送数据。这时SHELL函数将检查发送不同数据所代表的标志位f_sending、f_ack、f_nack,从而决定需要发送何种类型的数据。

2.3短信数据的处理—ExecData函数

进入时钟中断调用SHELL函数时,如果接收到了返回的参数+CMTI,表明上位机模块向下位机模块发送了短信数据,可能是命令帧,也可能是确认帧或者非确认帧。在这种情况下,SHELL 函数需要对短信内容进行分析,并根据短信的内容进行不同的处理,负责完成以上功能的就是ExecData函数,它是被SHELL函数调用的,用来分析并处理短信数据。

第3节系统硬件介绍

3.1系统核心部分---闪电存储型器件AT89C51

单片机AT89C51有内部RAM,可以作为各种数据区使用,内部闪电存储器存放数字时钟的控制程序。它的主要功能是控制74LS138和74LS47,实现对LED显示器的位控和段控,完成时间的转换计算,并把计算的时间转换到相应的显示段码,控制LED显示器以动态扫描方式进行时、分、秒的显示。AT89系列单片机是ATMEL公司生产的。这是当前最新的一种电擦写8位单片机,与MCS-51系列完全兼容,有超强的加密功能,可完全替代87C51/52和8751/52。

与87C51相比,AT89系列的优越性在于,其片内闪电存储器的编程与擦除完全用电实现;数据不易挥发,可保存10年;编程/擦除速度快,全4K字节编程只需时3s,擦除时间约用10ms;AT89系列了实现在线编程;也可借助电话线进行远距离编程。

AT89C51是一种低功耗、高性能内含4K字节闪电存储器(Flash Memory)的8位CMOS微控制器。这种器件系以ATMEL高密度不挥发存储技术制造,与工业标准MCS-51指令系统和引脚完全兼容。片内闪电存储器的程序代码或数据可在线写入,亦可通过常规的编程器编程。例如,MP-100这样一种经济型的编程器,它支持通用EPROM等各种存储器、PAL、GAL以及INTEL、ATMEL 和PHILIPS等各公司的全系列51单片机的编程。ME5103和ME5105仿真器支持AT89系列所有器件的调试、仿真和编程。

3.1.1.89C51具有下列主要性能:

◇ 4KB可改编程序Flash存储器

(可经受1,000次的写入/擦除周期)

◇全静态工作:0Hz~24MHz

◇三级程序存储器保密

◇ 128 X 8字节内部RAM

◇ 32条可编程I/O线

◇ 2个16位定时器/计数器

◇ 6个中断源

◇可编程串行通道

◇片内时钟振荡器

另外,89C51是用静态逻辑来设计的,其工作频率可下降到0 Hz,并提供两种可用软件来选择的省电方式——空闲方式(Idle Mode)和掉电方式(Power Down Mode)。在空闲方式中,CPU停止工作,而RAM、定时器/计数器、串行口和中断系统都继续工作。在掉电方式中,片内振荡器停止工作,由于时钟被“冻结”,使一切功能都暂停,只保存片内RAM中的内容,直到下一次硬件复位为止。

3.1.2.89C51的引脚及功能

3.1.2.1 主要电源引脚

Vcc 电源端

GND 接地端

3.1.2.2 外接晶体引脚XTAL1和XTAL2

XTAL1 接外部晶体的一个引脚。在单片机内部,它是构成片内振荡器的反相放大器的输入端。当采用外部振荡器时,该引脚接收振荡器的信号,既把此信号直接接到内部时钟发生器的输入端。

XTAL2 接外部晶体的另一个引脚。在单片机内部,它是上述振荡器的反相放大器的输出端。采用外部振荡器时,此引脚应悬浮不连接。

3.1.2.3 控制或与其它电源复用引脚RST、ALE//PROG、/PSEN和/EA/Vpp

RES 复位输入端。当振荡器运行时,在该引脚上出现两个机器周期的高电平将使单片机复位。

ALE//PROG 当访问外部存储器时,ALE(地址锁存允许)的输出用于锁存地址的低位字节。即使不访问外部存储器,ALE端仍以不变的频率(此频率为振荡器频率的1/6)周期性地出现正脉冲信号。因此,它可用作对外输出的时钟,或用于定时目的。然而要注意的是:每当访问外部数据存储器时,将跳过一个ALE脉冲。在对Flash存储器编程期间,该引脚还用于输入编程脉冲(/PROG)。

如果需要的话,通过对专用寄存器(SFR)区中8EH单元的D0位置数,可禁止ALE操作。该位置数后,只有在执行一条MOVX或MOVC指令期间,ALE才会被激活。另外,该引脚会被微弱拉高,单片机执行外部程序时,该设定禁止ALE位无效。

/PSEN 程序存储允许(/PSEN)输出是外部程序存储器的读选通信号。当80C51由外部程序存储器取指令(或常数)时,每个机器周期两次/PSEN有效(既输出2个脉冲)。但在此期间内,每当访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/Vpp 外部访问允许端。要使CPU只访问外部程序存储器(地址为0000H~FFFFH),则

/EA端必须保持低电平(接到GND端)。然而要注意的是,如果保密位LB1被编程,复位时在内部会锁存/EA端的状态。

当/EA端保持高电平(接Vcc端)时,CPU则执行内部程序存储器中的程序,并可延续至外部程序存储器。

在Flash存储器编程期间,该引脚也用于施加12V的编程允许电源Vpp(如果选用12V编程)。

3.1.2.4输入/输出引脚 P0.0~ P0.7、P10.~P1.7、P2.0~ P2.7 和P3.0~P3.7

P0端口(P0.0~ P0.7) P0是一个8位漏极开路型双向I/O端口。作为输出口用时,每位能以吸收电流的方式驱动8个TTL输入,对端口写1时,又可作高阻抗输入端用。

在访问外部程序和数据存储器时,它是分时多路转换的地址(低8位)/数据总线,在访问期间激活了内部的上拉电阻。

在Flash编程时,P0端口接收指令字节;而在验证程序时,则输出指令字节。验证时,要求外接上拉电阻。

P1端口(P1.0~ P1.7) P1是一个带有内部上拉电阻的8位双向I/O端口。P1的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。作输入口时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在对Flash编程和程序验证时,P1接收低8位地址。

P2端口(P2.0~P2.7) P2是一个带有内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P2作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在访问外部程序存储器和16位地址的外部数据存储器(如执行MOVX @DPIR指令)时,P2送出高8位地址。在访问8位地址的外部数据存储器(如执行MOVX @RI指令)时,P2口引脚上的内容(就是专用寄存器(SFR)区中P2寄存器的内容),在整个访问期间不会改变。

在对Flash编程和程序验证期间,P2也接收高位地址和一些控制信号。

P3端口(P3.0~P3.7) P3 是一个带有内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P3作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在89C51中,P3端口还用于一些专门功能,这些兼用功能见表3-1

表 3—1 P3端口兼用功能表

在对Flash编程和程序验证时,P3还接收一些控制信号。

3.1.3.Flash存储器的编程和程序校验:

AT89C51单片机内部有一个4K字节的Flash PEROM。这个Flash存储阵列通常是处于已擦除状态(既存储单元的内容为FFH),随时可对它进行编程。编程接口可接收高电压(12V)或低电压(Vcc)的允许编程信号。低电压编程方式可很方便地对AT89C51内的用户系统进行编程;而高电压编程方式则可与通用的EPROM编程器兼容。

AT89C51的程序存储器阵列是采用字节写入方式编程的,既每次写入一个字节。要对片内的PEROM程序存储器写入任何一个非空字节,都必须用片擦除方式将整个存储器的内容清除。

3.1.3.1 对Flash存储器编程

编程前,必须建立好地址、数据和相应的控制信号。编程单元的地址加在P1端口和P2端口的P2.0~P2.3(11位地址为0000H~0FFFH),数据从P0端口输入。引脚P2.6、P2.7和P3.6、P3.7的电平选择见表2。/PSEN应保持低电平,而RST应保持高电平。/EA/VPP是编程电源的输入端,按要求加入编程电压。ALE//PROG端输入编程脉冲(应为负脉冲信号)。编程时,采用4~20 MHz的振荡器。对AT89C51编程的步骤如下:

在地址线上输入要编程单元的地址。

在数据线上输入要写入的数据字节。

激活相应的控制信号。

在采用高电压编程方式时,将/EA/VPP端的电压加到12V。

每对Flash存储阵列写入一个字节或每写入一个程序加密位,加一个ALE//PROG编程脉冲。

改变编程单元的地址和要写入的数据,重复上述步骤,直到全部文件编程完毕。每个字节写入周期是自动定时的,通常不大于1.5ms。

数据查询方式

AT89C51单片机用数据查询方式来检测一个写周期是否结束。在一个写周期期间,如果想读出最后写入的哪个字,则读出数据的最高位(P0.7)是原来写入字节最高位的反码。写周期一旦完成后,有效的数据就会出现在所有输出端上,这时可开始下一个写周期。一个写周期开始后,可在任何时间开始进行数据查询。

准备就绪/忙信号

字节编程的过程也可通过RDY//BSY输出信号来监视。在编程期间,当ALE变为高电平后,P3.4(RDY//BSY)端的电平被拉低,表示忙(正在编程)状态。编程完毕后,P3.4的电平变高表示就绪状态。

3.1.3.2程序的校验

如果加密位LB1和LB2没有被编程,那么就可以对AT89C51内部已编好的程序进行校验。程序存储器的地址仍由P1端口和P2端口的P2.0~P2.3输入,数据由P0端口输入。/PSEN保持低电平,而ALE、/EA和RST保持高电平。校验时,在P0端口上要求外接约10KΩ左右的上拉电阻。

程序加密位不能直接校验。加密位的校验可通过观察它们的功能是否被允许来进行。

3.2 GSM模块MZ28

MZ28是中兴通讯推出的GSM无线双频调制解调器,主要为语音传输、短信发送和数据业务提供无线接口。MZ28集成了完整的射频电路和GSM的基带处理器,特别适合于迅速开发基于GSM 无线网络的无线应用产品。带有人机接口(MMI)界面的应用产品内部与MZ28的通信可通过标准的串行接口(RS232)进行。MZ28使用简单的20-PIN ZIP插座与用户自己的应用系统相连,此ZIP连接方式提供开发所需的数据通信、音频和电源等接口信号。MZ28可以作为无线引擎,嵌入到用户自己的产品当中,用户可以用单片机或其它CPU的UART口,使用相应的AT命令,对模块进行控制,达到使其产品可以轻松进入GSM网络的目的。

3.3单片机MSC1210

在许多传统行业中,多路高精度温度采集系统是不可或缺的。电厂、石化行业、钢铁厂以及制药厂等企业使用了大量的各类测温器件,如热电阻、热电偶等,这些器件需要定期校准;在严格执行GMP规范的制药厂等企业,高温灭菌需要定期进行灭菌率的验证;在某些要求进行严格的温度控制的场合,也需要进行多点高精度温度测量。这些工作往往需要一多路高精度测温系统来完成。德州仪器(TI)的MSC1210单片机解决了上述问题。它集成了一个增强型8051内核、高达33 MHz的时钟周期、8路24位高精度∑-△A/D转换器、Flash存储器等.

3.3.1.MSC1210具有以下主要特性:

◇ 3个16位的定时器,16位PWM波输出;

◇ 多达21个中断源;

◇ 32个数字输入/输出端口,带有看门狗;

◇ 8路ADC提供24位分辨率可编程的无丢失码解决方案;

◇ 可编程增益放大(PGA)在1~128之间可调,极大提高了ADC精度;

◇ 供电电源2.7~5.25 V,在3 V时功耗低于4 mW,停止方式电流小于1μA;

◇ 内核兼容8051,指令与8051完全兼容,可以使用原有8051开发系统;

◇ 时钟频率可达33 MHz,单周期指令执行速度达8 MIPS,执行速度比标准8051快3倍;

◇ 高达32 KB的Flash存储器,SRAM达1.2 KB,外部可扩展至64 KB存储器;

◇ Flash在电压低达2.7 V时仍可串行或并行编程,可10万次擦除/写操作;

◇ 具有32位累加器;

◇ 有电源管理功能,能够进行低电压检测,在片上电复位;

◇ 带FIFO的SPI端口,双UART;

◇ 64TQFP封装,MSC1210系列的硬件和引脚完全兼容,必要时可以互换。

3.3.2. MSC1210的增强功能

作为智能高精度测温模块的核心,MSC1210完成了微弱信号的多路切换、信号缓冲、PGA编程放大、24位∑-ΔA/D转换、数字滤波、数据处理、信号校准以及SPI通讯等功能。

MSC1210集成了一个8通道24位∑-ΔA/D转换器,采用8051兼容内核。与ADuC824相比,其有如下增强的功能:

3.3.2.1 CPU工作频率可达33MHz,每条指令只需4个时钟周期,运算速度较快。

3.3.2.2采用非常灵活的FLASH与SRAM存储器配置,可以对片上FLASH进行分区,根据需要设定

程序FLASH与数据SRAM所占的比例。改写次数可达一百万次,数据可保存100年。

3.3.2.3片上RAM为1280B,有34个高电流驱动I/O,可以设外部存储器的存取时间,使用双数据指针提高存取速度,具有完善的节电功能,还有电压监视器、21个中断源、3个16位定时器计数器以及内部时间间隔计数器(TIC)。

3.3.2.4自带BOOT ROM,可以调试使用或在程序中调用内置固化程序,完成在线调试、数据采集、UART通讯以及读写FLASH等工作,方便了编程以及调试。

3.3.2.5片上24位∑-ΔADC具有一些增强特性:8位输入通道可以任意配置为单端或差分输入;有快速、Sinc2、Sinc3三种数字滤波,同时有自动数字滤波功能,可以加快A/D转换输出;带PGA偏置DAC,可以不引入额外误差而扩大测量范围;自带一个32位累加器,可以对ADC输出数据作快速平均处理。

3.3.2.6自带高精度电压标准,精度为0.2%,漂移为5ppm/℃,可以节省空间以及器件成本,也可输出该电压标准或外接电压标准。

3.3.2.7片上16位PWM,可以作为DAC输出来源。

3.3.2.8增强的SPI接口可以使用DMA方式传输数据,在DMA方式下,可以间接寻址RAM,设定多达128B的发送接收FIFO;具有完整的端口驱动以及发送接收中断设定,适合大批量的数据传输:,同时点用C

3.3.3. 使用注意事项

3.3.3.1 MSC1210片内FLASH分区只能通过对HCR0以及HCR1这两个硬件配置寄存器事先编程来进行,在程序运行过程中无法设定或更改分区比例。在程序运行中读写FLASH时,要注意读写地址与调试时的地址不同,具体应参考存储器分配表;用户程序无法直接读写FLASH,调用BOOT ROM 中的读写函数来进行;与AVR等芯片的EEPROM不同,写入FLASH之前必须先进行擦除操作,BOOT ROM中有可调和场擦除子程序,可以在汇编或C程序中调用。

3.3.3.2 在做A/D转换时,每次更改PGA放大倍数需要重新校准,在需要频繁切换输入通道的场合,建议设定特殊寄存器ADCON1的SM1~0位为00,即进入自动模式数字滤波。这样当通道切换后,随着A/D采样次数的增强,数据滤波依次为快速转换、Sinc2、Sinc3数字滤波,可以最大限度地提高转换速度和转换精度。

3.3.3.3 BOOT ROM中固化的程序对于MSC1210的编程和调试非常关键,其中部分可以在用户程序中直接调用,完成数据采集、UART输入输出等重要功能。可以通过串口或并口进行编程。

3.3.3.4使用TI提供的下载工具及调试终端,可以对MSC1210实现在线调试。这种调试会占用UARTO资源,同时辅助中断的入口地址也有变化,这在编程时需要注意。也可以利用Windows自带的超级终端进行调试。与TI终端不同,Windows超级终端不能自动初始化MSC1210使之进入调试状态,需要人工进行调试复位。

3.3.

4. 片内存储器

MSC1210包括片上1.2 KB SRAM ,256字节DARAM,2KB启动ROM,32 KB Flash存储器。

MSC1210用内存寻址表来区分程序存储空间和数据存储空间。程序空间由单片机自动读取,通过指令MOVC来读程序空间;数据空间通过指令MOVX来读写。当片上存储使能时,在片内范围内的读写将在片内存储器上进行,片外存储器通过P0和P2寻址来实现。HCR1寄存器的第0位和

第1位设为0就可以访问外部存储器,此时可以通过P0和P2口访问所有片内和片外存储空间。为了安全起见,在访问片内存储器期间,P0口全部置位为0。

MSC1210包含1.2 KB片上SRAM。SRAM起始地址位“0”,通过MOVX指令读写。SRAM也可以从8400H开始,既可作程序空间又可作数据空间。

MSC1210有256字节DARAM,地址为0000H~00FFH,其中128字节为128个SFR,地址为0080H~00FFH。SFR寄存器用做控制和状态,标准的8051功能和MSC1210的附加功能是通过SFR实现的。从没有定义的SFR寄存器将得到“0”,写入没有定义过的SFR得到的结果无法确定。DARAM的另一个用途,是通过SFR的堆栈指针作为堆栈使用。

在串行或并行编程时,有2KB启动ROM控制运行。在用户模式下,BOOT ROM位于F800H~FFFFH;在编程模式下,BOOT ROM位于程序空间的起始2K。

Flash存储器既可用做程序存储空间又可用做数据存储空间,用户可以灵活配置程序和数据存储空间的大小。分区大小通过硬件配置位来确定,可以通过串行或并行的方式来编程确定。在用户应用模式下,程序和数据Flash存储空间都可读可写。

3.3.5.Flash编程应用

可编程的Flash存储器分为4个部分:128字节的配置部分、复位向量、程序存储空间、数据存储空间。

Flash编程模式有串行和并行两种模式,通过上电复位过程当中的ALE和信号状态确定。当ALE=1,=0时,选择串行编程模式;当ALE=0,=1时,选择并行编程模式。当ALE和都为高电平时,MSC1210运行在用户模式下;当ALE和都为低电平时,MSC1210没有定义。

MSC1210的Flash存储器初始值全部为“1”,并行编程模式包括一个专用的编程器,串行编程方式通常为在线编程,用户应用模式允许对Flash程序和数据存储器编程。对Flash编程的实际代码不能从Flash执行,而必须从BOOT ROM或RAM处开始执行。

MSC1210有两个硬件配置存储器(HCR0、HCR1),在Flash编程模式下可编程。用户通过对这两个存储器编程可以在程序存储空间(PM)和数据存储空间(DM)之间定义分区,如表3-2所列。

注:当程序空间选择0KB时,程序在片外执行;"一"表示保留。

用户可以通过MOVX指令来读写Flash存储器,而不论Flash存储器是被定义为程序存储器还是数据存储器。这意味着用户可以将全部空间分为程序存储空间,并将程序空间当数据存储空间用。当PC指针指向的程序空间实际上存放的是数据时,将会导致不可预知的后果。因此,当要用Flash存储数据时,一定要求使用Flash分区,Flash分区禁止在数据存储空间执行程序。同样,也禁止程序空间的擦写而允许在数据存储空间读写。

3.3.6. 内核兼容8051但速度更快功能更强

MSC1210系列的所有指令功能与标准8051相同,对位、标志和寄存器的影响相同,但时序不同。MSC120单片机使用精简的8051内核,在同样的外部时钟作用下,其执行速度比标准8051快1.5~3倍(每条指令有4个时钟周期与12个时钟周期的区别)。在同样的指令和时钟下,速度提高到2.5倍以上。因此,一个时钟为33 MHz的MSC1210执行速度与一个时钟为82.5 MHz的标准8051相同,其区别可以从图2看出;而且MSC1210的定时器和计数器可以选择每12个或4个时钟周期计数一次。

MSC1210提供了双数据指针(DPTR)加速数据块的移动速度,它能根据外部存储器的速度调节读写速度,在2~9个指令周期之间变化;它还提供给外部存储器16位地址总线(P0和P2)。低位地址通过P0口复用得到,硬件可以控制P0和P2口是作为地址线还是作为通用的I/O。

为了更好地提高效率,外围设备也在8051基础上作了改进。如SPI端口就增加了FIFO,使得传输数据有了缓冲区间。32位累加器的使用在处理ADC采样或其它数据源来的多字节数据时将大大减轻CPU的负担,使得24位加法和移位可以在几个指令周期内完成,而无需通过软件用数百个指令周期来完成。

MSC1210系列的硬件和引脚完全兼容,对用户而言,唯一的区别在于内存配置不同。MSC1210Y2上编写的程序代码可以直接在MSC1210Y3、MSC1210Y4、MSC1210Y5上执行。用户可以在软件功能上增减并配以不同的CPU型号,MSC1210已成为一个拥有几个不同应用平台的标准设备。

MSC1210的开发工具与8051的开发系统完全兼容,用户可以使用原有的8051开发系统,也可以使用DEMO板带的开发系统或者第三方支持者提供的开发工具。

第4节 SMS的体系结构

GSM标准中定义的点-点短消息服务使得短消息能在移动台和短消息服务中心之间传递。这些服务中心是通过称为SMS- GMSC的特定MSC同GSM网络联系的。

SME:Short Messaging Entity,短消息实体。它可以接收或改善短消息,位于固话系统、移动基站或其他服务中心内;

SMSC:Short Message Service Center,短消息服务中心,负责在基站和SME间中继、储存或转发短消息;移动台(ME)到SMSC的协议能传输来自移动台或朝向移动台的短消息,协议名为SMTP(Short Message Transmission Protocol);

SMCGWMS或SMCGMSC:SMS-Gateway MSC,SMS网关。接收由SMSC发送的短消息,向HLR查询路由信息,并将短消息传送给接收者所在基站的交换中心;

HLR:Home Location Register,归属位置寄存器。用于永久储存管理用户和服务记录的数

据库,由SMSC产生。SMS网关与HLR之间的协议使前者可以要求HLR搜索可找到的用户地址。它与MSC与HLR之间的协议一起,能在移动台因超出覆盖区而丢失报文、随后又可找到时加以提示。

MSC:Mobile Switching Center,移动交换中心。负责系统切换管理并控制来自或发向其他电话或数据系统的拔叫。

VLR:Visitor Location Register:,访问位置寄存器。含有用户临时信息的数据库。交换中心服务访问用户时需要这些信息。

·移动起始短消息:Mobile Originated Short Message。

一个GSM用户发送短消息时,他必须至少在其内容中包含最终地址的识别符,和处理这消息的服务中心号码,然后请求传递。

短消息的传输要求在移动台和MSC之间建立信令连接。消息本身的传递要求在无线路径上建立专用的链路层链接,并要求采用专用的消息传递协议。在规定的协议栈的顶部是所谓的传输层协议,在移动起始短消息情形下,它是一条单独的报文,即SMTP(不是TCP/IP的SMTP)短消息传送报文,低层处理应答的传送,它只指出SMSC已收到报文。

·移动终接短消息:Mobile Terminated Short Message。

目的地为GSM用户的短消息必须首先从发送方路由至短消息服务中心,然后再被路由至实际地址。

当SMSC有短消息需发送到其某一GSM用户时,它建立一条包含各种利于接收者的信息的SMS-DELIVER报文。此信息包括用户的内容,最初的发送者身份及用于批示短消息已被SMSC接收的时间标记。与MO情形相似,SMS-DELIVER报文将在各种接口上传送。

在达到目的地前,报文的实际路由必须利用MAP/C查询功能获得,采用的是如下方法:SMSC 将短消息传到与服务中心相连的SMS网关,网关的选择依赖于它想到在的用户,因为通常网关仅能处理某些用户(某家营运商或某个国家的用户)。这样,用户通过目录号(一般同电话一样)来识别,这些目录号最初是由短消息发送者输入的,这使得SMS网关能识别有关的HLR并查询它。查询是通过发送一个专用报文,即用于短消息的MAP/C SEND ROUTING INFOR报文来实现;对其应答既可采用包含用户正在访问的MSC/VLR的SS7地址的MAP/C SEND ROUNTING INFO FOR SHORT MESSAGE RESULT报文,又可当已知用户此时不可到达时采用拒绝报文。

SMS由几个与提交或接收相关的服务要素组成,如:有效期(在将短消息成功送达用户前SMSC 需要保证的储存时间),优先性。此外,短消息还提供提交消息的时间、告诉移动台是否还有更多消息要发送,以及还有多少条消息要发送等。

短消息不可到达

短消息不可到达的情况有三种:

·当被SMS网关查询时,移动台不在服务区域、未获得服务授权、或有未成功发送报文正等待告警,HLR就会立即知道不能发送;

·第二种情形是,MSC/VLR已收到报文但不能传送的情况。此时,它先向SMS网关发送一故障指示,作为MAP/H FORWARD SHORT MESSAGE报文的应答;然后,网关一方面会向SMSC发送否定报告,另一方面向HLR发送MAP/C SET MESSAGE WAITING DATA报文,在收到报文确认后进行表格更新。该事件会储存在VLR和HLR内的用户记录中;

第三种情况是MSC/VLR向用户发送有效报文后发现不可送达。

第5节 SMS应用新领域

随着社会不断进步发展,SMS在各个领域都起着及其重要的作用,最近,经济学家提出了SMS

在金融CRM中的应用

5.1 SMS在银行中间业务领域中的通知功能

商业银行在运营中间业务的过程中,常常会遇到如下问题:客户还贷不及时;信用卡用户担心账户资金安全问题;用户账号出现被盗用、无意透支、汇款到账和账务变动等情况,却不能及时获知。

针对上述问题,虚拟电信运营商可以定制短信息系统,通过其在商业银行与基础电信运营商

之间的桥梁作用,可以帮助商业银行完善与客户沟通的渠道。

5.2 SMS在保险公司客户服务体系中的定时提醒功能

对于每一家保险公司而言,除了发展新用户这个最现实的挑战之外,就是要留住已有客户,

使用适当的手段,提醒客户每月及时续缴保费,并及时向部分用户发布通知,将新的险种和费率

变化通知到每一位用户。

目前,国内保险公司采用邮政信函为主要通知手段,再辅以业务员直接致电的办法,耗费大

量人力和财力,效果依然不佳。引入SMS技术的及时通知功能后,保险公司可以定时以发送短信

息的方式完成,而且可以方便地解决CRM系统中的用户地址与姓名匹配问题。

5.3 SMS在证券交易中的成交回复与价格预警功能

现阶段国内各主要证券公司极为重视计算机网络系统在业务中的应用,尽可能地向股民提供

及时、准确的股市行情,简化交易流程,确保股民交易安全。而证券交易商现有的交易体系都不

同程度地要求股民实时注意行情,却不能让股民更好地利用证券交易经纪人所提供的辅助作用,

限制了股民的投资热情。

利用SMS技术,一方面可以在股民通过各种交易工具完成一笔交易后,由系统实时向股民的

手机发送一条成交信息,从而提高股民对交易系统的实时性的监督,保证交易的透明性;另一方

面可以允许股民在设定参数告警值后,当行情的相应参数上涨或下跌到阈值时,马上触发系统,

向股民的手机发送预警通知,从而使股民从繁复的K线图和指数涨跌中解脱出来,掌握最佳投资

操作时机。

第6节结语

通过以上的分析不难发现,整个程序错综复杂,函数之间相互牵扯。标志位在程序的实现过程中扮演着非常重要的角色,正是依靠这些标志位,程序才能很好地实现各个功能之间的切换,而标志位的值是通过OSM模块返回的参数修改的。因此程序的实现过程应该是阅读参数→修改标志位→发送指令。

主函数、时钟中断和串口中断程序、SHELL函数、ExecData函数贯穿整个程序的主线和核心部分,对它们的分析可以理解程序的主体思想,这也正是笔者着重介绍的原因所在。然而这些函数和中断程序的实现,还需要依靠其它函数的配合,比如基于I2C总线的EEPROM操作函数、字符串操作函数以及串口发送函数等,由于篇幅所限,在此不再介绍。GSM网络本身是不完全可靠的,可能会发生帧发送错误、帧丢失的现象。但是由于重发、延时重发机制的存在,程序可以最大程度避免上述情况的发生。在实际应用过程中,模块运行正常,性能稳定,实时性好。

参考文献

[1]公茂法等.单片机人机接口实例集.北京:北京航空航天大学出版社 1998.2.

[2]赵亮,侯国锐.单片机C语言编程与实例.北京:人民邮电出版社 2003.9.

[3]胡伟.单片机C程序设计及应用实例.北京:人民邮电出版社 2003.7.

[4]赵长德,李东,李华编.MCS-51/98单片机原理与应用[M].北京:机械工业出版社, 1996.

[5]徐爱卿编.单片微型计算机应用和开发系统[M].北京:北京航空航天大学出版社,1998.

[6]戴梅芳编.微型计算机技术及应用[M].北京:清华大学出版社,1996.

[7]李广弟,朱月秀,王秀山编.单片机基础[M]. 北京:北京航空航天大学出版社,2001.

[8]潘新民编.单片微型计算机实用系统设计[M].北京:人民邮电出版社,2000.

[9]王福瑞编. 单片微机测控系统设计大全[M]. 北京:北京航空航天大学出版社,1998.

[10]何立民编. MCS-51系列单片机应用系统设计系统配置与接口技术.[M]北京:北京航空航天大学出版社, 1996.

附录一程序

/*sms for GSM*/

#include "AT89*51.h"

#include "reg51.h"

#include "ATcommend.h"

#include "ExecData.h"

#include "ScanKey.h"

#include "Shell.h"

#include "ReceivePara.h"

/*初始化串行端口*/

int_rs232() /*通信协议:192000 N 8 1>*/

{

int inbufl[20];/*接收缓存*/

SCON=0x50;

TMOD=0x20;

TH1=0xFF;

TR1=1;

TI=1;

}

tx_char(unsigned char c)/*发送字符*/

{

while(1)/*循环*/

/*判断TI是否为1*/

if((SCON&0x02)==0x02) break;

/*清除发送中断标志TI=0*/

TI=0;

SBUF=c;/*将字符送至串行输出缓冲器*/

}

tx_str(char *str)/*送出字符串*/

{

char i;

for(i=0;i

tx_char(str[i]);

}

tx_strl(char *str)/*以指针的方式送出字符串*/ {do{tx_char(*str++);}

while(*str=='\0');

}

//串口接收中断函数

void serial () interrupt 4 using 3

{

if(RI)

{

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

基于-89C51单片机的秒表课程设计汇本

《单片机技术》 课程设计报告 题目:基于MCU-51单片机的秒表设计班级: 学号: 姓名: 同组人员: 指导教师:王瑞瑛、汪淳 2014年6月17日

目录 1课程设计的目的 (3) 2 课程设计题目描述和要求 (3) 2.1实验题目 (4) 2.2设计指标 (4) 2.3设计要求 (4) 2.4增加功能 (4) 2.5课程设计的难点 (4) 2.6课程设计容提要 (4) 3 课程设计报告容 (5) 3.1设计思路 (5) 3.2设计过程 (6) 3.3 程序流程及实验效果 (7) 3.4 实验效果 (16) 4 心得体会 (17)

基于MCS-51单片机的秒表设计 摘要:单片机控制秒表是集于单片机技术、模拟电子技术、数字技术为一体的机电一体化高科技产品,具有功耗低,安全性高,使用方便等优点。本次设计容为以8051 单片机为核心的秒表,它采用键盘输入,单片机技术控制。设计容以硬件电路设计,软件设计和PCB 板制作三部分来设计。利用单片机的定时器/计数器定时和计数的原理,用集成电路芯片、LED 数码管以及按键来设计计时器。将软、硬件有机地结合起来,使他拥有正确的计时、暂停、清零、并同时可以用数码管显示,在现实生中应用广泛。 关键词:秒表;8051;定时器;计数器 1 课程设计的目的 《单片机应用基础》课程设计是学好本门课程的又一重要实践性教学环节,课程设计的目的就是配合本课程的教学和平时实验,以达到巩固消化课程的容,进一步加强综合应用能力及单片机应用系统开发和设计能力的训练,启发创新思维,使之具有独立单片机产品和科研的基本技能,是以培养学生综合运用所学知识的过程,是知识转化为能力和能力转化为工程素质的重要阶段。 2 课程设计题目描述和要求

单片机课程设计完整版样本

课程设计( 论文) 课程名称单片机 题目名称简易密码锁的设计学院高等技术学院 专业班级高1 1 0 9 学号3869 学生姓名刘欢 指导教师胡立强 11月28 日 目录

一,任务目的 (3) 二,任务要求 (3) 三,电路与元器件 (4) 四,程序设计 (5) 五,程序运行测试 (6) 六,任务小结 (7) 七,心得体会 (8) 八,参考文献 (9) 1.任务目的

经过对具有四个按键输入和一个数码管显示的简易密码锁的设计与制作, 让读者理解C语言中数组的基本概念和应用技术, 并初步了解单片机与键盘和LED数码管的接口电路设计及编程控制方法。 2.任务要求 在一些智能门控管理系统, 需要输入正确的密码才能开锁。基于单片机控制的密码锁硬件电路包括三部分: 按键、数码显示和电控开锁驱动电路, 三者的对应关系如图表3.16所示。 表3.16 简易密码锁状态 简易密码锁的基本功能如下: 4个按键, 分别代表数字0,1,2,3: 密码在程序中事先设定, 为0-3之间的一个数字; 上电复位后, 密码锁初始状态为关闭, 密码管显示符号”—”; 当按下数字键后, 若与事先设定的密码相同, 则数码管显示字符”P”, 打开锁, 3秒后恢复锁定状态, 等待下一次密码的输入, 否则显示字符”E”持续3秒, 保持锁定状态并等待下次输入。 3.电路与元器件 根据任务要求, 用一位LED数码管作为显示器件, 显示密码锁的状态信息, 数码管采用静态连接方式; 4个按键连接到P0口的低四位

P0.0-P0.3引脚, 设P0.0连接数字”0”按键、P0.1连接数字”1”按键, 依次类推; 锁的开、关电路用P3.0控制的一个发光二极管代替, 发光二极管点亮表示锁打开, 熄灭表示锁定。根据以上分析, 采用如图3.21所示的连接电路。 图3.21 简易密码锁电路 简易密码锁电路所需元器件清单如表3.17所示。 元器件名称参数数量元器件名 称 参数数量 插座DIP40 1 电阻103 1 单片机AT89SC51 1 电解电容22UF 1

单片机课程设计选题

单片机课程设计选 题

单片机原理与接口技术课程设计题目 以下题目任选其一,1-2人一组,自由组合,组内各人必须有明确的分工,原则上同一组最多一个同学得优。 可使用任何单片机或ARM,1-4要求自己设计全部硬件和焊接电路板,5-10题可用现成的单片机开发板,5-6题亦可用proteus仿真。自拟题的根据题目难度由指导老师决定能否用现成的单片机开发板。 一、PC机看门狗(每班最多6人选此题,难度系数:低) 功能:当PC机死机时能自动使其重新启动。 硬件:可使用串口或USB与PC机通讯。 软件:PC机上软件编程可选用任何一种面向对象开发软件,如VC,Delphi等。 实现原理:PC机正常时,每隔一段时间经过串口向单片机发送一些固定的数据,单片机如果收到此数据,说明PC机正常,如果超时未收到,则控制PC机重新启动。 二、电子琴设计(每班最多6人选此题,难度系数:中) 使用4×4行列式键盘和蜂鸣器实现电子琴的功能。键盘符号定义如下: 按下1-7,实验箱上的蜂鸣器发出对应的音调(中音),当同时按下L和1-7时是,蜂鸣器发出低音,同时按下H和1-7时,蜂鸣

器发高音。只要按键没松开,蜂鸣器一直发声,直到松开按键。 扩展功能:在彩屏LCD上显示电子琴图片,用触摸屏控制发音,就像真正弹电子琴一样。 三、自行车测速仪 (难度系数:中偏高) 基本功能:能实时显示自行车的行驶速度 附加功能:实时时钟,行驶里程累计 要求具备一定的实用价值,即要考虑如下问题(也是答辩时的考察和评分指标): 1、体积要做到尽量小 2、为了省电,要使用低电压工作的单片机,比如使用2.0-3.3V 工作电压的单片机 3、供电采用可充电的聚合物锂电池(普通手机电池),一次充 电后的使用时间最少12小时 4、最好能直接用单车轮子的旋转为电池充电(选做)。 四、计算器设计 1、使用4×4行列式键盘和1602液晶(其它液晶亦可)或数码 管,实现普通十进制计算器的功能,键盘符号定义如下:

51单片机交通灯课程设计

第一章单片机概述 单片机是20世纪70年代中期发展起来的一种大规模集成电路器件。它在一块芯片内芯片内集成了计算机的各种功能部件,构成一种单片式的微型计算机。20世纪80年代以来,国际上单片机的发展迅速,其产品之多令人目不暇接,单片机应用不断深入,新技术层出不穷。 单片机的应用技术是一项新型的工程技术,其内涵随着单片机的发展而发展。由于MCS-51系列的单片机的模块化结构比较典型、应用灵活,为许多大公司所采纳,使8051系列的单片产品日新月异。在Intel公司20世纪80年代初推出MCS-51系列单片机以后,世界上许多著名的半导体厂商相继生产和这个系列兼容的单片机,使产品型号不断地增加、品种不断丰富、功能不断加强,在国内外单片机应用中占有重要地位。由于单片机具有功能强、体积小、价格低等一系列优点,在各个领域都有广泛的应用,有力地推动了各行各业的技术改造和产品更新换代。 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,

产品更新换代的节奏也越来越快。 第二章MSC-51芯片简介 8051是MCS-51系列单片机的典型产品。 8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明: ·中央处理器:

中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。 ·数据存储器(RAM) 8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM 只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。 ·程序存储器(ROM): 8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 ·定时/计数器(ROM): 8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 ·并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。 ·全双工串行口: 8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

基于51单片机课程设计

基于51单片机课程设计报告 院系:电子通信工程 团组:电子设计大赛1组 姓名: 指导老师:

目录 一、摘要 (3) 二、系统方案的设计 (3) 三、硬件资源 (5) 四、硬件总体电路搭建 (13) 五、程序流程图 (14) 六、设计感想 (14) 七、参考文献 (16) 附录 (17) 附录 1 程序代码 (17)

一、摘要 本设计以STC89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、led控制程序、超温报警程序。 关键词:STC89C51单片机 DS18B20温度芯片温度控制 ,LED报警提示. 二、系统方案的设计 1、设计要求 基本功能: 不加热时实时显示时间,并可手动设置时间; 设定加热水温功能。人工设定热水器烧水的温度,范围在20~70度之间,打开开关后,根据设定温度与水温确定是否加热,及何时停止加热,可实时显示温度; 设定加热时间功能。限定烧水时间,加热时间内超过温度上限或低于温度下限报警,并可实时显示温度。 2、系统设计的框架

本课题设计的是一种以STC89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。其主要包括:电源模块、温度测量及调理电路、键盘、数码管显示、指示灯、报警、继电器及单片机最小系统。 图1 系统设计框架 3 工作原理 温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机STC8951获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) ,这里采用通过LED1和LED2取代!!! 当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声,这里采用HLLED提示。

单片机课程设计报告电子密码锁完整版

单片机课程设计报告电 子密码锁 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

山东交通学院 单片机原理与应用课程设计院(部):轨道交通学院 班级:自动化121 学生姓名: 学号: 指导教师: 时间:— 课程设计任务书 题目电子密码锁设计 系 (部) 轨道交通学院 专业班级自动化121 学生姓名 学号 06 月 01 日至 06 月 12 日共 2 周 指导教师(签字) 系主任(签字) 年月日

目录 3.总体设计 (2)

4 密码比较模块 (6) (6) (8) (9) 附录 (10)

摘要 设计运用了ATMEL公司的AT89S52芯片系统,将微处理器、总线、蜂鸣器、矩阵键盘、存储器和I/O口等硬件集中一块电路板上,通过读取键盘输入的数据(密码)并储存到ATMEL912 24C08存储器中,然后判断之后键盘输入的数据与已存储的数据是否相同来决定打开密码箱或锁键盘或报警。在keil4软件中编程,系统可实现6位密码的处理,并通过控制步进电机控制密码箱门的电子锁,同时还可以修改改密码。利用单片机系统制作的密码箱安全性能更高,更易操作且体积小。 关键词:单片机、密码锁、修改密码 1.设计要求 本实验将实现六位数的电子密码锁。要求使用4X4 行列式键盘作为输入,并用LCD 实时显示。具体要求如下:1. 开机时LCD显示“welcome to use”,初始化密码为“123456”,密码可以更改。 2. 按下“10”,开始则显示“Enter Please:”。3. 随时可以输入数值,并在LCD上实时显示‘*’。当键入数值时,为了保密按从左到右依次显示‘*’,可键入值为0~9。 4. 按下“13”键,则表示确定键按下,进行密码对比。如相符则在LCD第一行显示“Open the door!”,同时指示灯亮起并且步进电机旋转一定的角度;如不符,则LCD第一行显示“Wrong password!”,并且蜂鸣器同时提示一下。如果密码连续三次错误则蜂鸣器连续响5下,并且持续5秒不能进行任何操作 5.在开锁状态下按下“12”键,进入修改密码状态,LCD同时提示“Enter new code!”。为删除按键,出入之后可以进行删除。按键为关闭按键,只有在打开状态下才可以关闭,按下之后LCD显示“Close the door!”。 2.功能概述 此设计分为四个功能模块。 第一模块:按键输入模块,用于密码的输入以及其他的密码操作按键。 第二模块:LCD模块,是与使用者交流的界面,用于显示各种状态下的内容。 第三模块:步进电机模块,用于控制密码锁的打开与关闭。 第四模块:24C08模块,用于储存输入的密码并读出来。 3.总体设计 本次设计作品的主要构成部分包括80C51单片机、LCD1602、24C08、矩阵按键、LED 等、蜂鸣器。如图1总体仿真图,图2实物图。 图1 总体电路图 图2 密码锁实物图 4.硬件设计 矩阵按键设计 如图3所示矩阵按键由P1口控制,了加强密码的保密性,采用一个4×4的矩阵式键盘可以任意设置用户密码(1-16位长度),从而提高了密码的保密性,同时也能减少与单片机接口时所占用的I/O口线的数目,节省了单片机的宝贵资源,在按键比较多的时候,通常采用这种方法。 每一行与每一列的交叉处不相同,而是通过一个按键来连通,利用这种行列式矩阵结构只需要N根行线与M根列线,即可组成具有N × M 个按键的矩阵键盘。 在这种行列式矩阵键盘编码的单片机系统中,键盘处理程序首先执行等待按键并确

单片机课程设计计算器

课程设计说明书 课程设计名称:单片机课程设计 课程设计题目:四位数加法计算器的设计学院名称:电气信息学院 专业班级: 学生学号:

学生姓名: 学生成绩: 指导教师: 课程设计时间:至

格式说明(打印版格式,手写版不做要求) (1)任务书三项的内容用小四号宋体,倍行距。 (2)目录(黑体,四号,居中,中间空四格),内容自动生成,宋体小四号。 (3)章的标题用四号黑体加粗(居中排)。 (4)章以下的标题用小四号宋体加粗(顶格排)。 (5)正文用小四号宋体,倍行距;段落两端对齐,每个段落首行缩进两个字。 (6)图和表中文字用五号宋体,图名和表名分别置于图的下方和表的上方,用五号宋体(居中排)。(7)页眉中的文字采用五号宋体,居中排。页眉统一为:武汉工程大学本科课程设计。 (8)页码:封面、扉页不占页码;目录采用希腊字母Ⅰ、Ⅱ、Ⅲ…排列,正文采用阿拉伯数字1、2、3…排列;页码位于页脚,居中位置。 (9)标题编号应统一,如:第一章,1,,……;论文中的表、图和公式按章编号,如:表、表……;图、图……;公式()、公式()。

课程设计任务书 一、课程设计的任务和基本要求 (一)设计任务(从“单片机课程设计题目”汇总文档中任选1题,根 据所选课题的具体设计要求来填写此栏) 1. 系统通过4x4的矩阵键盘输入数字及运算符。 2. 可以进行4位十进制数以内的加法运算,如果计算结果超过4位十进制数,则屏幕显示E。 3. 可以进行加法以外的计算(乘、除、减)。 4. 创新部分:使用LCD1602液晶显示屏进行显示,有开机欢迎界面,计算数据与结果分两行显示,支持小数运算。 (二)基本要求 1.有硬件结构图、电路图及文字说明; 2.有程序设计的分析、思路说明; 3.有程序流程框图、程序代码及注释说明; 4.完成系统调试(硬件系统可以借助实验装置实现,也可在Proteus 软件中仿真模拟); 5.有程序运行结果的截屏图片。

单片机课程设计报告

《单片机原理及接口技术》课程设计题目:简易计算器设计 级:电子1547 名:苏丹丹、李静、齐倩 号:05号、17号、11号

导教师:张老师 间:2013年12月 西安航空学院电气学院

目录 一、选题的背景和意义-------------------1 1.1选题的背景-------------------------------------1 1.2选题的意义-------------------------------------1 二、总体设计-------------------------------1 2.1设计任务---------------------------------------1 2.2方案选择---------------------------------------1 三、硬件设计-------------------------------2 3.1 元器件名称--------------------------------------------------------2 3.2 计算器按键介绍--------------------------------------------------2 3.3硬件系统框图、单元电路--------------------------3 四、软件设计-------------------------------3 4.1 软件调试步骤-----------------------------------------------------3 4.2软件设计流程图---------------------------------------------------4 五、结束语------------------------------------5 六、参考文献--------------------------------5 七、附录---------------------------------------6

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

单片机课程设计题目汇总(全)

单片机原理与接口技术课程设计题目汇总 说明:为便于同学提前探讨开发思路,特将本课程设计的可选题目发给大家。 每个同学可以在以下题目中选一题要求:课程设计考核内容包括:源程序;设计报告文档基于单片机的电子时钟设计设计内容:1、用LCD液晶作为显示设备(30分) 2、可以分别设定小时,分钟和秒,复位后时间为:00: 00:00 (30 分) 3、能实现日期的设置,年、月、日(30分) 4、其他创新内容(10分)如:闹钟功能;显示星期;整点音乐报时等。 图示: 2010-04-09 MON 11:06:42 基于单片机的交通灯显示系统(一) 设计内容:1、东西方向、南北方向均有红、黄、绿三种信号灯;(30 分) 2、带紧急制动按钮,按钮按下,所有方向亮红灯;再次按下,恢复正常显 示(20分) 3、夜间模式按钮按下,所有方向显示黄灯闪烁(20分) 4、实时提醒绿灯亮的剩余时间(30分)图示: 基于单片机的交通灯显示系统(二) 设计内容:1、东西干道和南北干道的通行分左行、右行、直行,其中左行、右行固定15秒;直行固定30秒(40分) 2、信号灯分绿灯(3种)、红灯、黄灯,每次绿灯换红灯时,黄灯亮3秒 钟。(30分) 3、东西干道和南北干道交替控制,每次干道绿灯交替时,有 3 秒钟所有干道的交通灯都是黄灯闪烁3秒钟,提示已经进入路口的车辆迅速通过。(30分)

4、其他创新内容。(10分) 图示: 四、基于单片机的波形发生器设计 设计内容:1、设计一款能产生3种以上波形的波形发生器(30分) 2、设计波形选择按钮(采用3个独立按键)(10分) 3、点阵显示波形图案(20分) 4、能同时输出两种波形(30分) 5、显示频率(10分) 图示: 五、基于单片机的LED点阵广告牌设计 设计内容:1、能显示不同字符、图形的LED点阵广告牌(30分) 2、用独立按键控制不同字符的切换效果(如闪烁、静止、平移)(30 分) 3、可通过串口从电脑下载更新需要显示的字符(30分) 4、其他创新功能(10分) 图示:略 六、基于单片机的篮球计分器设计 设计内容:1、设计LCD显示篮球比分牌(30分) 2、通过加分按钮可以给A队或B队加分(20分) 3、设计对调功能,A队和B队分数互换,意味着中场交换场地。(20 分) 4、显示比赛倒计时功能(20分) 5、创新内容:如显示第几小节(10分) 显示: A 083: B 079 4th Period 10:25

51单片机课程设计秒表

微控制器技术课程 设计报告 设计题目:秒表 专业:供用电技术 班级:供电141 学号:140315143 姓名:王晨铭 指导教师:李昊 设计时间:2016.6.21

微控制器技术课程设计任务书 设计题目:秒表 设计时间:2016.6.20 设计任务: 在单片机开发板或软件仿真,编制程序,实现以下功能 1、利用定时器实现秒表功能,精确到0.1S; 2、数码管显示当前计时时间; 3、设定三个键,计时开始,停止计时和复位清零。 背景资料:1、单片机原理与应用 2、检测技术 3、计算机原理与接口技术 进度安排: 1、第1天,领取题目,熟悉设计内容,分解设计步骤和任务; 2、第3天,规划设计软硬件,编制程序流程、绘制硬件电路。 3、第5天,动手制作硬件电路,或编写软件,并调试。 4、第7天,中期检查。 5、第9天,完善设计内容,书写设计报告。 6、第13天,提交设计报告,整理设计实物,等待答辩。 7、第14天,设计答辩。

目录 一、设计任务和要求 (3) (1)设计任务 (3) (2)设计要求 (3) 二、设计方案与论证 (3) 三、单元电路设计与参数计算 (4) (1)时钟电路 (4) (2)按钮电路 (4) (3)显示电路 (5) (4)单片机 (5) 四、原理图及器件清单 (6) ( 1 )总原理图 (6) (2)PCB图 (7) (3)Proteus仿真图 (7) (4)元器件清单 (8) 五、安装与调试 (8) (1)安装 (8) (2)调试 (8) 六、性能测试和分析 (9) 七、结论和心得 (9) 八、参考文献 (9)

题目:秒表 二、方案设计与论证 本设计分为时钟电路、按钮电路、显示电路和单片机四大部分,这些模块中单片机占主控地位。其模块电路如图2-1所示。时钟电路常用的有内部时钟方式和外部时钟方式,但因为本设计中只需要一片单片机,所以采用内部时钟方式比较简单。按钮电路中的“复位”按钮是按键手动复位,它有电平和脉冲两种方式,比较电路的复杂程度,本设计选择了按钮电平复位电路,其他几个按钮则是通过单片机判断高低电平的不同来控制按钮。显示电路所用的数码管有共阴和共阳之分,不管使用何种数码管,P0口作为I/O使用时都是需要上拉电阻才能驱动数码管。另外,因为单片机的4个并行I/O口的输出电流一般是1mA,短路电流为4mA左右,而数码管的最少驱动电流也需要10mA,因而不管在使用共阴数码管时,单片机输出口也必须使用上拉电阻提高输出电流,才能驱动数码管。为了使电路简单化,本设计选用共阳数码管。但根据显示方式的不同选择,我们可以有几种方案: 方案一:使用静态显示方式。静态显示方式下的数码管的显示字符一经确定,相应锁存器锁存的断码输出將维持不变,直到送入另一个字符的断码为止。因而此设计中使用的显示位数使用了三个8位并行I/0口。如果另外想扩展单片机功能,则能使用的输出管脚很是有限。 方案二:使用动态显示方式。这个显示方式是将所有显示位的段码线的相应段并联在一起,由一个8位I/O口控制,而各位的共阴或共阴极分别由相应的I/O线控制,形成各位的分时选通。这种显示方式,简化了硬件电路,特别在多位数码管显示时尤为突出。 本小组尝试了各种方案,在此报告中以静态显示方式为例说明。(动态显示方式省略) 显示电路 单片机 AT89C51 时钟电路 按钮电路

51单片机红绿灯课程设计

1 电源提供方案 为使模块稳定工作,须有可靠电源。因此考虑了两种电源方案:方案一:采用独立的稳压电源。此方案的优点是稳定可靠,且有各种成熟电路可供选用;缺点是各模块都采用独立电源,会使系统复杂,且可能影响电路电平。 方案二:采用单片机控制模块提供电源。改方案的优点是系统简明扼要,节约成本;缺点是输出功率不高。综上所述,选择方案二。 2 显示界面方案 该系统要求完成倒计时功能。基于上述原因,我考虑了二种方案:方案一:采用数码管显示。这种方案只显示有限的符号和数码字符,简单,方便。方案二:采用点阵式LED 显示。这种方案虽然功能强大,并可方便的显示各种英文字符,汉字,图形等,但实现复杂,成本较高。 综上所述,选择方案一。 3 输入方案: 设计要求系统能调节灯亮时间,并可处理紧急情况,我研究了两种方案:方案一:采用8155扩展I/O 口及键盘,显示等。 该方案的优点是:使用灵活可编程,并且有RAM,及计数器。若用该方案,可提供较多I/O 口,但操作起来稍显复杂。 方案二:直接在I/O口线上接上按键开关。 由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用。

综上所述,选择方案二。 3.1单片机交通控制系统的通行方案设计 设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。其具体状态如下图所示。说明:黑色表示亮,白色表示灭。交通状态从状态1开始变换,直至状态6然后循环至状态1,周而复始,即如图2.1所示: 图1 交通状态 本系统采用MSC-51系列单片机AT89C51作为中心器件来设计交通灯控制器。实现以下功能:

单片机课程设计——基于C51简易计算器

单片机十进制加法计算器设计 摘要 本设计是基于51系列的单片机进行的十进制计算器系统设计,可以完成计 算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件方面从功能考虑,首先选择内部存储资源丰富的AT89C51单片机,输入采用4×4矩阵键盘。显示采用3位7段共阴极LED动态显示。软件方面从分析计算器功能、流程图设计,再到程序的编写进行系统设计。编程语言方面从程序总体设计以及高效性和功能性对C 语言和汇编语言进行比较分析,针对计算器四则运算算法特别是乘法和除法运算的实现,最终选用全球编译效率最高的KEIL公司的μVision3软件,采用汇编语言进行编程,并用proteus仿真。 引言 十进制加法计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用设计和单片机完整的用户程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。 单片机课程设计既要让学生巩固课本学到的理论,还要让学生学习单片机硬件电路设计和用户程序设计,使所学的知识更深一层的理解,十进制加法计算器原理与硬软件的课程设计主要是通过学生独立设计方案并自己动手用计算机电路设计软件,编写和调试,最后仿真用户程序,来加深对单片机的认识,充分发挥学生的个人创新能力,并提高学生对单片机的兴趣,同时学习查阅资料、参考资料的方法。 关键词:单片机、计算器、AT89C51芯片、汇编语言、数码管、加减乘除

目录 摘要 (01) 引言 (01) 一、设计任务和要求............................. 1、1 设计要求 1、2 性能指标 1、3 设计方案的确定 二、单片机简要原理............................. 2、1 AT89C51的介绍 2、2 单片机最小系统 2、3 七段共阳极数码管 三、硬件设计................................... 3、1 键盘电路的设计 3、2 显示电路的设计 四、软件设计................................... 4、1 系统设计 4、2 显示电路的设计 五、调试与仿真................................. 5、1 Keil C51单片机软件开发系统 5、2 proteus的操作 六、心得体会.................................... 参考文献......................................... 附录1 系统硬件电路图............................ 附录2 程序清单..................................

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

最全最好的课程设计-51单片机电子日历时钟( 含源程序)

LED日历时钟课程设计 院系: 班级: 姓名: 学号: 指导教师: 2012 年06 月16 日

目录

摘要 单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。由于具有上述优点,在我国,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。这次毕业设计通过对它的学习、应用,以AT89S51芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,从而到达学习、设计、开发软、硬件的能力。 第一章前言 数字电子钟具有走时准确,一钟多用等特点,在生活中已经得到广泛的应用。虽然现在市场上已有现成的电子钟集成电路芯片,价格便宜、使用也方便,但是人们对电子产品的应用要求越来越高,数字钟不但可以显示当前的时间,而且可以显示期、农历、以及星期等,给人们的生活带来了方便。另外数字钟还具备秒表和闹钟的功能,且闹钟铃声可自选,使一款电子钟具备了多媒体的色彩。单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。 时钟电路在计算机系统中起着非常重要的作用,是保证系统正常工作的基础。在一个单片机应用系统中,时钟有两方面的含义:一是指为保障系统正常工作的基准振荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间,它通常有两种实现方法:一是用软件实现,即用单片机内部的可编程定时/计数器来实现,但误差很大,主要用在对时间精度要求不高的场合;二是用专门的时钟芯片实现,在对时间精度要求很高的情况下,通常采用这种方法,典型的时钟芯片有:DS1302,DS12887,X1203等都可以满足高精度的要求。 AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k B ytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。 AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

单片机课程设计电阻测量(完整版)

课程设计报告课程名称:单片机课程设计 设计题目:电阻测量 院系:通信与控制工程系 专业:通信工程 班级: 学生姓名: 学号: 08409212 起止日期: 指导教师: 教研室主任:

摘要 本设计电阻测量是利用A/D转换原理,将被测模拟量转换成数字量,并用数字方式显示测量结果的电子测量仪表。通常测量电阻都采用大规模的A/D转换集成电路,测量精度高,读数方便,在体积、重量、耗电、稳定性及可靠性等方面性能指标均明显优于指针式万用表。其中,A/D转换器将输入的模拟量转换成数字量,逻辑控制电路产生控制信号,按规定的时序将A/D转换器中各组模拟开关接通或断开,保证A/D 转换正常进行。A/D转换结果通过计数译码电路变换成BCD码,最后驱动显示器显示相应的数值。本系统以单片机AT89C52为系统的控制核心,结合A/D转换芯片ADC0809设计一个电阻测量表,能够测量一定数值之间的电阻值,通过四位数码显示。具有读数据准确,测量方便的特点。 关键词:单片机(AT89C52);电压;A/D转换;ADC0809

目录 设计要求 (1) 1、方案论证与对比 (1) 1.1方案一 (1) 1.2方案二 (1) 1.3方案对比与比较................................... 错误!未定义书签。 2、系统硬件电路的设计 (2) 2.1振荡电路模块 (2) 2.2A/D转换电路模块 (3) 2.2.1主要性能 (3) 2.2.2 ADC0809芯片的组成原理 (4) 2.2.3 ADC0809引脚功能 (4) 2.3主控芯片AT89C52模块 (5) 2.3.1主要功能特性 (6) 2.3.2 主要引脚功能 (6) 2.4显示控制电路的设计及原理 (8) 3、程序设计 (9) 3.1初始化程序 (9) 3.2主程序 (10) 3.3显示子程序 (10) 3.4A/D转换测量子程序 (11) 4、调试及性能分析 (11) 4.1调试与测试 (11) 4.2性能分析 (12) 5、元件清单 (13) 6、总结与思考及致谢............................... 错误!未定义书签。参考文献. (13)

微机原理单片机课程设计例子

河南理工大学 《单片机应用与仿真训练》设计报告 可调电子钟温度测量系统 姓名:乔石 学号:321308010220 专业班级:电气本2班 指导老师:杨凌霄 所在学院:电气工程与自动化学院 2015 年4 月14日

摘要 本次单片机课程设计是利用以AT89C51单片机为核心,晶体振荡器和数码管为基础进行的可调电子钟温度测量系统。此设计集中了定时器定时、温度控制装置等部分构件,有效地把中断系统和定时器的原理有机的结合起来,能够很好地实现数码管显示和温度控制功能,为日常生活和工业化生产提供了非常简洁方便的思路。这个实验软件设计过程简单明了,把单片机课程核心部分等具体呈现出来,硬件设计基于以往的实验原理。 关键词:AT89C51,温度测量,定时器

目录 一、概论 ------------------------------------------------------ 2 1、前言-------------------------------------------------------------- 3 2、设计的意义-------------------------------------------------------- 3 3、设计任务---------------------------------------------------------- 4 4、设计的目的和要求-------------------------------------------------- 4 二、系统总体方案及硬件设计-------------------------------------- 5 1、系统总体方案------------------------------------------------------ 5 2、霍尔传感器检测单元------------------------------------------------ 5 3、键盘调整单元------------------------------------------------------ 7 三、软件设计---------------------------------------------------- 8 1、系统主程序-------------------------------------------------------- 8 2、中断程序---------------------------------------------------------- 9 2.1、里程计数中断程序---------------------------------------------- 9 2.2、中途等待中断程序---------------------------------------------- 9 2.3、计算程序----------------------------------------------------- 10 2.4、显示程序----------------------------------------------------- 10 2.5、键盘程序----------------------------------------------------- 10 四、Proteus软件仿真 ------------------------------------------- 11 五、实物图----------------------------------------------------- 14 六、程设计心得体会--------------------------------------------- 15 参考文献------------------------------------------------------- 16 附1:源程序代码 ----------------------------------------------- 17 附2:系统原理图 ----------------------------------------------- 17

相关主题
文本预览
相关文档 最新文档