当前位置:文档之家› 高考数学最后冲刺必读题解析30讲(4)

高考数学最后冲刺必读题解析30讲(4)

高考数学最后冲刺必读题解析30讲(4)
高考数学最后冲刺必读题解析30讲(4)

高考数学最后冲刺必读题解析30讲(4)

1.北京宣武区二模

19. (本题满分14分)

已知点()

P a b n n n ,满足:a a b b b a n N n n n n n n

+++==-∈1112

1·,,,且已知P 01323,?? ?

?? (1)求过点P P 01,的直线l 的方程;

(2)判断点()P n n ≥2与直线l 的位置关系,并证明你的结论;

(3)求点P n 的极限位置。 解:(1)由a b 00132

3

=

=,,得: b a 12

12

311334133414=-?? ?

?

?==?=, 显然直线l 的方程为x y +=1………………3分 (2)由a b 11143

4

=

=,,得: b a 22

23

411445144515=-?? ?

?

?==?=, ∴点P l 2∈,猜想点()P n n ≥2在直线l 上,以下用数学归纳法证明: 当n =2时,点P l 2∈

假设当n k k =≥()2时,点P l k ∈,即a b k k +=1 当n k =+1时,

a b a b b k k k k k +++++=+1111·

()()

=+=+-=-=+11111

1

2

a b a b a b a k k k k k k

k

∴点P l k +∈1

综上,点()P l n n ∈≥2………………8分 (3)由a a b b b a a b n n n n n

n

n n +++==

-+=1112

11·,,,得:

()a a b a a a a a a a a a n n n n n n n

n

n n n n

++=-=--=+≠∴

=

+122

1

1111011

·

∴数列1a n ??????是以1

30

a =为首项,公差为1的等差数列

=+=+=-=-+=

++=+==++=+

+=→∞→∞→∞→∞→∞1313

11132

3

13

0231213

1a n a n b a n n n a n b n n n n

n n n n n n

n n n n n , lim lim lim lim lim

()

∴?

→?P P n 01, 即点P n 的极限位置为点P (0,1)………………14分

20. (本题满分14分)

已知直线l y mx :=+1与曲线()

C ax y m a R :,22

2+=∈交于两点A 、B 。

(1)设OP OA OB →=→+→

,当a =-2时,求点P 的轨迹方程;

(2)是否存在常数a ,对任意m R ∈,都有OA OB →→

=-·2?如果存在,求出a 的值;

如果不存在,说明理由。

(3)是否存在常数m ,对任意a R ∈+

,都有OA OB →→

·为常数?如果存在,求出m 的

值;如果不存在,说明理由。

解:(1)设()()

A x y

B x y 1122,,,,则

()OP OA OB x x y y →=→+→

=++1212,

由y mx x y =+-+=???120

22

消去y ,得: ()

m x mx 22

2210

1-+-=<>

依题意有()()

m m m 222

20

2420

-≠=+->??????解得: m 2

1>且m 22≠,即m <-1或m >1且m ≠±2

()x x m m x x m y y mx mx m x x m 12212

2

1212122

221

21124

2+=

-=-+=+++=++=

-,

∴点P 的坐标为:x m m y m =-=

-?????

??22422

2消去m ,得:

2202

2

x y y -+=,即()y x --=12

12

2

由y m =

-422

,得m y y

2

24=- ∴->-≠???????24

1242y y

y y

,解得y <0或y >4

∴点P 的轨迹方程为()y x --=112

12

2

(y <0或y >4)………………5分 (2)假设存在这样的常数a

由y mx ax y =++=???12

22

消去y 得:

()

m

a x mx x x m m a x x m a

2

2122122

210

221++-=<>

+=-+=-+,

OA OB x x y y →→

=+·1212

()()()

()=+++=++++x x mx mx m x x m x x 1212212121111

·

()

=+-++-++=--++=-m m a m m

m a

m m a 22222

112131

12

·

·

解得:a =13

当a =

13时,m 2

13

0+≠,且方程<2>判别式 ?=++?

?

??

?>4413022m m

∴对任意m R ∈,A 、B 两点总存在,故当a =

1

3

时,对任意m R ∈,都有OA OB →→

=-·2………………10分

(3)假设这样的常数m 存在,对任意的a R ∈+

,使OA OB →→

·为一常数M 。

即OA OB x x y y M →→

=+=·1212

即--++=31

122

m m a

M 化简,得:()()1212-=++M a M m ∵a 为任意正实数

()∴-=++=???10210

2

M M m ,即3102

m +=,矛盾。 故这样的常数m 不存在。………………14分

2.大连二模

20.(本小题满分12分)

数列}{n a ,设S n 是数列的前n 项和,并且满足.24,111+==+n n a S a

(Ⅰ)令}{),3,2,1(21n n n n b n a a b 证明 =-=+是等比数列,并求{b n }的通项公式; (Ⅱ)令.lim ,}log log 1

{,31

222n n n n n n n T n C C T b C ∞→++?=

求项和的前为数列

解:(Ⅰ).)(23)(2ab x b a x x f ++-='

依题意知,s 、t 是二次方程0)(='x f 的两个实根.

∵,0)()(,0)()(,0)0(22>-=-='<-=-='>='a b b ab b b f b a a ab a a f ab f ……2分 ∴0)(='x f 在区间(0,a )与(a ,b )内分别有一个实根. ∵.0,b t a s t s <<<<∴< …………4分 (Ⅱ)由s 、t 是0)(='x f 的两个实根,知.3

,3)(2ab st b a t s =+=

+ ∴)(3

2

)(274)())(()()()(32233b a ab b a t s ab t s b a t s t f s f +++-=++++-+=+…6分 ∵)),()((2

1

)(31)(272)3()2(

3t f s f b a ab b a b a f t s f +=+++-=+=+ 故AB 的中点C ()2

(,2t

s f t s ++)在曲线y=f(x)上. ……8分 (Ⅲ)过曲线上点),(11y x 的切线方程为).]()(23[112

11x x ab x b a x y y -++-=-

∵)()(1111b x a x x y -?-=,又切线过原点.

∴].)(23[))((12

11111ab x b a x x b x a x x ++--=--- 解得1x =0,或.2

1b

a x +=

当1x =0时,切线的斜率为a b ;当21b a x +=时,切线的斜率为.)(412ab b a ++-……10分

∵,22,0,0<+>>b a b a ∴两斜率之积

.11)1(2)()(4

1

)(])(41[22222-≥--=->?+-=?++-ab ab ab ab b a ab ab ab b a 故两切线不垂直. ………………12分

21.(本小题满分12分)

已知函数.0),)(()(b a b x a x x x f <<--=其中

(Ⅰ)设t x s x x f ==及在)(处取到极值,其中;0:,b t a s t s <<<<<求证 (Ⅱ)设)),(,()),(,(t f t B s f s A 求证:线段AB 的中点C 在曲线y=f(x)上;

(Ⅲ)若22<+b a ,求证:过原点且与曲线y=f(x)相切的两条直线不可能垂直. 解:(Ⅰ)以线段AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,

作CD ⊥AB 于D , 由题知:||2

1

=? ① 而A cos ||||??=? ② 由①②.2

1

||,21cos ==?AD A AC 即 ………………2分 同理,2||,2

3

||==

则 ∴A (-1,0)、B (1,0)……4分 设双曲线方程),(),,21

(),0,0(1112222y x E h c b a b

y a x ->>=-

由???

????

===.52,5

2,2311h y x EC BE 得 …………6分

因为E 、C 两点在双曲线上,所以????

?????=+==-=-112542541

4122222

222

2b a c b h a

b h a

………………8分 解得???

????==76

7122b a ,∴双曲线方程为1767122=-y x …………10分

(Ⅱ)设),(),,(2211y x N y x M ∵2022

22

012

1)()(|,|||x x y x x y TN TM -+=

-+∴=

∴)(2)()()(2102

1222

012

022

22

1x x x x x x x x x y y -+-=---=- ①

又M 、N 在双曲线上,满足)(6,16

77,16772

22122212222212

1x x y y y x y x -=-∴=-=-

② 将②代入①,)(2)(72102

221x x x x x -=-

∵021212)(7,x x x x x =+∴≠ …………………………12分

又,7)(2

7

,77221021>+=∴>

+x x x x x ∴0x 取值范围为(+∞,7) ………………14分

3.德州模拟

21. (12分)已知定点A (0,1),B (0,-1),C (1,0),动点P 满足AP BP k PC →→=→·||2

(1)求动点P 的轨迹方程,并说明方程表示的曲线。

(2)当k AP BP =→+→

2时,求的最大值和最小值。||

解:(1)设p(x ,y)

则AP x y BP x y PC x y →

=-→

=+→

=--()()(),,,111

由AP BP k PC →→=→·||2

x y k x y 222211+-=-+[()] 3分

整理得()()k x kx k y k --+-++=2121102(*) 4分 当k=1时,*式化为x=1表示直线 5分 当k ≠1时,*式化为()()x k k y k -

-+=-211122

表示心(

)||

k k k --101

1,为圆,为半径的圆 6分 (2)当k=2时,*式化为()[]x y x -+=∈21132

2

,,

此时,||AP BP x y x →+→

=+=-224322

∴其最小值为2,最大值为6 12分

22. (14分)△ABC 中,|AB|=|AC|=1,AB AC →→=·12,P 1为AB 边上的一点,

BP AB 123

≠,从P 1向BC 作垂线,垂足是Q 1;从Q 1向CA 作垂线,垂足是R 1;从R 1向AB 作垂线,垂

足是P 2,再由P 2开始重复上述作法,依次得Q 2,R 2,P 3;Q 3,R 3,P 4……

(1)令BP n 为x n ,寻求BP n 与BP n +1

(即x x n n 与+1)之间的关系。

(2)点列P P P P P n 1234,,,……是否一定趋向

于某一个定点P 0?说明理由; (3)若||||AB BP ==11

3

1,,则是否存在正整数m ,使点P 0与P m 之间的距离小于0.001?若存在,求m 的最小值。

解:(1)由|AB|=|AC|=1,AB AC BAC →→==·,∴∠°1

2

60

从而△ABC 为边长为1的正三角形 2分

则BP x BP x n n n n ==++,则11,于是BQ BP x n n n ==·°cos6012

∴CQ x n n =-

11

2

3分 同样 CR CQ x n n n ==-·°cos ()6012112

AR x x n n n =-

-=+112112121

4

() 4分 又AP AR x n n n +==+16012121

4

·°cos ()

BP x x n n n +=-+=-11121214341

8()

即x x n n +=-1341

8

5分

(2)由(1)可得:x x n n +-=--123182

3

()

∴{}x x x n ---2323231

811,当≠时,是以为首项,公比为的等比数列

∴x x n n =+---232318

11

()() 7分

当n x n →+∞→时,2

3

∴点P n 趋向点P 0,其中P 0在AB 上,且BP 0=2

3

9分

(3)P P x x m m m m 0111

2323181318=-=-=--||||()

() 11分 由||.().P P m m m 011000118000381000

3<<>--得,∴ 当m m =>-4810003

1时,

∴m m ≥4,的最小值为4 14分

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

解析几何试题及答案

解析几何试题及答案https://www.doczj.com/doc/d48017393.html,work Information Technology Company.2020YEAR

解析几何 1.(21)(本小题满分13分) 设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足 BQ QA λ=,经 过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足 QM MP λ=,求点P 的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知 识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设 .)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ① 再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由 解得???-+=-+=.)1(, )1(011λλλλy y x x ②,将①式代入②式,消去0y ,得 ???-+-+=-+=. )1()1(,)1(2 211λλλλλλy x y x x ③,又点B 在抛物线2 x y =上,所以211x y =, 再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+- 22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++ 2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得 故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

平面解析几何测试题及答案

平面解析几何测试题 一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( ) A.一条直线 B.两条直线 C.半个圆 D.一个圆 3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( ) A.-1 B.2 C.1 D.-2 4.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( ) A.8,6 B.8,-6 C.-8,-6 D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( ) A.-13 B.9 C.-9 D.13 6.已知过点P (2,2)的直线与圆(x-1)2 +y 2 =5相切,且与直线ax-y+1=0 垂直,则a 的值为( ) A.2 B.1 C.-21 D.2 1 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心 8.已知双曲线22a x -22b y =1的渐近线的斜率k=±3 4,则离心率等于 ( )

A.53 B.45 C.34 D.3 5 9.若椭圆22a x +22 b y =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆 上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A. 22 B.21 C.4 1 D.3-1 10.已知双曲线22x -22 b y =1(b>0)的左右焦点分别为F 1,F 2,其中一条 渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1?2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( ) A.812x +722y =1 B.812x +92 y =1 C.812x +452y =1 D.812x +16 2y 12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A. 3 30 B.6 C.12 D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( ) A.6 π B.3 π C.2 π D. 3 π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )

上海高考解析几何试题

近四年上海高考解析几何试题 一.填空题: 1、双曲线116922=-y x 的焦距是 . 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?OA OP ,则点P 轨迹方程 ___。 3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。 4、将参数方程?? ?=+=θ θ sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。 5、已知圆)0()5(:2 22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共 点,则r 的取值范围是 . 6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 7、已知圆2x -4x -4+2 y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ; 10、曲线2 y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 13、若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14 、以双曲线1542 2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22 219x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 17、已知(1,2),(3,4A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是 i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 二.选择题:

解析几何综合运用练习题-含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线1:210l ax y ++=与直线2:(3)0l a x y a --+=,若12//l l ,则a 的值为( ) A .1 B .2 C .6 D .1或2 2.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( ) A .(x +1)2+y 2=2 B .(x -1)2+y 2 =1 C .(x +1)2+y 2=4 D .(x -2)2+y 2 =4 3.设抛物线C :y 2 =2px(p>0)的焦点为F ,点M 在C 上,|MF|=5.若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2 =8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2 =16x 4.双曲线x 2 1( ) A . B. m≥1 C .m>1 D. m>2 二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 1(a>0,b>0)的右顶点,且双 曲线的渐近线方程为y ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程;

解析几何测试题及答案解析

2013届高三数学章末综合测试题(15)平面解析几何(1) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x 2 +y 2 +Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是( ) A .D +E =2 B .D +E =1 C . D + E =-1 D .D + E =-2X k b 1 . c o m 解析 D 依题意得,圆心? ???? -D 2,-E 2在直线x +y =1上,因此有-D 2-E 2=1,即D +E =-2. 2.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2 +(y +1)2 =2 B .(x -1)2+(y -1)2 =2 C .(x +1)2 +(y +1)2 =8 D .(x -1)2 +(y -1)2 =8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x -1)2 +(y -1)2 =2. 3.已知F 1、F 2是椭圆x 2 4+y 2 =1的两个焦点,P 为椭圆上一动点,则使|PF 1|·|PF 2|取最 大值的点P 为( ) A .(-2,0) B .(0,1) C .(2,0) D .(0,1)和(0,-1) 解析 D 由椭圆定义,|PF 1|+|PF 2|=2a =4,∴|PF 1|·|PF 2|≤? ?? ??|PF 1|+|PF 2|22=4, 当且仅当|PF 1|=|PF 2|,即P (0,-1)或(0,1)时,取“=”. 4.已知椭圆x 216+y 2 25=1的焦点分别是F 1、F 2,P 是椭圆上一点,若连接F 1、F 2、P 三点 恰好能构成直角三角形,则点P 到y 轴的距离是( ) B .3 C.16 3 解析 A 椭圆x 216+y 2 25=1的焦点分别为F 1(0,-3)、F 2(0,3),易得∠F 1PF 2<π 2,∴ ∠PF 1F 2=π2或∠PF 2F 1=π2,点P 到y 轴的距离d =|x p |,又|y p |=3,x 2 p 16+y 2 p 25=1,解得|x P | =16 5 ,故选A.

高考数学压轴专题最新备战高考《平面解析几何》技巧及练习题

【最新】数学复习题《平面解析几何》专题解析 一、选择题 1.已知曲线()22 22:100x y C a b a b -=>,>的左、右焦点分别为12,,F F O 为坐标原点,P 是双曲线在第一象限上的点,MO OP =u u u u v u u u v ,直线2PF 交双曲线C 于另一点N ,若 122PF PF =,且2120MF N ∠=?则双曲线C 的离心率为( ) A . 23 B .7 C .3 D .2 【答案】B 【解析】 【分析】 由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】 由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得 124,2PF a PF a == , 由四边形12PF MF 为平行四边形,又2120MF N ∠=?,可得12120F PF ∠=?, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-???? , 即有2224208c a a =+,即227c a =,可得7c a =,即7c e a = =. 【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a = ; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).

20052018浙江高考理科数学历年真题之解析几何大题教师版

浙江高考历年真题之解析几何大题 (教师版) 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可 设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±-> 2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T , 且椭圆的离心率e= 2 3。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

平面解析几何专题 1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 【答案】C 【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离 心率c e a = =故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 2.【2019年高考全国Ⅰ卷文数】双曲线C :22 221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40° C . 1 sin50? D . 1 cos50? 【答案】D 【解析】由已知可得tan130,tan 50b b a a - =?∴=?, 1cos50c e a ∴======?, 故选D . 【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a == 对于椭圆()222210x y a b a b +=>>,有c e a == 3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为

A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得2 n =. 2 2 2 24,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得 223611n n += ,解得n = .22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02 m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设 直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,)5,0F 为右焦点的双曲线C 的离心率52e =。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点 ()11,M x y 的 直线111:44 l x x y y +=与过点()22,N x y (其中2x x ≠)的直线 222:44l x x y y +=的交点E在双 曲线C 上,直线MN 与两条渐近线分 别交与G、H 两点,求OGH ?的面 积。(8分)

4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)

相关主题
文本预览
相关文档 最新文档