?铸造./’01合金与其它铸造./合金相比,表现出良好的综合性能,所以应用十分广泛。提高铸造./合金性能的方法主要有整体强化和局部强化。由于局部强化可在显著提高表" />
当前位置:文档之家› Fe,Ni,Cr,Re对铝硅合金氩弧表面合金化层硬度和微观形态的影响

Fe,Ni,Cr,Re对铝硅合金氩弧表面合金化层硬度和微观形态的影响

!"焊接技术第#!卷第$期$%%$年&月

收稿日期:$%%!’!%’$(

基金项目:湖北省自然科学基金项目)**+’%#!)试样编号

,-./

01

23

45

26

,7

83

91

2:

!$$;<"=%;%($$;!"%;%=%;$!%;$=!;%<$;!&!;!"#&%!#;%#"#;$$$$;&&%;(*$;$*";"=!;="#(%!&;$#"$;*=$!;**%;<%%;=%$;<$&;"&!;<(&(%!&;##"*;$!$%;

母材

&;"!"";=&$&;%*

%;&$%;"*

!;(

!;*(

表!

焊缝和母材的化学成分"质量分数#)>?铸造./’01合金与其它铸造./合金相比,表现出良好的综合性能,所以应用十分广泛。提高铸造./合金性能的方法主要有整体强化和局部强化。由于局部强化可在显著提高表面性能的同时,降低成本,而且方便灵活,近年来发展得很快。./’01合金的氩弧表面合金化工艺@!A 就是局部表面强化的一种。这种方法利用氩弧使合金焊丝或粉末快速熔入./合金表面熔池,然后进行重熔,使熔入的合金元素进一步扩散均匀化,和液态的熔池金属发生化学冶金反应,产生强化相。

在./’01合金中加入一定的,-和2:则形成广泛用于活塞制造的./’01系合金,国内使用最多的是!)01?!!;%>B !#;%>的共晶活塞./合金,如C4!%<、C4!%*。过共晶./’01系合金国外用的较多。为进一步改善活塞./合金的性能,特别是其高温性能,人们研究过各种合金元素在该类合金中的行为@$B "A 。合金元素中最有争议的是83的影响。一般认为83在./’01合金中通常形成粗大的针状脆性!(./*83$01$)化合物,恶化了合金的力学性能尤其是塑性,降低了合金的抗蚀性。国标规定必须保证活塞./合金中!)83?"%;=>。资料@&A 认为,83大大提高./的蠕变强度,却降低./的疲劳强度。资料@=A 谈到,对./’01系活塞合金83会使其高温短时抗拉强度提高,但使室温抗拉强度下降;使合金的高温、室温、长期时效硬度增加,使冲击韧度下降。

尽管有关报道很多,但基本上是针对铸件和铸造过程的,合金元素对焊接条件下./’01合金的组织与性能的影响很少见有文献报道。而焊接过程加热的不均匀、熔池(熔滴)的过热、极快的冷速等特点,使在焊接条件下表现出与铸造条件下完全不同的行为。本文以过共晶铸造./’01合金为母材。鉴于83的争议性,将其作为合金元素之一。采用氩弧表面合金化技术,将不同量的83,91,D3,26等熔入母材表面,分析这些元素对硬度的影响。同时利用电子显微分析技术分析合金元素对表面合金化区域微观组织形态的影响。!

试验设计

采用手工交流钨极氩弧焊机,钨极直径&EE ,喷嘴直径!"EE ,氩气流量!$4F E17,预热温度$%%G ,焊接电流!<%

.。母材厚度!&EE 。

采用直径%;’!)83?#";#(>’!)26?*;#>、!)91?#!;$(>’!)83?(*;&(>’!)26?*;#>和!)91?"=;&&>’!)83?#$;(">的91’83’26和91’83焊丝,以及!)D3?!%>的铝基焊丝(D3为混合轻稀土,!)23?(%>),按一定比例,分别用氩弧直接熔入母材表面,再用氩弧重熔三道,以保证预期的焊缝截面(即氩弧合金化区域)尺寸和成分。

为了研究合金元素对长期工作在高温的./’01合金性能的影响,本试验在氩弧重熔后对试件进行H"处理((!(I (G 下保温#J 后淬入=%B !%%G 水中,然后在$!(I (G 下保温

对H"处理后的焊缝取其横截面,经研磨、抛光和!%>氢氟酸腐蚀后,在日立0’(=%型扫描电镜(0K,)上进行微观组织观察;用菲利浦KL.MNO*!%%F =%能谱仪进行化学成分分析。母材和焊缝的化学成分(质量分数)见表!。

$试验结果及分析

$;!

83,91,26,D3对合金化层微观形态的影响

试样!$中除加入83,91外,还加入少量稀土。一般认

为,在./合金中!)D3?少于%;&>时,稀土分布在晶界,阻碍晶粒的长大,起到细化晶粒的作用。而当!)D3?升高时,会与./和./合金中的,-,,7,01等生成一系列二元、三元甚至多元相。由表!可以看出,试样!$焊缝中!)D3?较低,从0K,照片看(图!5),有一定的细化晶粒的效果,初生硅

?试验与研究?

%&,’(,)*,+&对铝硅合金氩弧表面合金化层硬度和微观形态的影响

文章编号:!%%$’%$(M )$%%$?%$’%%!"’%#

摘要:采用氩弧表面合金化技术可利用氩弧将高熔点的83,91,26等直接熔入./’01合金表面,使母材表面获得较为均匀的合金化层。在母材表面熔入83,91,26,D3后,无论焊后、H"处理后还是$(%G 再时效后的硬度均大于相同热处理状态下的母材硬度,且合金化层中不出现粗大针片状铁相。对./’01合金进行氩弧表面合金化时不仅可以加入83,而且!)83?还可以高一些。关键词:氩弧;表面合金化;铝硅合金中图分类号:HP!=&;&&(;HP&((

文献标识码:Q

陈冰泉!,熊

英$,侯华东#,张志慧!

(!;武汉理工大学,湖北武汉&#%%"#;$;武汉现代焊接技术研究所,湖北武汉&#%%=&;#;武汉第一冶金设备安

装公司,湖北武汉&#%%

万方数据

铝合金的典型机械性能

铝合金的典型机械性能(Typical Mechanical Properties) 铝合金牌号 及状态拉伸强度(25°C MPa)屈服强度(25°C MPa)硬度500kg力10mm球延伸率 1.6mm(1/16in)厚度 5052-H112 175 195 60 12 5083-H112 180 211 65 14 6061-T651 310 276 95 12 7050-T7451 510 455 135 10 7075-T651 572 503 150 11 2024-T351 470 325 120 20 铝合金的典型物理性能(Typical Physical Properties) 铝合金牌号及状态热膨胀系数 (20-100℃) μm/m?k熔点范围 (℃)电导率20℃(68℉) (%IACS) 电阻率20℃(68℉) Ωmm2/m 密度(20℃)(g/cm3) 2024-T351 23.2 500-635 30 0.058 2.82 5052-H112 23.8 607-650 35 0.050 2.72 5083-H112 23.4 570-640 29 0.059 2.72 6061-T651 23.6 580-650 43 0.040 2.73 7050-T7451 23.5 490-630 41 0.0415 2.82 7075-T651 23.6 475-635 33 0.0515 2.82 铝合金的化学成份(Chemical Composition Limit Of Aluminum ) 合金 牌号硅Si 铁Fe 铜Cu 锰Mn 镁Mg 铬Cr 锌Zn 钛Ti 其它铝 每个合计最小值 2024 23.2 0.5 3.8-4.9 0.3-0.9 1.2-1.8 0.1 0.25 0.15 0.05 0.15 余量5052 25 0.4 0.1 0.1 2.2-2.8 0.15-0.35 0.1 -- 0.05 0.15 余量5083 23.8 0.4 0.1 0.3-1.0 4.0-4.9 0.05-0.25 0.25 0.15 0.05 0.15 余量6061 23.6 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.05 0.15 余 量 7050 23.5 0.15 20.-2.6 0.1 1.9-2.6 0.04 5.7-6.7 0.06 0.05 0.15 余量7075 23.6 0.5 1.2-2.0 0.3 2.1-2.9 0.18-0.28 5.1-6.1 0.2 0.05 0.15 余 量 美铝典型应用领域 用途 2024 5052 5083 6061 7050 7075 农业 -- ● -- ● -- -- 航空器● -- -- ●●● 模具 -- ● -- ● -- ● 机械设备●● -- ●●● 五金零件 -- -- -- ● -- -- 建筑 -- ● -- ● -- --

铝合金常见三种类型

在地面及室内的安装环境。所有的导体是STABILOY铝合金(AA8000系列)以XHHW-2型材料绝缘,护套材料为硬度非常高的铝合金材料。替代(WDZA)YJY/YJV/VV 最低运行环境温度-40摄氏度,合金电缆导体的允许长期运行最高额定温度为90摄氏度。优势:阻燃A级,低烟无卤,室内明敷,节约线槽 ZA-AC90(-40)型合金电缆可减少了管道布线所带来的施工难度和人力成本。合金电缆已在工厂用高柔韧性的自锁型铝铠装组装完毕,不需要管道及其附件和人工密集的拉线、扣纹和成管等工序。ZA-AC90(-40)型合金电缆通过CSA认证可应用于非潮湿环境的明线或暗线敷设,并具备与管道方式敷线的相同性能。ZA-AC90(-40)型合金电缆为低烟无卤型,完全符合IEC60754、GB17650.2及IEC60502.1、GB12706.1的规范标准。

PVC护套,可设计应用在直埋,危险和有腐蚀性的安装环境下。所有的导体是STABILOY铝合金(AA8000系列)以及XHHW-2型材料绝缘,护套材料为硬度非常高的铝合金材料。可替代(WDZA)YJY/YJV/VV。最低运行环境温度-40摄氏度,合金电缆导体的允许长期运行最高额定温度为90摄氏度,防水防腐蚀,耐日光老化。优势:阻燃B级,直埋或潮湿环境敷设,屋顶配电,绝缘及护套材料无重金属。 ZB-ACWU90(-40)型合金电缆已在工厂用高柔韧性的自锁型铝铠装和密封PVC外护套组装完毕,不需要管道及其附件和人工密集的拉线、扣纹和成管等工序。ZB-ACWU90(-40)型合金电缆通过CSA认证可应用与干燥和潮湿环境的明线或暗线敷设,也可应用于1区和2区1级危险环境,以及2、3级危险环境。敷设方式户内可采用支架、梯架、托盘以及电缆夹明敷,户外可采用直埋、电缆沟、电缆隧道等多种方式。ZB-ACWU90(-40)型合金电缆每米设有标定标记,以准确地确定合金电缆电缆长度。完全符合IEC60503.1及GB12706.1的规范标准。

铝合金的热处理及硬度

铝合金的硬度 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下:1070-H14(纯铝) 2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号 -Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号

2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效 处理及软烧等处理,以获取所需要的强度及性能。这些处理的过程称 之为调质,调质的结果便是鍊度。 鍊度符号定义 F 制造状态的鍊度 无特定鍊度下制造的成品,如挤压、热轧、锻造品等。 H112 未刻意控制加工硬化程度的制造状态成品,但须保证机械性质。 O 软烧鍊度 完全再结晶而且最软状态。如系热处理合金,则须从软烧温度缓慢冷却,完全防止淬水效果。 H 加工硬化的鍊度 H1n:施以冷加工而加工硬化者 H2n:经加工硬化后再施以适度的软烧处理 H3n:经加工硬化后再施以安定化处理 n以1~9的数字表示加工硬化的程度 n=2 表示1/4硬质 n=4 表示1/2硬质 n=6 表示3/4硬质 n=8 表示硬质 n=9 表示超硬质 T T1:高温加工冷却后自然时效。挤型从热加工后急速冷却,再经常温十效硬化处理。亦可施以不影响强度的矫正加工,这种调质适合於热加工后冷却便有淬水效果的合金如:6063。 T3:溶体化处理后经冷加工的目的在提高强度、平整度及尺寸精度。 T36:T3经6%冷加工者。 T361:冷加工度较T3大者。 T4:溶体化处理后经自然时效处理。 T5:热加工后急冷再施以人工时效处理。 人工时效处理的目的在提高材料的机械性质及尺寸的安定性适用於热加工冷却便有淬水效

【免费下载】铝合金硬度对照表

文件履历纪录版次 修订内容发行日期修改单号 因多次变更重新更换版本,修订相关条款核 准审 核制 定□总经理□副总经理□管理代表□营业部□资材部□生管课□采购部□品保部□工程部□行政部□机电部发行部门:□财务部□生产部: 熔铸 挤压 加工 研磨 氧化 拉管 锯机 模具、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

各种常用金属材料及铝合金导热系数

作品编号:DG13485201600078972981 创作者:玫霸* 目前市面上散热风扇所使用的散热片材料几乎都是铝合金,只有极少数是使用其他材料。事实上,铝并不是导热系数最好的金属,效果最好的是银,其次是铜,再其次才是铝。但是银的价格昂贵,不太可能拿来做散热片;铜虽笨重,但散热效果和价格上有优势,现在也逐步用来做散热片了;而铝的重量非常轻,兼顾导热性和质量轻两方面,因此,才普遍被用作电子零件散热的最佳材料。铝质散热片并非是百分之百纯铝的,因为纯铝太达于柔软,所以都会加入少量的其他金属,铸造而成为铝合金,以获得适当的硬度,不过铝还是占了约百分之九十八左右。 导热系数的大小表明金属导热能力的大小,导热系数越大,导热热阻值相应降低,导热能力增强。在金属材料中,银的导热系数最高(表),但成本高;纯铜其次,但加工不容易。在风冷散热器中一般用6063T5铝合金,这是因为铝合金的加工性好(纯铝由于硬度不足,很难进行切削加工)、表面处理容易、成本低廉。但随着散热需求的提高,综合运用各种导热系数高的材料,已是大势所趋。有部分散热片采用了纯铜或铜铝结合的方式来制造。例如,有的散热片底部采用纯铜,是为了发挥铜的导热系数大,传热量相对大的优点,而鳍片部分仍采用铝合金片,是为了加工容易,将换热面积尽可能做大,以便对流换热量增大。但是此种方法最大的难点在于如何将铜与铝型鳍片充分地连接,如果连接不好,接触热阻会大量产生,反而影响散热效果。 各种常用金属材料及铝合金导热系数 材料名称导热系数材料名称导热系数 银99.9% 411 W/m.K 硬铝4.5%Cu 177 W/m.K 纯铜398 W/m.K 铸铝4.5%Cu 163 W/m.K 金315 W/m.K Mg,0.6%Mn 148 W/m.K 纯铝237 W/m.K 6061型铝合金155 W/m.K 1070型铝合金226 W/m.K 黄铜30%Zn 109 W/m.K 1050型铝合金209 W/m.K 钢0.5%C 54 W/m.K 6063型铝合金201 W/m.K 青铜25%Sn 26 W/m.K 金和银的导热性能比较好,但缺点就是价格太高,纯铜散热效果则次之,但已经算是非常优秀的了,不过铜片也有缺点:造价高、重量大、不耐腐蚀等。所以现在大多数散热片都是采用轻盈坚固的铝材料制作的,其中铝合金的热传导能力最好,好的CPU 风冷散热器一般采用铝合金制作。

JISH铜及铜合金棒材标准

J I S H铜及铜合金棒材标 准 The latest revision on November 22, 2020

铜及铜合金棒 1.适用范围本规格是适用于拉制加工之后断面为圆形、正六角形、正方形、带圆 角正六角形铜及铜合金的棒(以下称为棒)。 备注 1. 所谓棒就是,全长断面均匀,笔直的拉制制品。 2. 所谓带圆角正六角形就是正六角形的角的外切边切为圆弧形。 2.引用规格下面介绍的标准,都被本标准所引用,构成本标准的一部分内容。这 些标准都是最新版本(包括补充内容)。 JIS B 8265 压力容器的构造一般事项 JIS B 8266 压力容器的构造特定标准 JIS B 8607 制冷剂用喇叭口型和钎焊焊管接头 JIS H 0321 非铁金属材料的检查手册 JIS H 0505 非铁金属材料的电阻率记导电率的测定方法 JIS H 1051 铜及铜合金的铜含量的测定方法 JIS H1052 铜及铜合金的锡含量的测定方法 JIS H1053 铜及铜合金的铅含量的测定方法 JIS H1054 铜及铜合金的铁含量的测定方法 JIS H1055 铜及铜合金的锰含量的测定方法 JIS H1056 铜及铜合金的镍含量的测定方法 JIS H1057 铜及铜合金的铝含量的测定方法 JIS H1058 铜及铜合金的磷含量的测定方法 JIS H1062 铜及铜合金的锌含量的测定方法 JIS H1292 铜及铜合金的荧光X线分析方法 JIS K8085 氨溶液 JIS Z2201 金属材料抗拉试验用试料 JIS Z2241 金属材料抗拉试验方法 JIS Z2243 布氏硬度试验试验方法 JIS Z2244 维氏硬度试验试验方法 3.种类及标号棒的种类及标号,见表1 备注材质的表示记号在表1中标号的后面。

铜合金汇总

铜合金 材质有:H96(C2100)、H90(C2200)、H80(C2400)、H70(C2600)、H68(C2680)、H65(2700)、H63(C2720)、H62(C2800)、HP59-1黄铜棒、H62黄铜板,C1100紫铜板,T3紫铜板……T8紫铜板、磷青铜C5102、C5210、C5191、C1220、C1040、C111,黄铜带 C2680、C2200、C2720、C2600、C2620,纯紫铜C1020、C1100、黄铜带、C1201、C1220,紫铜箔、黄铜箔,GB状态有O、1/2H、1/4H、3/4H、H、EH、SH,高精密黄铜带、紫铜、磷铜。同时经营日本NGK、韩国、美国复银铜带、铍青铜带、锡磷青铜带、国产高精度和普通度的黄铜带、锡磷青铜带、锌白铜、双金属带等. 材质:H62、H65、H68、H70、H80、H90、T2紫铜板,C2600、C2680、C2700、C5210、C5191、C51000、QBe2.0、C1100、T2等。 规格:厚度:0.2-100mm,宽度:305-1000mm、长度:1200-2000mm。 产品H68(C2680)、H65(2700)、H63(C2720)、H62(C2800)、HP59-1黄铜棒、H62黄铜板,C1100紫铜板,T3紫铜板 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 力学性能 黄铜中由于含锌量不同,机械性能也不一样,图7是黄铜的机械性能随含锌量不同而变化的曲线。对于α黄铜,随着含锌量的增多,σb和δ均不断增高。对于(α+β)黄铜,当含锌量增加到约为45%之前,室温强度不断提高。若再进一步增加含锌量,则由于合金组织中出现了脆性更大的r相(以Cu5Zn8化合

强度与硬度对照表

抗拉强度与硬度对照表 抗拉强度N/mm2 维氏硬 度 布氏硬度洛氏硬度 抗拉强度 N/mm2 维氏硬 度 布氏硬度洛氏硬度 Rm HV HB HRC Rm HV HB HRC 2508076122038036138.8 2708580.7125539037139.8 2859085.2129040038040.8 3059590.2132041039041.8 32010095135042039942.7 33510599.8138543040943.6 350110105142044041844.5 370115109145545042845.3 380120114148546043746.1 400125119152047044746.9 41513012415557480-45647 4301351281595490-46648.4 4501401331630500-47549.1 4651451381665510-48549.8 4801501431700520-49450.5 4901551471740530-50451.1 5101601521775540-51351.7 5301651561810550-52352.3 5451701621845560-53253 5601751661880570-54253.6 5751801711920580-55154.1 5951851761955590-56154.7 6101901811995600-57055.2 6251951852030610-58055.7

6402001902070620-58956.3 6602051952105630-59956.8 6752101992145640-60857.3 6902152042180650-61857.8 70522020966058.3 72022521467058.8 74023021968059.2 75523522369059.7 77024022820.370060.1 78524523321.372061 80025023822.274061.8 82025524223.176062.5 83502602472478063.3 85026525224.880064 86527025725.682064.7 88027526126.484065.3 90028026627.186065.9 91528527127.888066.4 93029027628.590067 95029528029.292067.5 96530028529.894068 99531029531 103032030432.2 106033031433.3 109534032334.4 112535033335.5 111536034236.6 119037035237.7

铝合金常用状态

铝合金基本状态代号: F自由加工状态适用于在成型过程中,对于加工硬化和热处理条件特殊要求的产品,该状态产品的力学性能不作规定(不常见)O退火状态适用于经完全退火获得最低强度的加工产品(偶尔会出现)H加工硬化状态适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理(一般为非热处理强化型材料)W固熔热处理状态一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处于自然时效阶段(不常见)T热处理状态(不同于 F、O、H状态)适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。 T代号后面必须跟有一位或多位阿拉伯数字(一般为热处理强化型材料)我们常见的非热处理强化型铝合金后面的状态代号一般是字母H加两位数字。 如1100 H 14。 下面简单介绍以下状态代号的含义内容。 字母H后面一般跟两位数字: 第一位数字表示的就是加工硬化处理的方法。 H后面的第一位数字有: 1,2,3,4即H1* H1*表示单纯加工硬化处理H2* H2*表示加工硬化及不完全退火H3* H3*表示加工硬化及稳定化处理H4* H4*表示加工硬化及涂漆处理第二位数字表示的就是材料所达到的硬化程度。 H后面的第二位数字有: 1,2,3,4,5,6,7,8,9既H*1 0与2之间的硬度H*2 1/4硬H*3 2与4之间的硬度H*4 1/2硬H*5 4与6之间的硬度H*6 3/4硬H*7 6与8之间的硬度H*8全硬状态H*9超硬状态(H后面跟三个数字的情况不多,只有几个。

H111表示最终退火后又进行了适量的加工硬化。 H112表示适用于热加工成型的产品。 H116表示含镁量≥ 4.0%的5***系合金制成的产品.)我们常见的热处理强化型铝合金后面的状态代号一般是字母T加添加一位或多位阿拉伯数字表示T的细分状态在T后面添加0—10的阿拉伯数字,表示细分状态(称作TX状态)。 T后面的数字表示对产品的热处理程序。 T0固溶热处理后,经自然时效再通过冷加工的状态。 适用于经冷加工提高强度的产品。 T1由高温成型过程冷却,然后自然时效至基本稳定的状态。 适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。 T2由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态。 适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品。 T3固溶热处理后进行冷加工,再,经自然时效至基本稳定的状态。 适用于在固溶热处理后,进行冷加工、或矫直、矫平以提高强度的产品。 T4固溶热处理后自然时效至基本稳定的状态。 适用于固溶热处理后,不在进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。 T5由高温成型过程冷却,然后进行人工时效的状态。 适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。

各种铝合金牌号的规格、选型、用途

各种铝合金牌号的规格、选型、用途

一、铝合金牌号、代号以及国内外牌号对照 国际上已经注册的铝合金牌号有1000多个,每个牌号又有多种状态,在硬度,强度,耐蚀性,加工性,焊接性,装饰性等方面都存在着明显的差异。选择铝合金的牌号与状态时,以上各方面很难同时满足,也没有必要,应根据产品的性能要求,使用环境,加工过程等因素,设定各种性能的优先次序,方可做到合理选材,在保证性能的前是下合理控制成本。 硬度:很多客户在购买铝时非常关心,硬度首选跟合金化学成份有直接的关系。其次,不同的状态也影响较大,从所能达到的最高硬度来看,7系,2系,4系,6系,5系,3系,1系,依次降低。 硬度:强度是产品设计时必须考虑的重要因素,成其是铝合金组件作为组件时,应根据所承受的压力,选择适当的合金。纯铝强度最低,而2系及7系热处理型合金度最高,硬度和强度有一定的下相关系。耐蚀性:耐蚀性包括化学腐蚀,耐应力腐蚀等性能。一般而言,1系纯铝的耐蚀性最佳,5系表现良好,其次是3系和6系,2系及7系较差。耐蚀性选用原则应根据其使用场合而定。高强度合金腐蚀环境下使用,必须使用各种防蚀用复合材料。 加工性:加工性能包插成形性能与切削性能。因为成形性与状态有关,在选择铝合金牌号后,还需考虑各种状态的强度范围,通常强度高的材不易成形。台果要对铝材进行折弯,拉伸,深冲等成形加工,完退火状态材料的成形性最佳,反之,热处理状态材料的成形性最差。铝合金的切削性较差,对于模具,机械零件等需要切削性较佳,反之,低强度者切削性较差,对模具,机械零件等需要切削加工的产品,铝合金的切削性是重要的考虑因素。 焊接性:多数铝合金的焊接性均无问题,尤其是部分5系列的铝合金,是专为焊接考虑而设计的,相对面言,部分2系和7系的铝合金较难焊接。 装饰性能:铝材应用于装饰或某些特定的场合时,需要对其表面进行阳极氧化,涂装等加工,以获得相应的颜色和表面组织,这时其装饰性应该重点考虑的,一般而言,耐蚀性较好的材料,其阳极处理性能,表面处理性能,涂装性能都非常出色。 其他特性:除上述特性以外,还有导电性,耐磨性,耐热性等。在选材时也可以加以考虑。 纯铝:1XXX系列为纯铝中添加少量铜元素形成,具有极佳的成形加工特性、高耐腐蚀性、良好的焊接性和导电性。1XXX系列铝合金广泛应用于对强度要求不高的产品,如化工仪器、薄板加工件、深拉或

铜及铜合金

表3铜及铜合金数字代号编号范围

S----砂型铸造; J----金属型铸造; R----熔模铸造; K----壳型铸造; Y----压力铸造; L1----离心铸造; La----连续铸造; B----变质处理; F---铸态; T1----人工时效; T2----退火; T4---淬火+自然时效; T5----淬火和不完全时效; T6----淬火和完全时效; T7----淬火和稳定回火; T8----淬火和软化回火; 4. 铸造铜合金的主要化学成分及机械性能(表4, 表5 ,表6),

5.4. 炉料计算程序;(铝合金和铜合金); 5.4.1.明确熔炼任务. 5.4.1.1根据所需合金要求选定配料成分. 5.4.1.2所需合金液的重量,(每坩锅熔炼合金重量) 5.4.1.3所用炉料的成分和回炉料用量,(包括中间合金) 5.4.2明确元素的烧损E,即各元素的烧损量%. 5.4.3计算(包括烧损)100公斤炉料各元素的需要量Q, Q=a/(1-E) (公斤) α-合金中计算元素成分的百分含量(%), E—元素的烧损量(%) 5.4.4根据熔制合金的实际重量W, 计算各元素的需要量A, A=Q×W/100 (公斤) 5.4.5计算在回炉料中各元素的含量B(公斤), B=G×a (公斤) G—回炉料加入量(公斤), a—回炉料中各元素的含量(%) 5.4.6计算应补加的新元素重量C; C=A-B (公斤) 5.4.7计算中间合金的需要量D; D=C/F (公斤), F—中问合金中元素的百分含量. 5.4.8中间合金中所带入的主要元素计算, (铜合金中的铜,铝合金中的铝) Cu(Al)=D-C

硬度对照表铝合金(HB10-500)

洛氏硬度(HRC)、布氏硬度(HB)等硬度對照區別和換算 洛氏硬度(HRC)、布氏硬度(HB)等硬度對照區別和換算 硬度是衡量材料軟硬程度的一個性能指標。硬度試驗的方法較多,原理也不相同,測得的硬度值和含義也不完全一樣。最普通的是靜負荷壓入法硬度試驗,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、維氏硬度(HV),橡膠塑膠邵氏硬度(HA,HD)等硬度其值表示材料表面抵抗堅硬物體壓入的能力。最流行的裡氏硬度(HL)、肖氏硬度(HS)則屬於回跳法硬度試驗,其值代表金屬彈性變形功的大小。因此,硬度不是一個單純的物理量,而是反映材料的彈性、塑性、強度和韌性等的一種綜合性能指標。 鋼材的硬度:金屬硬度(Hardness)的代號為H。按硬度試驗方法的不同, ●常規表示有布氏(HB)、洛氏(HRC)、維氏(HV)、裡氏(HL)硬度等,其中以HB及HRC較為常用。 ●HB應用範圍較廣,HRC適用于表面高硬度材料,如熱處理硬度等。兩者區別在於硬度計之測頭不同,布氏硬度計之測頭為鋼球,而洛氏硬度計之測頭為金剛石。 ●HV-適用於顯微鏡分析。維氏硬度(HV)以120kg以內的載荷和頂角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)。 ●HL手提式硬度計,測量方便,利用衝擊球頭衝擊硬度表面後,產生彈跳;利用沖頭在距試樣表面1mm處的回彈速度與衝擊速度的比值計算硬度,公式:裡氏硬度HL=1000×VB(回彈速度)/ VA(衝擊速度)。 ●目前最常用的可擕式裡氏硬度計用裡氏(HL)測量後可以轉化為:布氏(HB)、洛氏(HRC)、維氏(H V)、肖氏(HS)硬度。或用裡氏原理直接用布氏(HB)、洛氏(HRC)、維氏(HV)、裡氏(HL)、肖氏(HS)測量硬度值。時代公司生產的TH系列裡氏硬度計就有此功能,是傳統臺式硬度機的有益補充!”(詳細情況請點擊《裡氏硬度計HL1000B/HL1000D/HL2000TH140可擕式系列》) 1、HB - 布氏硬度: 布氏硬度(HB)一般用於材料較軟的時候,如有色金屬、熱處理之前或退火後的鋼鐵。洛氏硬度(HRC)一般用於硬度較高的材料,如熱處理後的硬度等等。 布式硬度(HB)是以一定大小的試驗載荷,將一定直徑的淬硬鋼球或硬質合金球壓入被測金屬表面,保持規定時間,然後卸荷,測量被測表面壓痕直徑。布式硬度值是載荷除以壓痕球形表面積所得的商。一般為:以一定的載荷(一般3000kg)把一定大小(直徑一般為10mm)的淬硬鋼球壓入材料表面,保持一段時間,去載後,負荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2(N/mm2)。(關於布式硬度(HB)詳細情況請點擊《布氏硬度機(計)HBE-3000A/HB-3000》) 2、HR-洛式硬度 洛式硬度(HR-)是以壓痕塑性變形深度來確定硬度值指標。以0.002毫米作為一個硬度單位。當HB>450或者試樣過小時,不能採用布氏硬度試驗而改用洛氏硬度計量。它是用一個頂角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在一定載荷下壓入被測材料表面,由壓痕的深度求出材料的硬度。根據試驗材料硬度的不同,分三種不同的標度來表 示: HRA:是採用60kg載荷和鑽石錐壓入器求得的硬度,用於硬度極高的材料(如硬質合金等)。

铜合金材料对照-成分-性能

铜合金牌号以及对照列表 ALLOY TYPE BS STANDARD EN STANDARD SYMBOL ASTM/UNS (NEAREST EQUIVALENT) OTHER COMPATABLE ALLOYS Aluminium Bronze CA104 CW307G CuAl10Ni C63200 / C63000 NES833, BSB23(DTD197A) Aluminium Bronze CA105 - CuAl10Fe3Ni7Mn2 C63000 - Aluminium Bronze AB1-C CC331G CuAl10Fe2-C C95400 SAE68 Aluminium Bronze AB2-C CC333G CuAl10Fe5Ni5-C C95500 SAE68B Leaded Bronze LB1-C CC496K CuSn7Pb15-C C93800 SAE67 Leaded Bronze LB2-C CC495K CuSn10Pb10-C C93700 SAE64 / SAE797 / SAE792 Leaded Bronze LB4-C CC494K CuSn5Pb9-C C93500 SAE66 Leaded Bronze LB5-C CC497K CuSn5Pb20-C C94100 SAE94, SAE794 & SAE799. Leaded Bronze - - CuSn7ZnPb C93200 SAE660 Leaded Gunmetal LG2-C CC491K CuSn5Zn5Pb5-C C83600 SAE40 Leaded Gunmetal LG4-C CC492K CuSn7Zn2Pb3-C C93400 - Leaded phosphor bronze LPB1 - CuSn8Pb4Zn1 C93100 - Leaded Phosphor Bronze PB4-C CC480K CuSn10-C C92700 - Nickel Gunmetal G3 - CuSn7Ni5Zn3 B292-56 - Phosphor Bronze PB101 CW450K CuSn4 C50900 C51100 - Phosphor Bronze PB102 CW451K CuSn5 C51000 NES838 Phosphor Bronze PB103 CW452K CuSn6 C51900 - Phosphor Bronze PB104 CW459K CuSn8 C52100 BSB24 DTD265A Phosphor Bronze DTD265A - - - BSB24, PB104 Tin Phosphor Bronze PB1-C CC481K CuSn11P-C B143 SAE65 Tin Phosphor Bronze PB2-C CC483K CuSn12-C CC483K SAE65 材料化学成分

铝合金硬度有那种材料决定

自己看吧,有点长(我觉得) 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响 ①铁,铁是铝合金中的主要杂质元素,在6063合金中,国家标准中规定不大于0.35,如果生产中用一级工业铝锭,一般铁含量可控制在0.25以下,但如果为了降低生产成本,大量使用回收废铝或等外铝,铁就根容易超标。Fe在铝中的存在形态有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械性能、抗蚀性能变差,氧化后的型材表面发青,光泽下降,着色后得不到纯正色调,因此,铁含量必须加以控制。 为了减少铁的有害影响可采取如下措施。 a)熔炼、铸造用所有工具在使用前涂涮涂料,尽可能减少铁溶人铝液。 b)细化晶粒,使铁相变细,变小,减少其有害作用。 c)加入适量的锶,使β相转变成α相,减少其有害作用。 d)对废杂料细心挑选,尽可能的减少铁丝、铁钉、铁屑等杂物进入熔铝炉造成铁含量升高。

铝合金硬度换算表

铝合金硬度换算 序号布氏(HB)洛氏(HRB)维氏(HV)序号布氏(HB)洛氏(HRB)维氏(HV)180.O 32.983.232 111.O 63.5110.7281.O 34.284.233112.O 64.4117.8382.O 35.585.334113.O 65.O 118.9483.O 36.986.435114.O 65.7120.O 584.O 38.287.536115.O 66.3121.1685.O 39.588.637116.O 57.O 122.2786.O 40.889.738117.O 57.6123.2887.O 42.O 90.739118.O 58.2124.3988.O 43.191.840119.O 68.8125.41089.O 44.392.941120.O 69.3126.51190.O 45.494.O 42121.O 69.9127.51291.O 45.595.143122.O 70.6128.71392.O 47.796.244123.O 71.2129.71493.O 48.897.245124.O 71.6130.81594.O 49.698.846125.O 72.2131.91695.O 50.799.447126.O 72.7133.O 1796.O 51.7100.548127.O 73.3134.11897.O 52.6101.649128.O 73.9135.21998.O 53.4102.750129.O 74.4136.22099.O 54.3103.751130.O 74.8137.321100.O 55.3104.852131.O 75.4138.422101.O 56.O 105.953132.O 76139.523102.O 57.O 107.O 54133.O 76.3140.624103.O 57.7108.155134.O 76.9141.725104.O 58.5109.256135.O 77.3142.726105.O 59.3110.257136.O 77.9143.827106.O 60.O 111.158137.O 78.2144.928107.O 60.8112.459138.O 78.8146.O 29108.O 61.5113.560139.O 79.2147.130109.O 62.3114.661140.O 79.8148.231 110.O 63.1115.7 62 141.O 80.1 149.2

12-铜合金硬度与强度换算值

铜合金硬度与强度换算值(摘自GB/T3771-1983) (表一) 硬度抗拉强度/MPa 布氏维氏洛氏表面洛氏黄铜 HB30D2d10、2d5、 4d2.5/mm HV HRB HRF HR15T HR30T HR45T 板材棒材 σbσb 90.0 6.159 90.5 53.7 87.1 77.2 50.8 26.7 ——92.0 6.100 92.6 54.2 87.4 77.4 51.2 27.2 ——94.0 6.042 94.7 54.8 87.7 77.6 51.6 27.7 ——96.0 5.986 96.8 55.5 88.1 77.8 52.0 28.4 ——98.0 5.931 98.9 56.2 88.5 78.0 52.5 29.1 ——100.0 5.878 101.0 57.1 89.1 78.3 53.2 30.1 ——102.0 5.826 103.1 58.0 89.6 78.6 53.8 31.0 ——104.0 5.775 105.1 58.9 90.1 78.9 54.4 31.9 ——106.0 5.726 107.2 60.0 90.7 79.2 55.1 32.9 ——108.0 5.678 109.3 61.0 91.3 79.6 55.8 33.9 ——110.0 5.631 111.4 62.1 91.9 79.9 56.5 35.0 379 392 112.0 5.585 113.5 63.2 92.6 80.3 574 36.2 382 397 114.0 5.541 115.6 64.3 93.2 80.6 58.1 37.2 386 403 116.0 5.497 117.7 65.4 93.8 81.0 58.8 38.2 390 408 118.0 5.454 119.8 66.6 94.5 81.4 59.6 39.4 394 414 120.0 5.413 121.9 67.7 95.1 84.7 60.3 40.5 398 420 122.0 5.372 124.0 68.8 95.8 82.1 61.2 41.7 402 425 124.0 5.332 126.1 69.9 96.4 82.5 61.9 42.7 407 431 126.0 5.293 128.2 71.0 97.0 82.8 62.6 43.7 412 437

铝合金技术参数

理论上是,要看成型方法i: 压铸的左右,挤压的,锻造的

1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途 1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具 1145 包装及绝热铝箔,热交换器 1199 电解电容器箔,光学反光沉积膜 1350电线、导电绞线、汇流排、变压器带材 2011 螺钉及要求有良好切削性能的机械加工产品 2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件 2017 是第一个获得工业应用的2XXX系合金,它的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件 2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件 2036汽车车身钣金件 2048 航空航天器结构件与兵器结构零件 2124 航空航天器结构件

2218飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环 2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300℃。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力 2319 焊拉2219合金的焊条和填充焊料 2618 模锻件与自由锻件。活塞和航空发动机零件 2A01 工作温度小于等于100℃的结构铆钉 2A02 工作温度200~300℃的涡轮喷气发动机的轴向压气机叶片 2A06 工作温度150~250℃的飞机结构及工作温度125~250℃的航空器结构铆钉 2A10 强度比2A01合金的高,用于制造工作温度小于等于100℃的航空器结构铆钉 2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉 2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件 2A14 形状复杂的自由锻件与模锻件 2A16 工作温度250~300℃的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱 2A17 工作温度225~250℃的航空器零件 2A50 形状复杂的中等强度零件 2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等 2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等 2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件 2A90 航空发动机活塞 3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件,或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化工产品处理与贮存装置,运输液体产品的槽、罐,以薄板加工的各种压力容器与管道

相关主题
文本预览