当前位置:文档之家› 《工程材料》第二章金属的凝固与固态相变

《工程材料》第二章金属的凝固与固态相变

第二章金属材料的凝固与固态相变

2.1 纯金属的结晶

2.1.1 凝固的基本概念(Solidification)

1.晶体的结晶( Crystallization )

To :理论结晶温度

△T(过冷度)=理论结晶温度-实际结晶温度

热分析法

---冷却曲线

2.1.2 金属的结晶

1. 金属的结晶过程:

晶核的形成:自发形核或非自发形核

晶核的长大:树枝状长大,即枝晶长大

2. 影响形核和长大的因素(1)过冷度的影响

(2)难熔杂质的影响

某些高熔点的杂质,将强烈地促使非自发形核,大大提高形核率

3.晶粒大小及控制(1)晶粒度

(1)细化晶粒措施---提高金属性能的重要途径之一1)增大过冷度

2)变质处理:在铁水中加入硅铁细化石墨,

钢液中加入Ti 、Zr、B,

铝液中加入TiC、VC、MoC等

3)振动、搅拌等方法:在结晶时采用机械振动、超声波处理等

2.1.3 材料的同素异构转变δ-Fe γ-Fe α-Fe

2.2 合金的凝固

2.2.1 二元合金相图与凝固

相图,又称为平衡图或状态图。可从相图中得知:

1.一定成分的合金在一定的温度下相的组成

2.合金在冷却过程中发生了哪些转变

3.一定成分的合金在室温下的平衡组织,可以预测材料

的性能

4 . 相图与材料的加工工艺性能也存在一定的对应关系

相图的建立是用热分析法。

实验时的冷却速度是0.15 ~~ 0.5 ℃/ min.

液相线固相线

1.匀晶相图

特点:两组元在液态和固态均能无限互溶。

包括:Cu-Ni, Cu-Au, Au-Ag, Fe-Ni, W-Mo

(1)平衡结晶过程

任意成分合金,从高温到室温时:L L+α α

在L+α两相区,当T1下降到T2时:1)α相不断增多,液相不断减少;

2)液相成分沿着液相线从l1——l2;

固相成分沿着固相线从a1——a2。

(2)杠杆定律:Q L = bc / ac

Qα = ab / ac = 1 —Q L

(3)枝晶偏析

定义:实际铸造生产时,冷却较快,会使先结晶出来的固相含高熔点组元量较多,造成在一个晶粒内化学成分不均匀的现象。

影响:力学性能、耐蚀性能不均匀

防止:扩散退火(均匀化退火),即将铸件加热到低于固相线100 –200℃的温度,进行较长时间的保温(10—15小时),再随

炉缓冷

2. 共晶相图

包括:Pb -Sn 、Pb –Sb 、Ag -Cu 、Al –Si

特点:两组元在液态无限固溶,在固态有限溶解(或不溶),并

在结晶时发生共晶转变。

固态有限溶解的共晶相图

固态完全不溶解

的共晶相图

(1)相图分析

A 、B: 组元Pb、Sn的熔点

AEB线:液相线

AMENB线:固相线

MF、NG:分别为Sn溶于α及Pn溶于β的溶解度曲线MEN水平线:共晶线Le αm + βn

三个单相区:L 、α、β

三个两相区:L + α、L + β 、α+ β

一个三相区(MEN水平线):L + α+ β

《合金固态相变》教学大纲

《合金固态相变》教学大纲 课程编号:2080113 学时:40 (实验学时另计,8学时) 学分:2.5 一、课程基本情况 1.课程名称:合金固态相变 2.课程性质:必修课程 3.适用年级专业:四年制材料科学与工程、材料成型与控制工程专业,三年级本科生 4.先修课程:材料科学基础、金属学、物理化学 5.教材:“合金固态相变”,赵乃勤主编,中南大学出版社,2008 6.开课单位:材料科学与工程学院 二、课程性质目的、任务和基本要求 1.性质目的和任务 固态相变是材料科学与工程专业的主要专业课之一,它是以物理、数学、物理化学和金属学原理等课程为基础,着重讲授与合金固态相变有关的基本理论,主要包括金属(特别是钢)在加热、冷却过程中相变的基本原理和规律以及组织结构与性能之间的关系,为提高产品质量、充分发挥现有材料的潜力、合理制定热处理工艺、发展新材料和新工艺打下坚实的基础。本课程的内容应适当反映现代固态相变理论的发展和成就。 2. 课程的基本要求 学生通过学习本课程,应达到:1.掌握金属材料中相变的基本理论,重点是钢中组织转变的基本规律;2.有运用金属材料中相变基本规律,分析和研究金属热处理工艺问题的能力; 3.初步掌握成分组织与性能之间的关系,从而对金属材料具有一定的分析和研究能力。 三、课程教学环节、内容及学时分配 (一)课程内容 第一章绪论 合金固态相变的定义。金属固态相变在工业中的地位和作用。本课程的研究对象、内容以及与其它课程的关系。 教学重点:固态相变的一般特征,包括驱动力和阻力,相变的形核、长大、扩散、相界面等。 第二章合金固态相变的常用研究方法 具体介绍研究物相类型、分布和相变过程的各种手段。 教学重点:材料的物相种类、相分布和相变过程所采用的不同研究手段,并对各研究手段在相变研究中的用途和基本原理有所了解。

金属凝固组织的细化方法和机理

课程名称:金属凝固指导老师:宋长江,翟启杰教授 金属凝固组织的细化方法和机理 摘要:金属组织细化细化是提高材料性能的一种有效手段。在材料科学领域里,控制金属的凝固过程以细化金属凝固组织是提高铸件性能的重要途径之一,在已有的研究中,控制金属凝固过程以细化凝固组织的方法主要有两类:一是物理细化法,如低温浇注、电磁搅拌、机械振动、超声波细化等,二是化学细化法,如添加形核剂和长大抑制剂等。物理细化方法处理材料纯净度高,不会对金属熔体带来外来夹杂,细化效果好;化学添加剂法细化效果稳定、作用快、操作方便、适应性强,是目前最普遍的细化方法。 关键词:组织细化;细化方法;细化剂;变质剂 Refinement methods and mechanism of solidification structure of metals Abstract: Metal microstructure refinement is an effective means to improve the properties of materials.In the field of meterial science, To contol the metal solidification process to refine the metal solidification structure is an important way of improving the casting performance. There are two main ways in the previous study: the first one is Physical refining method,such as cast cold, electromagnetic stirring, mechanical vibration, ultrasonic Refining and so on. The other one is chemical method, like the addition of nucleating agents and growth inhibitors. Physical refining method can make the material more pure,and there is no inclusion along with. The chemical method is the most common method of refinement because it’s faster and more stable and easy to operate. Key words:structure refinement; refine method; refiners; modifier

第一章金属固态相变

金 属 热 处 理 主讲 主讲 从善海从善海材冶学院金属材料工程系 1.热处理 热处理是将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却下来的一种热加工工艺,其工艺曲线如下图所示。 一、热处理及其作用 绪论 ℃ Ac 1 加热 Ac 3

●平衡脱熔沉淀 设A-B 二元合金,当成分为K 的合金被加热到t 1温度时,β相将全部溶入a 相中而成为单一的固溶体。若自t 1温度缓慢冷却至固溶度曲线MN 以下温度时,β相又将逐渐析出,这一过程称为平衡脱熔沉淀。 (二)平衡脱熔沉淀 在转变初期,新形成的两个微区之间并无明显的界面和成分的突变,上坡扩散,最终使一均匀固

二、不平衡转变 (一)伪共析转变 当奥氏体以较快冷速过冷到GS和ES的延 长线以下温度时(如图1-2中虚线),奥 氏体中同时析出铁素体和渗碳体。 亚共析钢或过共析钢从奥氏体状态快 温度以下,先共析相来不 速冷却到A r1 及析出,奥氏体直接转变为铁素体和 渗碳体(F+Fe C),这种转变称为伪 3 共析转变。 这种由非共析成分所获得的共析组织称为伪共析组织

期间过饱和固溶体便会自发地发生分解,从中逐渐析出不平衡脱熔沉淀或时效

b)伸缩型半共格(c)切变型半共格 (三)非共格晶面 当两相界面处的原子排列差异很大,即错配度很大时,其原子间的匹配关系便不再维持见,这种界面称为非共格界面。 (d、c )非共格界面 二、两相间的晶体学关系 惯习面 惯习面通常以母相的晶面指数表示,如马氏体总是在奥氏体的面上形成,故 固态相变时新相与母相间往往存在 一定的取向关系,而且新相往往又 是在母相一定的晶面族上形成,这 种品面称为惯习面。 {} α′ 011 {} γ 111 // {} α′ 011 {} γ 111 马氏体的密排面与奥氏体的密排面 记着:

金属材料工程专业指导性培养方案

金属材料工程专业指导性培养方案 部门:机械与汽车工程学院 部门负责人:许德章 审核:陶庭先 校长:干洪 制订日期:2013年4月 一、培养目标与基本要求 培养目标: 本专业培养德智体美全面发展、诚信实干、基础扎实、实践能力强、综合素质高、具有创新精神,具备金属材料基础理论、铸造及热处理、表面工程等专业方向相关的工程技术知识,能在冶金、金属材料的制备、金属材料的铸造成型及热处理、材料结构研究与分析、材料表面处理等领域从事科学研究、技术与产品开发、工艺和设备设计、生产和经营管理等方面的应用型高级工程技术人才。 基本要求: 1、热爱社会主义祖国,拥护中国共产党的领导,树立正确的人生观、世界观和价值观,具有良好的思想品德、社会公德和职业道德。 2、掌握专业所需的基础科学理论知识,掌握本专业扎实的专业基础理论及必要的专业知识,具有本专业所必需的基本技能,具有良好的业务素养。 3、掌握科学的思维方法,具有创新能力和较强实践能力,具有较强的终身学习能力、获取及处理信息能力。 4、具有良好的心理素质和适应能力,掌握科学锻炼身体的基本技能,受到必要的军事训练,达到国家规定的大学生体育和军事训练合格标准。 毕业生应获得的知识和达到的能力: 1、掌握金属材料的铸造成型及热处理、材料表面处理、材料耐蚀与磨损的基础理论,以及表面处理、腐蚀与防护、耐蚀与磨损等方面的专业知识和技能;

2、掌握金属材料铸造成型工艺及设备的设计与制造方法; 3、掌握电镀、化学镀、涂装、真空镀、离子喷涂等原理与工艺方法; 4、具有从事金属材料及其耐蚀、耐磨及防腐材料的研究,正确地制定生产工艺及选用设备的初步能力; 5、具有本专业必需的机械、电工与电子技术、计算机应用的基本知识和技能; 6、具有研究开发和应用新材料、新工艺和相关设备的初步能力; 7、具有较强的创新意识及获取知识和运用知识解决实际问题的能力。 业务范围: 1、从事金属材料的铸造成型及热处理、表面工程、材料的腐蚀与防护等行业的技术工作; 2、从事金属材料的设计、制备、成型及其性能的检测与分析; 3、从事材料生产组织、技术管理和材料性能的检测、缺陷分析等技术监督工作; 4、从事金属材料生产技术管理、设备维护运行管理和经营销售等工作; 5、从事金属材料工程方面的科研、教学等工作。 二、专业方向 金属材料工程 三、学制:本科四年 四、主干学科、主要课程、主要实践教学环节 主干学科:材料科学与工程 主要课程:马克思主义基本原理、毛泽东思想和中国特色社会主义理论体系概论、高等数学Ⅰ、大学英语、画法几何及机械制图I、机械设计基础Ⅱ、工程力学Ⅱ、材料化学、材料科学基础、材料力学性能、金属固态相变原理、金属材料学(Metal Material Science)、表面工程学、液态成型原理、电化学原理、铸造工艺学主要实践教学环节:专业认识实习、专业生产实习、专业综合设计/实验、毕业设计(论文) 五、课程配置流程图、专业教育内容与课程体系

固态相变新理论论文

固态相变论文 班级:材料08-01 姓名:郑国阔 学号:0808010130

金属固态相变理论研究的最新进展 摘要:已经研究形成一套金属固态相变理论,但有的知识陈旧,且存在错误,因此,开拓创新具有理论意义和应用价值。本文就钢的珠光体和贝氏体转变做了深入研究。通过分析得出钢中共析分解的新机制,对于“相间沉淀”机理做了新的解释,重申了珠光体的新概念。认为:珠光体是共析铁素体和共析渗碳体(或碳化物)构成的整合组织,不是机械化合物。珠光体的形核--长大是以界面扩散为主进行的相变,铁素体和渗碳体两相是共析共生,协同长大,不存在领先相;发现了珠光体转变在预先抛光的试样表面也具有浮凸效应;指出过渡性是贝氏体相变的主要特征,提出了贝氏体和贝氏体相变的新定义。认为以往的热力学计算不准,贝氏体铁素体的相变驱动力约为-905J/mol。提出了切变-扩散整合机制,贝氏体相变的晶核是单相BF,不是共析分解,贝氏体铁素体(BF)在贫碳区形核,是贫碳的γ→α的无扩散相变,不是切变过程,而是以界面替换原子热激活跃迁方式形核长大;钢中贝氏体碳化物(Bc)在γ/α相界面上形核,向奥氏体和铁素体中长大,最终被铁素体包围,是以原子热激活跃迁方式进行的相变。 关键词:固态相变;珠光体;贝氏体;界面扩散;热激活跃迁;扩散;切变;整合。 金属固态相变过程和相变机理极为复杂,而钢中的相变是金属相变中最为复杂的,各种相变机制也存在争议,在争论中金属固态相变理论不断更新和发展发展[1~7]。科学技术哲学告诉人们,自然物质的演化是从量变到质变的过程。应当把“奥氏体珠光体、贝氏体、马氏体”转变系列作为一个整合系统来研究。从整合机制和自组织功能方面以系统整合的方法进行研究。 21世纪以来,奥氏体的形成、马氏体相变和回火转变研究欠活跃,进展缓慢,本文主要介绍珠光体转变和贝氏体相变的最新进展情况。 珠光体是钢中发现比较早的组织,20世纪上半叶对珠光体转变理论进行了大量的研究工作,但60~80年代在马氏体和贝氏体研究的热潮中,珠光体相变的研究被冷落。80年代以后,索氏体组织及在线强化;非调质钢取代调质钢;高强度冷拔钢丝的研究开发等,使珠光体转变的研究有了一定的新进展。但是,共析分解的许多问题实际上并没有真正搞清楚。本文就珠光体的定义、共析分解机理;领先相问题;相间沉淀等阐述其新理论、新认识。 20世纪50年代柯俊第一次对贝氏体相变的本质进行了研究。60年代末,美国冶金学家H.I.Aaronson等学者从能量上否定贝氏体转变的切变可能性。贝氏体相变机制方面形成了切变机制、扩散-台阶机制,切变-扩散复合机制等,并且经历了长达30多年的论争。进入21世纪以来,刘宗昌等人提出了切变-扩散整合机制。继承各类学术观点之所长,开拓创新,实现各类学术观点的整合,以便促进贝氏体相变理论的发展。 1. 珠光体转变新理论 20世纪80年代电镜观察发现了珠光体组织中的长大台阶,提出了台阶转变机制。近年来,作者本人依据对共析分解机理和珠光体本质的研究,发表了

铸造工艺中液态金属凝固成形的关键问题

铸造工艺中液态金属凝固成形的关键问题 液态金属通过冷却凝固最终获得合格的、满足各种使用要求的铸件。山东伊莱特重工跟您一起探讨:以下的关键问题是在生产过程中应予以妥善解决的。 (一)结晶及凝固组织的形成与控制液体金属的结构,晶核的形成与长大,晶粒的大小、方向和形态等与铸件的凝固组织密切相关,它们以铸件的物理性能和力学性能有着重大的影响。控制铸件的凝固组织的目的就是为了获得所希望的组织,欲控制凝固组织,就必须对其形成机理、形成过程和影响因素有全面的了解和深入研究。目前山东伊莱特重工有限公司已建立的有效控制组织的方法有变质、孕育、动态结晶、顺序凝固、快速凝固等。 (二)铸件尺寸精度和表面粗糙度控制现代制造的许多领域,对铸件尺寸精度和外观质量的要求愈来愈高,技术改变着铸造只能提供毛坯的传统观念,其目的在于降低物耗、能耗、工耗,并且改善产品的内外质量,争取市场和高效益。然而,铸件尺寸精度和表面粗糙度由于受到诸多因素(如铸型表面的作用、凝固热应力、凝固收缩等)的影响和制约,控制难度很大。铸件是液态成形的,实现净形化具有独特的优越性,在结构方面铸件的内腔和外形用铸造方法一次成形,使其接近零件的最终形状,使加工和组装工序减至最少;在尺寸精度和表面质量方面,使铸件能接近产品的最终要求,做到无余量或小余量;另一方面,被保留的铸造原始表面有益于保持铸件的耐蚀和耐疲劳等优越性能,从而提高产品寿命。努力提高铸件的尺寸精度和降

低表面粗糙度,推进铸件近净形技术的发展是未来的方向。 (三)铸造缺陷的防止与控制铸造缺陷是造成废品的主要原因,是对铸件质量的严重威胁。由于方方面面的原因,存在于铸件的缺陷五花八门,由于凝固成形时条件的差异,缺陷的种类表现为形态和表现部位不尺相同。如液态金属的凝固收缩会形成缩孔、缩松;凝固期间元素在固相和液相中的再分配会赞成偏析;冷却过程中热应力的集中会造成铸件裂纹和变形。应根据产生的原因和出现的程度不同,采取相应措施加以控制,使之消除或降至最低程度。此外,还有许多缺陷,如有夹杂物、气孔、冷隔等,出现在充填过程中,它们不仅与合金种类有关,而且还与具体成形工艺有关。总之,防止、消除和控制各类。更多问题请百度咨询山东伊莱特重工有限公司。

金属固态相变原理

*本答案基本根据录音整理所得,课本有的标了页码* 金色固态相变原理 简答题 1.简述共析钢加热奥氏体化的过程。(P42) 答:(1)奥氏体形核奥斯体的形核是通过形核和长大完成的。奥氏体的晶核是依靠系统的能量起伏、浓度起伏和结构起伏形成的;(2 )奥氏体晶核长大奥氏体的长大过程是两个新旧界面向原来的铁素体和渗碳体中推移的过程,驱动力为奥氏体中的碳浓度差;(3)剩余碳化物的溶解奥氏体中铁素体的溶解速度大了渗碳体的溶解速度,使渗碳体过剩而逐渐溶入奥氏体中;(4)奥氏体的均匀化继续加热或保温,借助碳原子的扩散使碳原子的分布趋于均匀。 2.马氏体相变的主要特征有哪些?(P76) 答:(1)切变共格和表面浮突现象马氏体转变时奥氏体中的原子基集体有规则的向新相中迁移,形成切变共格界面,表面产生浮突效应;(2)无扩散性仅由面心立方点阵通过切边改组为体心立方点阵,而无成分的变化;(3)具有特定的位向关系和惯习面;(4)在一个温度范围内完成相变温度在Ms-Mf完成,但是转变不能完全进行,有一定量的残余奥氏体存在;(5)可逆性 3.什么是第一类回火脆性,避免其发生的方法有哪些?(P143) 答:在250-400°C之间出现的回火脆性称为第一类回火脆性,也称低温回火脆性,也称为不可逆回火脆性。 避免方法:(a)降低钢中杂质元素的含量;(b)用Al脱氧或加入Nb、V、Ti等合金元素以细化奥氏体晶粒;(c)加入Mo、W等能减轻第一类回火脆性的合金元素;(d)加入Cr、Si以调整发生第一类回火脆性的温度范围,使之避开所需的回火温度;(e)采用等温淬火工艺代替淬火加回火工艺。 4.板条马氏体和片状马氏体那种会出现显微裂纹,为什么?(根据录音所得) 答:片状马氏体。显微裂纹是片状马氏体形成是产生的,先形成的第一片马氏体贯穿整个晶粒,将奥氏体晶粒分成两个部分,而后形成的马氏体片大小受到限制,所以马氏体的大小是不同的。后形成的马氏体片不断的撞击先形成的马氏体。由于马氏体的形成速度非常快,所以相互撞击,同时还与奥氏体晶界撞击,产生较大的应力场,另外片状马氏体的含碳量比较高,不能通过滑移和孪晶等变形方式消除应力,所以片状马氏体容易出现显微裂纹。 板条马氏体之间的夹角比较小,基本上是平行的,相互撞击的几率较小,残余奥氏体的存在可以缓解应力,所以板条马氏体没有出现显微裂纹。 5.什么是材料的热处理?其目的是什么?常见的热处理工艺有哪些?(根据录音所得)答:材料的热处理是通过特定的加热保温和冷却方式来获得工程上所需的组织的一种工艺过程的总称。目的:改变金属及合金的内部组织结构使其满足服役条件所提出的性能要求。常见的热处理工艺有淬火、正火、退火和回火。 6.如何区别高碳钢中的回火马氏体与下贝氏体?(根据录音所得) 答:(1)高碳钢回火马氏体表面浮突呈锥字型,它的相变是通过共格切变机制完成的。而下贝氏体的表面浮突是不平行的相交成V字形,而且它的铁素体不是通过切变共格完成的;(2)高碳钢回火马氏体中存在位错和孪晶,而下贝氏体中的铁素体中只有位错盘结没有孪晶结构存在,其韧性较好。(3)下贝氏体中碳沿着与贝氏体长轴呈50-60°倾斜的直线规则排列与相间析出相似。回火马氏体中碳在铁素体中是均匀分布的。 7.奥氏体的晶核最容易在什么地方形成?为什么?(P40)

金属固态相变原理名词解释

1.固态相变:金属盒陶瓷等固体材料在温度和压力改变时,其内部组织或结构会发生变化,即从一种相状态到另一种相状态的转变 2.平衡转变;在缓慢加热或冷却时所发生的能获得复合平衡状态图的平衡组织的相变。 3.共析相变;合金在冷却时由一个固相分解为两个不同固相的转变 4.平衡脱溶相变;在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程 5.扩散性相变;相变时相界面的移动是通过原子近程或远程扩散而进行的相变也称非协调型 6.无扩散性相变;相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变也称协同型 7.均匀形核;晶核在母相中无择优地任意均匀分布 8.形核率;单位时间形成的晶核数 9.混晶;置换固溶体,两种或多种元素相互溶解而形成的均匀晶相 10.异常长大:正常晶粒长大过程被第二相微粒、织构、表面热蚀沟等阻碍,使得大多数晶粒不能长大,从而使少数较大的晶粒得以迅速长大。 11.奥氏体;碳及各种化学元素在γ-Fe中形成的固溶体 12.珠光体;共析碳钢加热奥氏体化后缓慢冷却,在稍低于A1温度时奥氏体将分解为铁素体和渗碳体的混合物称为珠光体 13.粒状珠光体;通过片状珠光体中渗碳体的球状化而获得的 14.贝氏体;钢在奥氏体化后被过冷到珠光体转变温度区间以下,马氏体转变温度区间以上这一中温度区间(所谓“贝氏体转变温度区间”)转变而成的由铁素体及其内分布着弥散的碳化物所形成的亚稳组织,即贝氏体转变的产物。 15.马氏体;对固态的铁基合金(钢铁及其他铁基合金)以及非铁金属及合金而言,是无扩散的共格切变型相转变,即马氏体转变的产物。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。 16.屈氏体;通过奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。是一种最细珠光体类型组织,其组织比索氏体组织还细 17.索氏体;马氏体于回火时形成的,在光学金相显微镜下放大五六百倍才能分辨出为铁素体内分布着碳化物(包括渗碳体)球粒的复相组织。 18.组织遗传;将晶界有序组织加热到Ac3,可能导致形成的奥氏体晶粒与原始晶粒具有相同的形状、大小和取向。 19.相变孪晶;相变过程中形成的孪晶。 20.热稳定化;淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。 21.反稳定化;当等温温度超过一定限度后,随等温温度升高,奥氏体稳定化程度反而下降的现象。 22.不变平面应变;相变过程中虽然发生了变形,但变形为均匀切变,且相变过程中惯习面为不变平面的应变。 23.惯习面;固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称 24.热弹性马氏体;在冷却转变与加热逆转变时呈弹性长大与缩小的马氏体 25.形状记忆合金;具有这种形状记忆效应的金属发生较大变形后,经加热至某一温度之上,能恢复到变形前形状的合金。 26.正方度;c/a表示晶格畸变程度,具有体心正方点阵结构的马氏体的c/a值。 27.伪共析组织;过冷奥氏体以极快冷速转变形成的p组织,其成分因奥氏体含碳量不同而不同。 28.回火;淬火处理后将工件加热到低于临界点的某一温度,保温一定时间,然后冷却到室温的一种热处理操作。 29.回火屈氏体;铁素体加片状或者小颗粒状渗碳体的混合组织 30.回火马氏体;残余奥氏体向低碳马氏体和e-碳化物分解的过程,所得组织马氏体经分解后的立方马氏体+e-碳化物的混合组织。 31.回火索氏体;等轴铁素体加尺寸较大的粒状渗碳体的混合组织 32.回火脆性;随回火温度升高,冲击韧性反而下降的现象 33.二次硬化;当马氏体中含有足够量的碳化物形成元素时,在500°c以上回火是将会析出细小的特殊碳化物,导致因回火温度升高, -碳化物粗化而软化的刚再度硬化 34.二次淬火;在冷却回火是残余奥氏体转变为马氏体的现象叫二次淬火 35.时效;合金在脱溶过程中,其机械性能物理性能化学性能等均随之发生变化的现象 36.脱溶;从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相

相变原理

相变原理 (2009-03-15 12:09:38) 忽视核外电子的规律运动,司空见惯的相变成了困惑人们的自然之谜。 摘要:核外电子随着温度的规律的运动是相变的直接原因。 (1)价和电子在平面稳定运转,伴生的价磁力指向稳定,物质呈固态。 (2)价和电子在窄小空间范围扭曲运转,伴生的价磁力方向不稳,物体塑性增加。 (3)价和电子在大范围空间扭曲运转,伴生的价磁力方晃动,物质呈液态。 (4)价和电子在空间呈球面绕行运转,价和电子包围整个球面,价磁力没有了方向,球面电子与相邻的球面电子相斥,使分子球之间推开距离,物质呈气态。 关键词:奥斯特实验小磁针伴生德布罗意波 [事实] 随着温度升高,一般物体都是由固体相变成液体,由液体相变成气体。 所有纯净物质都有其固定的熔点、沸点;水在0℃结冰、100℃沸腾;锡在200℃电烙铁下就能熔化成液态,烙铁拿开,锡又立刻凝结成固体,温度与物质状态、特性相依相存。 [分析] 物质的相变与总是与温度精确的对应,千百年来人们不断在思索,温度是如何导致这样的变化?温度是怎样起作用的?这极具规律的对应绝不会是偶然的、孤立的。这有规律的变化必然源于且服从更深层的规则的运动。这个规则的运动,就是核外电子的规律的运动。 核外电子随着温度的规律的运动是相变的直接原因。 在J 1章我们谈到温度实质上就是核外电子运转的速度。核外电子速率加快,宏观的表现就是温度升高。温度升高到一定的程度,水能沸腾;钢铁能熔化,物质发生了相变。难道电子的快速运动就能导致这样的相变、如何导致相变? 相变虽然与温度直接相关,然而只有达到了某一特定值,相变才能发生,这是一个从量变到质变的过程,也是物质的内聚力急剧变化的过程,核外电子的

固态相变原理.

固态相变原理 1、相变的基础理论涉及三个方面的共性问题: 1相变能否进行,相变的方向 2相变进行的途径及速度 3相变的结果,即相变时结构转变的特征。 分别对应相变热力学、相变动力学和相变晶体学。 相变是朝着能量降低的方向进行; 相变是选择阻力最小、速度最快的途径进行; 相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。 2、固态相变的特殊性 (相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷。 固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。相变势垒由激活能决定,也与是否有外加机械应力有关。 3、相变驱动力和相变阻力 驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷的储存能。 储存能由大到小的排序:界面能,线缺陷,点缺陷。 界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。 相变阻力是界面能和弹性应变能。

弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。 4、长大方式 新相晶核的长大分为协同(共格或半共格,切变和非协同(非共格或扩散两种,前者速度快,后者速度慢。原子只能短程扩散时,长大速度与过冷度(温度存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。 5、相变速率 相变速率满足Johnson-Mehl方程或Avrami经验方程。相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。扩散型相变的动力学曲线呈“C”形。是由驱动力和扩散两个矛盾因素共同决定的。 6、C曲线 “C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等,确定该条件下这种变化与新相转变量的关系。相变进行的难以程度决定“C”曲线的位置。“C”曲线可分为六种类型,影响“C”曲线的因素有:化学成分,奥氏体化条件和奥氏体晶粒尺寸,原始组织及外界能量(塑性变形等。凡是使过冷奥氏体稳定的因素均使“C”曲线右移(右移,说明相变所需要的临界冷却速率越小,相变越容易。连续冷却时,“C”曲线“滞后”,即向右下方向漂移。 7、用TTT曲线和CCT曲线判断组织组成的原则。 只要过冷奥氏体经过或停留在那个区,就转变为该区对应的组织。过冷奥氏体全部转变完后,再经过任何区域都不会发现任何变化,是其自然冷却。冷速越快,硬度越高。冷速超过某临界值时(临界冷却速度,过冷奥氏体全部转变成马氏体。

金属液态成型原理

金属液态成型原理 内容简介 《金属液态成型原理》共10章,书中系统阐述了材料热加工过程中金属液态成形的基本原理。第1章是液态金属的结构和性质,第2章是金属凝固过程的传热,第3章是液态金属凝固热力学及动力学,第4章是单相及多相合金的结晶,第5章是金属凝固组织的控制,第6章是凝固新技术,第7章是合金中的成分偏析,第8章是气孔与夹杂,第9章是缩孔与缩松,第10章是铸造应力、变形及裂纹。《金属液态成型原理》是普通高等学校“材料成形与控制工程专业”液态成形(铸造)方向本科生用的教材,同时也可作为材料加工液态成形方向研究生的参考书,还可作为金属材料工程、热加工以及机械等工程专业师生和工程技术人员的参考用书。 〃查看全部>> 目录 0 绪论1 0.1 金属的液态成形与凝固的关系1 0.2 凝固过程研究的对象1 0.3 凝固理论的研究进展2 第1章液态金属的结构和性质4 1.1 固体金属的加热、熔化4 1.1.1 晶体的定义与结构4 1.1.2 金属的加热膨胀4 1.1.3 金属的熔化6 1.2 液态金属的结构6 1.2.1 液态金属的热物理性质7 1.2.1.1 体积和熵值的变化7

1.2.1.2 熔化潜热与汽化潜热7 1.2.2 X射线结构分析7 1.2.3 液态金属的结构8 1.2.3.1 纯金属液态结构8 1.2.3.2 实际金属液态结构9 1.2.4 液态金属理论结构模型 钢球模型与P Y理论10 1.3 液态金属的性质12 1.3.1 液态金属的黏滞性12 1.3.1.1 液态金属黏滞性的基本概念13 1.3.1.2 黏滞性(黏度)在材料成形过程中的意义14 1.3.2 液态金属的表面张力15 1.3. 2.1 表面张力的基本概念和实质15 1.3. 2.2 影响表面张力的因素17 1.3. 2.3 毛细现象及表面张力引起的附加压力19 1.3. 2.4 表面张力在材料成形中的意义20 1.4 液态金属的充型能力21 1.4.1 液态金属充型能力的基本概念21 1.4.1.1 充型能力的定义及其他相关名词21 1.4.1.2 液态金属流动性测试方法22 1.4.2 液态金属停止流动的机理与充型能力22 1.4. 2.1 液态金属停止流动的机理22 1.4. 2.2 液态金属的充型能力24 1.4.3 影响充型能力的因素27 1.4.3.1 金属性质方面的因素27 1.4.3.2 铸型性质方面的因素29 1.4.3.3 浇注条件方面的因素30 1.4.3.4 铸件结构方面的因素31 1.5 液体金属中的流动31 1.5.1 自然对流和强迫对流31

一般论文模板

一般论文模板 (小2号黑体,居中,数字外文加黑,一般20字内) XXX 1,3,XXX 2,XXX 1(4号仿体,居中) (1.北京科技大学材料学系, 北京 100083; 2.内蒙古科技大学材料工程学院, 内蒙古 包头 014010; 3.新金属 材料国家重点实验室, 北京 100083)(5号宋体,居中) (全文汉字用“宋体”,数字、符号及英文字母用“Times New Roman ”字体,公式中的符号或字母表示为变量的用斜体,常量用正体表示。正文用5号宋体,数字和 单位之间需要空半格。) 摘 要: 观察并研究了…。用Frank-Read 强化理论分析……。结果表明……。(文字应简明扼要,表达清楚,应避免含混不清和一般性叙述,避免难以理解的长句。一般不超过300字)小5号宋体 关键词: 结构钢;析出相;时效强化(关键词3~6个,用小5号宋体) Ageing strengthening effect of precipitates containing copper in structural steels (首个单词首字母大写,其余均小写,4号黑正,居中) XXX Xxx-xxx 1,3 , XXX Xxx-xxx 2, XXX Xxx-xxx 1 (5号罗马字体,居中) (1. Department of Materials; University of Science and Technology Beijing, Beijing 100083, China; 2.…… 3. ……) (5号罗马字体,居中) Abstract : 英文摘要(一般不超过150字)包括目的(Purposes),主要的研究过程(Procedures)及所采用的方法(Methods),由此得到的主要结果(Results)和得出的重要结论(Conclusions)。用过去时态叙述作者的工作和研究方法,用现在时态叙述结论 Key words : (3~5个)(小5号罗马字体) 1 写作格式(一级标题用4号仿体) 正文内容不少于2500字,总字数一般不超过6 000字(4页)。用Microsoft Word 软件编排,按照本模版排版,并将论文的Word 文件发送到liqincao@https://www.doczj.com/doc/d78134212.html, 。 1.1题名项(二级标题用5号黑体): 1.1.1 (三级标题只是数字黑体) 1.2摘 要:概括文章的主要内容(100~200字,应含目的、方法、结果、结论); 1.3关键词:3~5个; 1.4基金项目:请注明基金名称及批准号。 1.5正文:一般包括引言、原理、方法、结果、讨论、结论。每部分可加分标题,一级标题用1, 2,……排序;二级标题用1.1, 1.2,……排序;三级标题类推。 1.6计量单位:一律采用法定计量单位。部分常见写作格式举例:10 ~ 80 nm ;3.2%~3.2%;3 mm ×3 mm ×3 mm ;650~1 100 ℃;40,80,120和160 ℃。 1.7插图:按宽度170 mm 的1,1/2,1/4倍尺寸插入文中。 1.8参考文献:择已公开发表的近期文献。采用顺序编码制,书写范例见文末。 1.9英文摘要: 与中文摘要相对应。 2排版规范 2.1 公式 请用Word 自带公式编辑器或 Equation 排版。凡变量均用斜体,物理量简称均用正体(不论上下角)。如: ()()()[]22112 0he /I μP i i i i ?-+-?-??=ln πc (1)

金属固态相变

第一章金属固态相变的基本规律 1.固态相变:指在金属陶瓷等固态材料中,当温度或压力改变时,内部组织或结构发生变化,即由一种相状态转变为另一种相状态。 2.平衡转变:在极为缓慢的加热或者冷却条件下形成符合状态图的平衡组织的相得转变。 3.非平衡转变:在非平衡加热或冷却的条件喜爱,平衡转变受到抑制,将发生平衡图上不能反映的转变类型,获得不平衡组织或平稳状态的组织。 4.纯金属的同素异构转变:纯金属在温度压力改变时,由一种晶体结构转变为另一种晶体结构的过程。 5.多形性转变:固溶体的同素异构转变。 6.共析转变:冷却时,固溶体同时析出分解为两个不同成分和结构的相的固态相变。 7.包析转变:冷却时,由俩个固相合并转变为一个固相的固态相变过程。 8.钢种的马氏体相变:将A以较大的冷却速度过冷到低温区,替代原子难以扩散,则A以无扩散方式发生转变,即在Ms点以下进行的马氏体转变,即称为马氏体转变。 9.平衡脱溶:在高温相中固溶了一定量合金元素,当温度降低时,溶解度下降,在缓慢冷却的条件下,过饱和固溶体将析出新相的过程。 10.非平衡脱溶:合金固溶体在高温下溶入了较多的合金元素,在快速冷却条件下,固溶体中来不及析出新相,一直冷却到较低温度下,得到过饱和固溶体的过程。 11.按原子迁移特征分为:(1)扩散型相变:原子的迁移造成原有原子的邻居关系的破坏。 ①界面控制扩散型相变②体扩散控制扩散型相变;(2)原子的迁移没有破坏原有原子的邻居关系,原子位移不超过原子间距。 12.按热力学分:(1)一级相变:在相变温度下,两相得自由焓及化学位均相等,但是化学位一级偏导数不等;(2)二级相变:相变时,化学位的一级偏导数相等,但是二级偏导数不等。 13.相变的驱动力和阻力: 相变过程驱动力阻力热力学条件 相结晶成固相△G相变=G固-G液新相表面能△G表驱动力>阻力 固态相变△G相变=G新-G旧△G界面+△G畸变 14.界面能△G界面:由结构界面能和化学界面能组成:(1)δSt结构界面能:由于界面处的原子键合被切断或被削弱,引起了势能的升高而形成的界面能:(2)δCh化学界面能:由于原子的结合键与两相内部原子键合的差别而导致的界面能量的升高。 15.新旧相界面分为:(1)非共格界面;(2)半共格界面;(3)共格界面 16.畸变能分为:(1)共格畸变能;(2)非共格畸变能。 17.固态相变形核要求有一个临界过冷度△Tc,只有当过冷度△T>△Tc时才满足相变热力学条件。这是固态相变形核与液-固相变的根本区别。 18.晶体缺陷对形核的催化作用:(1)母相界面有现成的一部分,因而只需部分重建;(2)原缺陷能跨越贡献给形核功,形核功变小;(3)界面处扩散速率比晶内快的多;(4)相变引起的应变能可较快的通过晶界流变而松弛;(5)溶质原子易于偏聚在晶界处,这有利于提高形核率。 19.晶界形核与界面,界核,界隅有关。界隅>界核>界面 20.形核率:单位时间,单位体积母相中形成新相晶核的数目。(N=C*f)C-临界核胎浓度;f-临界核胎成核频率。 21.长大速度:单位时间新相长大的线长度。 22.P27相变动力学曲线。等温转变图(C曲线)

固态相变原理习题集答案

固态相变课程复习思考题2012-5-17 1.说明金属固态相变的主要分类及其形式 2.说明金属固态相变的主要特点 3.说明金属固态相变的热力学条件与作用 4.说明金属固态相变的晶核长大条件和机制 5.说明奥氏体的组织特征和性能 6.说明奥氏体的形成机制 7.简要说明珠光体的组织特征 8.简要说明珠光体的转变体制 9.简要说明珠光体转变产物的机械性能 10.简要说明马氏体相变的主要特点 11.简要说明马氏体相变的形核理论和切边模型 12.说明马氏体的机械性能,例如硬度、强度和韧性 13.简要说明贝氏体的基本特征和组织形态 14.说明恩金贝氏体相变假说 15.说明钢中贝氏体的机械性能 16.说明钢中贝氏体的组织形态 17.分析合金脱溶过程和脱溶物的结构 18.分析合金脱溶后的显微组织 19.说明合金脱溶时效的性能变化 20.说明合金的调幅分解的结构、组织和性能 21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子? 22.影响珠光体片间距的因素有哪些? 23.试述影响珠光体转变力学的因素。 24.试述珠光体转变为什么不能存在领先相 25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体 26.试述马氏体相变的主要特征及马氏体相变的判据 27.试述贝氏体转变与马氏体相变的异同点 28.试述贝氏体转变的动力学特点 29.试述贝氏体的形核特点 30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。 31.试述Al-Cu合金的时效过程,写出析出贯序 32.试述脱溶过程出现过渡相的原因 33.掌握如下基本概念: 固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率

《金属固态相变教程》课后习题

.固态相变和液固相变有何异同点? .金属固态相变有哪些主要特征,哪些因素构成相变地阻力? .为什么在金属固态相变过程中有时出现过渡相,晶体缺陷对固态相变形核有何影响? .扩散型相变和无扩散型相变各有哪些特征? .为什么大多数固态相变具有形核阶段? .为什么金属固态相变复杂多样?阐述其在国民经济中地作用. .晶粒长大驱动力,晶粒长大时界面移动方向与晶核长大时地界面移动方向有何不同, .阐述碳化物颗粒地粗化机理,钢地退火软化机理. .掌握如下基本概念: 固态相变;平衡转变;共析转变;平衡脱溶;扩散型相变;无扩散型相变;均匀形核;形核率二、钢中地奥氏体 .什么叫奥氏体? .奥氏体地晶体结构,奥氏体地质量体积小、导热性差地原因是什么? .试计算碳含量为%(质量分数)地奥氏体中,平均几个晶胞有一个碳原子? .说明亚共析钢地加热转变过程. .试计算奥氏体地八面体间隙大小. .试说明临界点、、与加热、冷却过程小地临界点之间有何关系? .何谓晶粒,晶粒为什么长大,细化奥氏体晶粒地措施有哪些? .奥氏体晶粒异常长大地原因,为什么出现混晶,如何控制? .共析钢地奥氏体形成过程.为什么铁素体先消失,部分渗碳体末溶解完毕? .非平衡加热时,奥氏体形成特点是什么? 三、珠光体共析分解 .何谓珠光体,本书中地定义与以往地书中地概念有何重要区别? .影响珠光体片间距地因素有哪些? .试述片状珠光体地形成过程. .试述影响珠光体转变动力学地因素. .试述珠光体转变为什么不能存在领先相? .过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体? .相间沉淀和珠光体分解有什么关系? .将热轧空冷地钢再重新加热到温度稍上,然后炉冷,试问所得地组织有何变化? 四、马氏体相变 .熟悉以下基本概念: 热稳定化、反稳定化、不变平面应变、惯习面、热弹性马氏体、形状记忆效应、正方度. .试述马氏体相变地主要特征及马氏体相变地判据. .点地物理意义及影响点地主要因素有哪些? .马氏体地定义?以往马氏体地定义有哪些? .高碳钢淬火马氏体购物理本质及%马氏体地物理本质有哪些? .试述钢中马氏体地晶体结构和形貌. .马氏体中地位向关系有哪些? .绘图说明马氏体在奥氏体中地种不同取向. .计算模型第一切变地切变角. .绘图说明模型地切变过程,并且讨论其优点和不足之处. .试述淬火马氏体显微裂纹地成因及其危害. .试述马氏休相变地动力学特点. .试述马氏体地形核特点.

金属固态相变原理习题及解答

第二章 奥氏体是碳在丫-Fe中的固溶体,碳原子在丫-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。八面体间隙:4个 2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解?—| 奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。按 相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有 钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在 奥氏体中的扩散系数。另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。 ①通过对碳扩散速度影响奥氏体的形成速度。②通过改变碳化物稳定性影响奥氏体的形成 速度。③对临界点的影响:Ni、Mn Cu等降低A1温度;Cr、Mo Ti、Si、Al、W V 等升高A1温度。④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。 在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度 小100-10000倍。此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。 4、钢在连续加热时珠光体奥氏体转变有何特点。 ①在一定的加热速度范围内,临界点随加热速度增大而升高。 ②相变是在一个温度范围内 完成的加热速度越快奥氏体的温度范围越宽,但形成速度确加快,奥氏体形成时间缩短。 ③可以获得超细晶粒。④钢中原始组织的不均匀使连续加热时的奥氏体化温度升高。⑤快 速连续加热时形成的奥氏体成分不均匀性增大C Y - a降低,C Y -cem升高。⑥在超快速加 热条件下,铁素体转变为奥氏体的点阵改组属于无扩散型相变。 5、何谓奥氏体的本质晶粒度、起始晶粒度和实际晶粒度。钢中弥散析出的第二相对奥氏体 晶粒的长大有何影响。 起始晶粒度:指临界温度以上奥氏体形成刚刚完成,其晶粒边界刚刚互相接触时的晶粒大小。 实际晶粒度:指在某一热处理加热条件下,所得到的晶粒尺寸。本质晶粒度:根据标准实验条件,在930± 10C,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。 在晶粒边界及晶粒内部。往往存在着很多细小难熔的第二相颗粒,推移的晶界遇到第二相粒子将会发生弯曲,导致晶界面积增大,界面能上升,它们将阻碍晶界移动,起着钉扎晶界的 作用。界面能弥散析出的第二相颗粒越细粒子附近晶界弯曲的曲率就越大,晶界增加的面积

相关主题
文本预览
相关文档 最新文档