当前位置:文档之家› ch10-交流电感器设计

ch10-交流电感器设计

ch10-交流电感器设计
ch10-交流电感器设计

DC-DC电路中电感的选择

深入剖析电感电流 DC/DC电路中电感的选择 原文:Fairchild Semic on ductor AB-12 : In sight into In ductor Curre nt 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC 电路。本文还包括对同步DC/DC及异步DC/DC既念的解释。) 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择 电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L (C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND V JM A S悟怕1 DC Output Voltage * State 2 Figure 1. Basic Switching Action of a Converter 在状态1过程中,电感会通过(高边“high-side ”)MOSFE连接到输入电压。在状态2过程中,电感连接到GND由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“ low-side ”)MOSFE接地。如果是后一种方式,转换器就称为“同步(synchronus )”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输 出电压必然为正端,因此会在电感上形成负向的压降。

电流互感器设计

电流互感器设计 1 互感器设计目的及意义 (2) 2 电流互感器总体设计 (2) 2.1 电流互感器类型选取 (3) 2.2 电流互感器各部件设计 (3) 2.2.1 铁芯及绕组设计 (3) 2.2.2 外绝缘套管设计 (3) 2.2.3 复合绝缘子设计 (4) 2.2.4 出线套管内绝缘设计 (5) 2.2.5 屏蔽设计 (5) 2.2.6 密封结构设计 (5) 2.2.7 互感器其他部件及标准件 (5) 2.3 1100KV电流互感器总体装配图 (5) 2.3.1 画各部件三维图 (5) 2.3.2 装配体绘制及总质量估算 (5) 2.3.3 装配体材料清单 (6) 2.3.4 装配体电场和机械性能模拟分析 (6) 3 单件电流互感器组装 (6) 3.1 原材料的购买及检验 (6) 3.2 原材料的处理 (6) 3.3 线圈的缠绕 (7) 3.4 环氧套管的浇注及修整 (7) 3.5 电流互感器的装配 (7)

1 互感器设计目的及意义 电流互感器是一种专门用作变换电流大小的特殊变压器。由于发电和用电的不同需要,线路上的电流大小不一,而且相差悬殊。若要直接测量这些大小不一的电流,就需要制作相应等级的仪表,给仪表制造带来极大困难。此外,有些高压线路直接测量也是非常危险的。而电流互感器可以把不同等级的电流,按不同的比例,统一成大小相近的电流。电力系统用互感器是将电网高电压、大电流的信息传递到低电压、小电流二次侧的计量、测量仪表及继电保护、自动装置的一种特殊变压器,是一次系统和二次系统的联络单元,其一次绕组接入电网,二次绕组分别与测量仪表、保护装置等互相连接。互感器与测量仪表和计量装置配合,可以测量一次系统的电压、电流和电能;与继电保护和自动装置配合,可以构成对电网各种故障的电气保护和自动控制。互感器的好坏,直接影响到电力系统测量、计量的准确性和继电保护装置动作的可靠性。随着电力工业建设的迅速发展,电力系统输电容量不断扩大,远距离输电迅速增加,电网电压等级逐渐升高,对电流互感器的电压等级及设备技术参数提出了更高的要求。 2 电流互感器总体设计 ↓ →↑↑符合要求 是

螺纹联接设计:提高螺栓联接强度的措施

大多数情况下,受拉螺栓联接的强度决定于螺栓的强度。影响螺栓强度的因素很多,有材料、结构、尺寸参数、制造和装配工艺等等。下面介绍一些提高螺栓强度的常见措施。 1. 改善螺纹牙间的载荷分布 采用普通螺母时,轴向载荷在旋合螺纹各圈间的分布是不均匀的,如图15.13a所示,从螺母支承面算起,第一圈受载最大,以后各圈递减。理论分析和试验证明,旋合圈数越多,载荷分布不均的程度也越显著,到第8~10圈以后,螺纹几乎不受载荷。所以,采用圈数多的厚螺母,并不能提高联接强度。若采用图15.13b的悬置(受拉)螺母,则螺母锥形悬置段与螺栓杆均为拉伸变形,有助于减少螺母与栓杆的螺矩变化差,从而使载荷分布比较均匀。图15.13c为环槽螺母,其作用和悬置螺母相似。 图15.13 2. 避免或减小附加应力 由于设计、制造或安装上的疏忽,有可能使螺栓受到附加弯曲应力(图15.14),这对螺栓疲劳强度的影响很大,应设法避免。例如,在铸件或锻件等未加工表面上安装螺栓时,常采用凸台或沉头座等结构,经切削加工后可获得平整的支承面(图15.15)。

图15.14 图15.15 3. 减小应力集中 螺纹的牙根、螺栓头部与栓杆交接处,都有应力集中,是产生断裂的危险部位。其中螺纹牙根的应力集中对螺栓的疲劳强度影响很大。可采取增大螺纹牙根的圆角半径、在螺栓头过渡部分加大圆角(图15.16a)或切制卸载槽(图15.16b、c)等措施来减小应力集中。 图15.16 4. 减小应力幅

螺栓的最大应力一定时,应力幅越小,疲劳强度越高。在工作载荷和剩余预紧力不变的情况下,减小螺栓刚度或增大被联接件的刚度都能达到减小应力幅的目的(见图15.17),但预紧力则应增大。 图15.17 减小螺栓刚度的措施有:适当增大螺栓的长度;部分减小栓杆直径或作成中空的结构即柔性螺栓。在螺母下面安装弹性元件(图15.18),也能起到柔性螺栓的效果。柔性螺栓受力时变形量大,吸收能量作用强,也适于承受冲击和振动。 图15.18 为了增大被联接系统的刚度,不宜用刚度小的垫片。图15.19所示的密封连接以用密封圈为佳。 图15.19 5. 改善制造工艺 制造工艺对螺栓的疲劳强度有很大影响。对于高强度钢制螺栓,更为显著。采用輾制螺纹时,由于冷作硬化的作用,表

机械设计基础——螺纹连接的强度计算

烟台工程职业技术学院课程单元设计教案

任务二螺栓连接的强度计算 为了便于机器的制造、安装、维修和运输,在机器和设备的各零、部件间广泛采用各种联接。联接分可拆联接和不可拆联接两类。不损坏联接中的任一零件就可将被联接件拆开的联接称为可拆联接,这类联接经多次装拆仍无损于使用性能,如螺纹联接、链联接和销联接等。不可拆联接是指至少必须毁坏联接中的某一部分才能拆开的联接,如焊接、铆钉联接和粘接等。 螺纹联接和螺旋传动都是利用具有螺纹的零件进行工作的,前者作为紧固联接件用,后者则作为传动件用。 一、单个螺栓连接的强度计算 单个螺栓联接的强度计算是螺纹联接设计的基础。根据联接的工作情况,可将螺栓按受力形式分为受拉螺栓和受剪螺栓。针对不同零件的不同失效形式,分别拟定其设计计算方法,则失效形式是设计计算的依据和出发点。 1.失效形式 工程中螺栓联接多数为疲劳失效 受拉螺栓——螺栓杆和螺纹可能发生塑性变形或断裂 受剪螺栓——螺栓杆和孔壁间可能发生压溃或被剪断 2.失效原因:应力集中 应力集中促使疲劳裂纹的发生和发展过程 3、设计计算准则与思路 受拉螺栓:设计准则为保证螺栓的疲劳拉伸强度和静强度 受剪螺栓:设计准则为保证螺栓的挤压强度和剪切强度

(一)受拉螺栓连接 1、松螺栓联接 这种联接在承受工作载荷以前螺栓不拧紧,即不受力,如图所示的起重吊钩尾部的松螺接联接。 螺栓工作时受轴向力F 作用,其强度条件为 []σπσ≤== 4 21 0d F A F 式中d1为螺栓危险截面的直径(即螺纹的小径),单位为mm ;[σ]为松联接的螺栓的许用拉应力,单位为MPa 。 由上式可得设计公式为 []σπF d 41≥ 计算得出dl 值后再从有关设计手册中查得螺纹的公称直径d 。 2、紧螺栓联接 ⑴只受预紧力的紧螺栓联接 工作前拧紧,在拧紧力矩T 作用下: 复合应力状态:预紧力F0 →产生拉伸应力σ 螺纹摩擦力矩T1→产生剪应力τ 按第四强度理论: ()σσστσσ3.15.03322 22=+=+=e ∴强度条件为:][4 3.12 1σπ σ≤= d F e 设计公式为:[] σπ0 13.14F d ?≥ 由此可见,紧联接螺栓的强度也可按纯拉伸计算,但考虑螺纹摩擦力矩T 的影响,需将预紧力增大30%。

为DC-DC选择正确的电感和电容

为DC/DC转换器选择正确的电感器与电容器 随着手机、PDA以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。 使用DC/DC转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。 大信号与小信号响应 开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。 随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。 实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。 大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提供良好的响应。环路带宽越高,负载瞬态响应速度就越快。 从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和振铃现象。在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。 电感器选型 以图1所示的基本降压稳压器为例,说明电感器的选型。 对大多数TPS6220x应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。 可将线圈总损耗结合到损耗电阻(Rs)中,该电阻与理想电感(Ls)串联,组成了一个如图1所示的简化等效电路。 尽管Rs损耗与频率有关,但在产品说明书中仍对直流电阻(RDC)进行了定义。该电阻取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。

DC-DC电感选型指南

DC_DC电感选型指南 一:电感主要参数意义 DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。 电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。但是L 越大,通常要求电感尺寸也会变大,DCR增加。导致DC-DC效率降低。相应的电感成本也会增加。 自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。 内阻DCR:指电感的直流阻抗。该内阻造成I2R的能量损耗,一方面造成DC-DC 降低效率,同时也是导致电感发热的主要原因。 饱和电流Isat:通常指电感量下降30%时对应的DC电流值。 有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。 二:DC-DC电感选型步骤 1,根据DC-DC的输入输出特性计算所需的最小电感量。 对于Buck型DC-DC,计算公式如下 Lmin=【V out*(1-V out/Vinmax)】/Fsw*Irpp 其中:Vinmax = maximum input voltage Vout = output voltage fsw = switching frequency Irpp = inductor peak-to-peak ripple current 通常将Irpp控制在50%的输出额定电流Irate。则上述公式变化如下: Lmin=2*【V out*(1-V out/Vinmax)】/Fsw*Irate 对于Boost型DC—DC的Lmin电感计算公式如下: Lmin=2*【Vinmax*(1-Vinmax/V out)】/Fsw*Irate 2,根据电感的精度,计算出有一定裕量的电感值例如:对于20%精度的电感,考虑到5%的设计裕量。则Dc-DC所需的电感为 L=1.25*Lmin

电感器的设计与电感器技术指标

一种小型平面变压器/电感器的设计详细介绍 1. 引言 随着电子信息技术的飞跃发展,各种电子设备已步入 ()时代,电子设备越来越 要求轻、薄、小型化。传统的功率型电子变压器、电感器虽然在电子管、分立式晶体管时代 起过重要作用,而在今天模块化电子设备中, 因体积过大而无法应用, 如何研制出小型平面 电子变压器、电感器是目前设计人员关注的热点。 本文阐述了采用多层印制板制造技术、 数 控机床加工技术、表面涂覆技术和利用高频低损耗铁氧体磁芯设计和制造了 230、达120W 的小型平面变压器和 20A 、10卩H 的大电流滤波电感器。 2. 电路形式和变压器、电感器的技术指标 图1为有源箝位/复位单端正激变换器的主电路。该电路具有零电压转换功能,有利于 提高效率和降低。 该电路由2、2和组成箝位电路,为漏感 L1及励磁电感的储能转移提供一个低 阻工作通路,2导通后继续被充电,箝位电路电流以谐振方式减小。因整流管 1截止,L1 与呈串联连结,谐振频率由 L1、及决定,故对变压器初级有一定的电感量要求。 另外,该电路1截止后,变压器绕组电压极性反转,被充电,充电过程中,磁化 电流逐渐减小,通过适当选取参数,达到在磁化电流过零点前开通 2,为磁化电流改变方向 提供了可能,磁化电流反向后,箝位电压反向加到变压器初级绕组, 驱动变压器工作区域延 伸到第二象限和第三象限。同时,电容储能泄放转移至 L1及储存。1导通后工作点从第三 新晨阳 电感器 图1有源赛位/夏■&单端正撚育湎变换器主亀貉

象限开始,正常工作区域基本与轴原点对称,在该对称区域表现为:单向变化数值与传统单 端正激变换器是一致的。为维持输出正常调节,施加相同伏-秒积数到变压器,产生的铁芯 损耗相对于单端正激变换器是一致的。实际工作时,应选取最大工作磁通密度(),变压器可工作于-?,由此△ 2,如图2。 电路中T1为我们需要设计的变压器,工作频率230,输入电压230V,初级电感量117 卩H± 10%最大工作比0.45,输出电压5V,输出电流20A,为滤波电感,10卩H,工作环境温度为-45 C?50C,温升W 50C,试验电压2,变压器、电感器高度W 12,长、宽均在40 左右。 3. 平面变压器、电感器磁芯及结构形式 3.1 磁芯 现阶段用于功率型开关变压器的磁性材料有:坡莫合金、非晶态合金、超微晶合 金、铁氧体等多种材料。选择铁氧体材料制作磁芯,出于对有效空间的充分利用,又必须选择芯柱较粗、窗宽较阔的磁芯,这样才有利于减少匝数和降低电流密度。鉴于整体高度的限制,还需进行必要的加工。 3.2绕组

DC-DC电感选择

电感 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:

电流互感器设计实例

电流互感器设计实例 作为磁性元件设计的最后一部分内容,我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/ 10A=100m^的电阻来测量,但是电阻将造成的损耗为1V X1OA=1OW这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图5-26所示。 囹昴用电流菽厠互感跻碱小期耗 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,畐I」边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10 /N)R=1V 在电阻中消耗的功率为P=(1V)2/R。我们假设消耗的功率为50mW也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Q,如果采用20Q的电阻,由欧姆定律可得副边匝数N=200 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流 为10A/200=50mA互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。2 50kHz 频率工作时,磁芯上的磁感应强度不会超过 c (2Vx4ps}10B 4 ~ 200 匝XA -人 由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此A可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由2 00匝的绕组所占体积来确定。你可以用40号的导线流过500mA勺峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 实用提示除非一定要用,一般情况下不要使用规格小于36号线的导线。 现在我们来分析为什么不能用电压变压器来替代电流互感器?已经知道副边电压只有2V,因此原边电压为2V/200=100mV如果输入直流电压为48V,那么电流互感器原边10 mV电压对48V电压来说是微不足道的一一那样你可以在副边得到50mA的电流,而对原边几乎没有什么影响。假设另一种情况(不现实的),原边的输入直流电压只有5mV那么互感器的原边不可能有10mV的电压,同时由于原边阻抗(如反射副边阻抗)也比较大,决定了副边根本不可能产生50mA的电流。即使整个5mV t压全部加在原边,畐寸边也只能产生 200X 5mV=1V勺电压:不能在转换电阻上产生足够的电压。因此,电压变压器只能用作变压器,不能用来检测电流。

DC-DC升压型电路选型指南

DC-DC升压型稳压器选型指南 概述 Sipex半导体公司的DC/DC升压稳压器可使用单片锂电池或2节干电池做为输入电源。升压稳压器可把输入电压升到期望的水平。高效开关模式电源方案能够提供更长的电池寿命、更少的热量和更小的尺寸。DC/DC升压稳压器普遍用于计算机相关产品、便携式产品。 DC/DC升压稳压器原理 DC/DC升压有三种基本工作方式: 一种是电感电流处于连续工作模式,即电感上电流一直有电流; 一种是电感电流处于断续工作模式,即在开关截止末期电感上电流发生断流; 还有一种是电感电流处于临界连续模式,即在开关截止期间电感电流刚好变为“0”时,开关又导通给电感储能。 特性 高效率 低静态电流:低至10μA 简单、低成本电路 应用场合 相机闪光 无线鼠标 MP3播放器 PDA(掌上电 脑) 手持GPRS 系统 便携式医疗 器械 便携式测量

仪器 手持通信器 典型器件 SP6641A/B特性 极低的静态电流:10μA 宽范围的输入电压:0.9V~4.5V 1.3V输入对应90mA的IOUT (SP6641A-3.3V) 2.6V输入对应500mA的IOUT (SP6641B- 3.3V) 2.0V输入对应100mA的IOUT (SP6641A-5.0V) 3.3V输入对应500mA的IOUT (SP6641B-5.0V) 固定的3.3V或5.0V的输出电压 高达87﹪的效率 0.3Ω的NFET RDSon 0.9V就可确保器件启动 0.33A的电感电流限制(SP6641A) 1A的电感电流限制(SP6641B) 逻辑关断控制 SOT-23-5封装 SP6648特性 极低的12uA的静态电流 2.6V的输入对应400mA的输出电流: 3.3VOUT 从2节电池到 3.3VOUT,效率可达到94﹪ 很宽的输入工作电压范围:0.85V~4.5V 3.3V的固定或可调输出 集成的同步整流器:0.3Ω 0.3Ω的开关 抗振铃开关技术 电感器峰值电流可编程

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

(完整版)螺纹联接练习试题与答案9

螺纹连接练习 第一节 螺纹基础知识 1、标记为螺栓GB5782-86 M16×80的六角头螺栓的螺纹是 形,牙形角等于 60 度,线数等于 1 ,16代表 公称直径 , 80代表 螺栓长度 。 2、双头螺柱的两被联接件之一是 螺纹 孔,另一是 光 孔。 3、采用螺纹联接时,若被联接件之一厚度较大,且材料较软,强度 较低,需要经常装拆,则一般宜采用 B 。 A 、螺栓联接 B 、双头螺柱联接 C 、螺钉联接 4、螺纹副在摩擦系数一定时,螺纹的牙型角越大,则 D 。 A 、当量摩擦系数越小,自锁性能越好 B 、当量摩擦系数越小,自锁性能越差 C 、当量摩擦系数越大,自锁性能越差 D 、当量摩擦系数越大,自锁性能越好 5、螺纹的公称直径是指螺纹的 大 径,螺纹的升角是指螺纹 中 径处的升角。螺旋的自锁条件为 ?< ?v ,拧紧螺母时效率公式为) tan(tan v ???+。 6、三角形螺纹主要用于 连接 ,而矩形、梯形和锯齿形螺纹主 要用于 传动 。

(1)普通螺栓连接 1)螺栓安装方向不对,装不进去,应掉过头来安装;

2)普通螺栓连接的被联接件孔要大于螺栓大径,而下部被连接件孔与螺栓杆间无间隙; 3)被连接件表面没加工,应做出沉头座并刮平,以保证螺栓头及螺母支承面平整且垂直于螺栓轴线,避免拧紧螺母时螺栓产生附加弯曲应力; 4)一般连接;不应采用扁螺母; 5)弹簧垫圈尺寸不对,缺口方向也不对; 6)螺栓长度不标准,应取标准长z=60 mm; 7)螺栓中螺纹部分长度短了,应取长30 mm。 (2)螺钉连接 主要错误有: 1)采用螺钉连接时,被连接件之一应有大于螺栓大径的光孔,而另一被连接件上应有与螺钉相旋合的螺纹孔。而图中上边被连接件没有做成大于螺栓大径的光孔,下边被连接件的螺纹孔又过大,与螺钉尺寸不符,而且螺纹画法不对,小径不应为细实线; 2)若上边被连接件是铸件,则缺少沉头座孔,表面也没有加工。 (3)双头螺柱连接 主要错误有: 双头螺柱的光杆部分不能拧进被连接件的螺纹孔内,M12不能标注在光杆部分; 锥孔角度应为120。,而且应从螺纹孔的小径(粗实线)处画锥孔角的两边;

贵州大学机械设计课程教案 第5章螺纹联接

第六章螺纹联接及螺旋传动 一、选择题 6-1、当两个被联接件不太厚时,宜采用__________。 (1)双头螺柱联接(2)螺栓联接(3)螺钉联接(4)紧定螺钉联接 6-2、当两个被联接件之一太厚,不宜制成通孔,且需要经常拆装时,往往采用__________。 (1)螺栓联接(2)螺钉联接(3)双头螺柱联接(4)紧定螺钉联接 6-3、普通螺纹的牙型角α为60o,当摩擦系数μ=0.10时,则该螺纹副的当量摩擦系数μv =__________。 (1)0.105 (2)0.115 (3)0.1115 (4)0.104 6-4、在拧紧螺栓联接时,控制拧紧力矩有很大方法,例如__________。 (1)增加拧紧力(2)增加扳手力臂(3)使用测力矩扳手或定力矩扳手 6-5、螺纹联接防松的根本问题在于__________。 (1)增加螺纹联接的轴向力(2)增加螺纹联接的横向力 (3)防止螺纹副的相对转动(4)增加螺纹联接的刚度 6-6、螺纹联接预紧的目的之一是__________。 (1)增强联接的可靠性和紧密性(2)增加被联接件的刚性(3)减小螺栓的刚性 6-7、承受预紧力和轴向变载荷的紧螺栓联接,当其螺栓的总拉力F0的最大值和被联接件的刚度C m不变时,螺栓的刚度C b愈小,则__________。 (1)螺栓中总拉力的变化幅度愈大(2)螺栓中总拉力的变化幅度愈小 (3)螺栓中总拉力的变化幅度不变(4)螺栓中的疲劳强度降低 6-8承受预紧力和轴向变载荷的紧螺栓联接,当其螺栓的总拉力F0的最大值和螺栓的刚度C b不变时,被联接件的刚度C m愈小,则__________。 (1)螺栓中总拉力的变化幅度愈大(2)螺栓中总拉力的变化幅度愈小 (3)螺栓中总拉力的变化幅度不变(4)螺栓疲劳强度愈高 6-9、承受横向载荷或旋转力矩的紧螺栓联接,该联接中的螺_________。 (1)受剪切作用(2)受拉伸作用 (3)受剪切和拉伸作用(4)既可能受剪切作用又可能受拉伸作用 6-10、对受轴向变载荷的紧螺栓联接,在限定螺栓总拉力的情况下,提高螺栓疲劳强度的有效措施是__________。 (1)增大被联接件的刚度(2)减小被联接件的刚度(3)增大螺栓的刚度 6-11、现有一单个螺栓联接,要求被联接件的结合面不分离,假定螺栓的刚度C b与被联接的刚度C m相等,联接的预紧力为F′,现开始对联接施加轴向载荷,当外载荷达到与预紧力F′的大小相等时,则__________。 (1)被联接发生分离,联接失败(2)被联接件即将发生分离,联接不可靠 (3)联接可靠,但不能再继续加载 (4)联接可靠,只要螺栓强度足够,外载荷F还可继续增加到接近预紧力的两倍 6-12、有一气缸盖螺栓联接,若气缸内气体压力在0~2MPa之间循环变化,则螺栓中的应

DC-DC电感参数选择计算

DC-DC升压和降压电路电感参数选择 注:只有充分理解电感在DC-DC电路中发挥的作用,才能更优的设计DC-DC电路。本文还包括对同步DC-DC及异步DC-DC概念的解释。 DC-DC电路电感的选择简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt)

螺纹连接与传动

第九章 螺纹联接和螺纹传动 机器是零部件通过联接实现的有机组合体。在机械中,联接是指为实现某种功能,使两个或两个以上的零件相互接触,并以某种方式保证一定的位置关系。如果被联接件间相互位置固定,不能作相对运动,称为静联接,能作相对运动的则称为动联接(如铰链等)。习惯上,机械设计中的联接通常指的是静联接,简称联接。联接的方法很多,有些联接需要专门的联接件,如箱体与箱盖的螺纹联接,轴与轴上零件(如齿轮、带轮)的键联接。联接件又称紧固件,常见的有螺栓、螺母、键、销等;有些联接则不需要专门的联接件。 §9—1机械制造中的常用螺纹 一、螺纹的形成 将一直角三角形绕在直径为d2的圆柱表面上,使三角形底边ab 与圆柱体的底边重合,则三角形的斜边在圆柱体表面形成一条螺旋线。三角形的斜边与底边的夹角λ,称为螺旋线升角。若取一平面图形,使其平面始终通过圆柱体的轴线并沿着螺旋线运动,则这平面图形在空间形成一个螺旋形体,称为螺纹。 根据平面图形的形状,螺纹可分为三角形、矩形、梯形和锯齿形螺 纹等(见教材图9—2)。根据螺旋线的绕行方向,可分为左旋螺纹和右旋螺纹(见教材图9—3),规定将螺纹直立时螺旋线向右上升为右旋螺纹,向左上升为左旋螺纹。机械制造中一般采用右旋螺纹,有特殊要求时,才采用左旋螺纹。根据螺旋线的数目,可分为单线螺纹和等距排列的多线螺纹(见教材图9—4)。为了制造方便,螺纹一般不超过4线。 二、螺纹的主要参数 要区分不同的螺纹,就要掌握说明螺纹特点的一些参数。以广泛应用的圆柱普通螺纹为例,螺纹的主要参数如下: (1)大径d (外径)(D )——与外螺纹牙顶相重合的假想圆 柱面直径——亦称公称直径 (2)小径(内径)d 1(D 1)——与外螺纹牙底相重合的假想圆柱 面直径,在强度计算中作危险剖面的计算直径 (3)中径d 2——在轴向剖面内牙厚与牙间宽相等处的假想圆 柱面的直径,近似等于螺纹的平均直径 d 2≈0.5(d+d 1) (4)螺距P ——相邻两牙在中径圆柱面的母线上对应两点间πd S ψ d d 2d 1

机械设计螺纹连接计算题

【例1】 图示方形盖板用四个螺钉与箱体连接,盖板中心O 点的吊环受拉力F Σ=8kN 。试完成:(1)取残余预紧力F 1为工作拉力的0.8倍,求螺钉的总拉力F 2;(2)如果已知M6螺钉的d 1=4.917mm , [σ]=260MPa ,试校核螺钉组的强度。 F ∑ 4-M6 200 600 解:(1)求各螺钉的工作拉力:F=F Σ/n =8/4=2kN (2)求各螺钉的残余预紧力:F 1=0.8F =1.6kN (3)求各螺钉的总拉力:F 2=F 1+F =3.6kN (4)校核螺钉的强度:[]σπσ<=??== 246.59MPa 917 .414.300362.55.22212d F 该螺钉组满足强度条件

【例2】 如图所示,两根梁用8个5.6级普通螺栓与两块钢盖板相联接。梁受到拉力F =32kN ,摩擦系数f =0.2,安全系数S =1.5,防滑系数K S =1.2,控制预紧力,试确定所需螺栓的小径。 F F 解:(1)求螺栓的预紧力:N 240002 42.0320002.10=???=≥ fzi F K F s (2)求螺栓的许用拉应力 屈服极限:MPa s 3001006.05=??=σ 许用拉应力:[]200MPa 5.1/300/===S S σσ (3)求螺栓的小径 []mm 1.14200 14.3240002.52.50 1=??=≥σπF d

【例3】 起重卷筒与大齿轮用6个普通螺栓连接在一起,如图所示。已知卷筒直径D =600mm ,螺栓分布圆直径D 0=800mm ,接合面间的摩擦系数f =0.15,防滑系数K s =1.2,起重钢索拉力Q =40kN ,螺栓材料的许用拉应力[σ]=80Mpa ,试求螺栓小径。 解:(1)求起重卷筒传递的扭矩:T =QD /2=40000×600/2=1.2×106 N.mm (2)求预紧力:N 4000400 615.0102.12.16s 0=????=≥fzr T K F (3)求螺栓直径:[]mm 1.912014.340002.52.50 1=??=≥σπF d Q D 0 D

机械设计基础习题答案第9章

9-1 仔细观察自行车,写出下列各处采用什么联接,(1)车架各部分;(2)脚踏轴与曲拐;(3)曲拐与链轮;(4)曲拐与中轴;(5)车轮轴与车架。 答:(1)焊接;(2)螺纹联接;(3)成形联接;(4)成形联接或销联接;(5)螺纹联接 9-2 螺栓联接、螺柱联接、螺钉联接、紧定螺钉联接四种联接的结构特点有什么不同?各用于什么场合? 答:1.螺栓联接 普通螺栓联接的通孔为过孔,加工精度低,被联接件不切制螺纹,用于能从被联接件两边进行装配的场合,使用不受被联接件材料的限制,构造简单,装拆方便,成本低,应用最广。铰制孔螺栓联接,螺栓杆与孔之间紧密配合,有良好的承受横向载荷的能力和定位作用。 2.双头螺柱联接 双头螺柱的两端都有螺纹,其一端紧固地旋入被联接件之一的螺纹孔内,另一端与螺母旋合而将两被联接件联接。用于被联接件之一太厚不便穿孔或受结构限制而不能用螺栓联接且需经常装拆的场合。 3.螺钉联接 不用螺母,直接将螺钉拧入被联接件之一的螺纹孔内,应用与双头螺栓联接相似,但不能用在经常装拆或受力太大的场合。 4.紧定螺钉联接 将紧定螺钉旋入一零件的螺纹孔中,并以其末端顶住另一零件的表面或嵌入相应的凹坑中,以固定两个零件的相对位置,并传递不大的力或扭矩。 9-3 在实际应用中,绝大多数螺纹联接都要预紧,预紧的目的是什么? 答:预紧的目的是增加联接刚度、紧密性和提高防松能力。 9-4 某圆柱形压力容器的端盖采用8个M20的普通螺栓联接。已知工作压力p=3 MPa ,螺栓位于D 0 = 280mm 的圆周上,试问该联接的紧密性是否满足要求? 解:计算螺栓间距 9.1098280 0=?==ππZ t D mm 查表9-7,p=3 MPa ,t 0<4.5d=4.5×20=90mm ,因此,不能慢紧密性的要求。 9-5 某气缸的蒸汽压强p=1.5MPa ,气缸内径D=200mm ,。气缸与气缸盖采用普通螺栓联接,螺栓分布在直径D 0 =300mm 的圆周上。为保证紧密性要求,螺栓间距不得大于80mm ,试设计此气缸盖的螺栓组联接。 解:题目要求螺栓分布在直径D 0 =300mm 的圆周上,间距不得大于80mm 。由此确定螺栓的个数。 80300 0≤?==Z Z t D ππ 得:Z ≥11.8,取Z=12。 螺栓联接为受轴向载荷的普通螺栓,应利用公式(9-17)进行设计计算。 []σπF d ∑?≥3.141 1. 确定每个螺栓的总拉力F ∑ 按公式(9-15)计算总拉力 F ∑= F 0'+F (1)根据气缸盖螺栓联接的紧密性要求,取残余预紧力F 0'=1.8F , (2)确定每个螺栓所受的轴向载荷F 39251245 .1420022=???==ππZ p F D N

DC-DC输入输出匹配电容选择

DC-DC电容 一、通常来说,DC-DC的功率选择范围并不大,一般只留出30%左右的富余量,不会让它富余很多。例如电路功耗是10W,DC-DC一般选择12-15W。既然DC-DC接近满负荷运转,而电容的容量又是根据电路的电流(功率)来计算的,那么你就不必格外计算了,DC-DC模块的出厂说明书里,对输出级的电容,会有明确要求的(毕竟厂家里的检测设备全面,而且可以从DC-DC的内部来检测,因为不同的输出电流、不同的电容,对DC-DC的影响是多方面的,这不仅是电压问题,还有纹波系数、转换效率等等),所以厂家会告诉你输出电容所允许的最大容量(一般是几百uF),这是一个在各方面指标都能得到权衡的一个最佳值。因此,输出级电容的选择,按照厂家给你的最大容量使用即可。这么用如果出了问题,你可以找厂家、或者换厂家,因为绝不是你设计的问题。 DC-DC输入级的电容可不能这么用,因为DC-DC启动的电流很大。在电源内阻较大的时候,过小的电容会导致DC-DC无法启动或反复启动,严重时会损坏DC-DC模块,因此输入级的电容应越大越好,这要取决你的电源内阻和DC-DC的启动瞬间电流,需要通过实际测试来选择电容容量,这个计算不来的。需要注意的是电容材质的选择,对于输入及的电容,如果用电解电容,要考虑到DC-DC模块自身的发热问题,长期发热会把电解液烤‘干’,容量会大幅减少,所以输入级电解电容要在测试成功的基础上,再选择更大容量的。而输出级的电容由于有最大容量要求,所以不要用电解,建议用钽电容。 二、对电容的常识知之甚少.平时司空见惯的电容.在做一DC-DC电路时出现偏差.输出电压很不稳定,忽高忽低,有时甚至烧IC.最后工程师说我这电路不能用电解电容来做滤波,只能用陶瓷电容(问他也不告诉我为什么.郁闷).不然就会这样.实验结果也是这样.但不是搞不明白为什么. 降压IC的开关频率是,6V输入.输出.希望高手指点迷津.在此先谢过. 对了,我输入输出端加的都是一个跟一个100uF的电容做滤波. 感谢同仁们的关注.电解电容的极性没接反. 2.不是DC-DC不能用电解电容滤波,而是你上M的频率,用电解电容等效阻抗太大,基本起不到滤波效果吧你这个老师太小气,为什么不告诉你为什么呢怕你抢他饭碗 3.电解电容适用低频或叫音频。当用于高频时相当于高频短路。 而且漏电烧芯片。 4.高频时候一般选用MLSS-陶瓷电容 电解适用与低频,容值可以做的很大 时,电解电容很可能已经变成了电感了! 的频率,无须使用大电容的!用独石电容就行了,例如X7R!

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

相关主题
文本预览
相关文档 最新文档