当前位置:文档之家› 凝汽器端差的计算和实际工程中的应用分析

凝汽器端差的计算和实际工程中的应用分析

凝汽器端差的计算和实际工程中的应用分析
凝汽器端差的计算和实际工程中的应用分析

凝汽器端差的计算和实际工程中的应用分析

Abstract:The main factors affecfing the heat transfer end difference of a condenser were analyzed as well as the relations among them.Some related expressions and concepts which are difficult to understand were explaind.Calculations were conducted using relevant parameters of units with different capacity to further prove the correctness of fhe analyzing method and the result using actual engineering data.The result is not only suitable for analyzing the heat transfer end difference of the condenser,but also suitable to other heat exchangers.It put forward some reasons for high end difference of stram condenser and corresponding measures according to the practical conditions in Wanneng Tongling Power.In addition,it gave a detailed analysis about the effects of these measures and economic efficiency resulting from it.

Key words:condenser;heat transfer end difference;calculation;analysis;corresponding measure

在火力发电厂中,凝汽器的作用之一是在汽轮机排汽口形成一定的真空,使机组排汽尽可能的膨胀做功,减少冷源损失[1]。因此凝汽器工作情况是设计和运行都需要考虑的问题。凝汽器真空度对机组运行安全性和热经济性有很大影响。真空下降使汽轮机排汽缸温度升高,引起汽机轴承中心偏移,严重时还引起汽轮机机组振动。特别是在夏天真空成为机组稳发,满发的最大制约因素,也造成日常维护工作量增

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

凝汽器端差和凝汽器过冷度详解

今天学习与凝汽器相关的专业术语。) 学习内容摘要: 1、冷却倍率 2、凝汽器的极限真空 3、凝汽器的最有利真空 4、凝汽器端差 4.1、凝汽器端差的定义 4.2、影响凝汽器端差的因素 4.3、循环冷却水量和凝汽器端差的关系 5、凝汽器的过冷度 5.1、过冷度的定义 5.2、产生过冷度的原因 5.3、过冷度增加的分析 5.4、为什么有时过冷度会出现负值 1、冷却倍率 所谓冷却倍率,就是冷却介质的质量(冷源质量)与被冷却介质质量(热源质量)的商值。相当于冷却1kg热源所需的冷源的质量。 比如,凝汽器的冷却倍率=循环水量/排汽量,一般取50~80。 2、凝汽器的极限真空 一般说来,需要采取各种手段,保证凝汽器有良好的真空。但是并不是说真空越高越好,二是有一个极限值的。这个极限值由汽轮机末级叶片出口截面的膨胀程度决定,当通过末级叶片的蒸汽已达到膨胀极

限时,如果继续提高真空,不可能得到经济上的效益,相反会降低经济效益。 极限真空一般由生产厂家提供。 3、凝汽器的最有利真空 同一个凝汽器,在极限真空内,提高真空,可使蒸汽在汽轮机中的焓降增大,从而提高汽轮机的输出功率,但是,提高真空,需要增大循环水量,循泵的功耗率增大。因此,就需要选择一个最佳工作点,即所提高的汽轮机输出功率与循泵增加的功耗率之差为最大时,此状态所对应的真空值为最有利真空。 4、凝汽器端差(端差在汽轮机的相关学习资料中讲得比较简单,没有详尽的资料,这里得出的结论是参考了几篇论文分析学习得出的)换管清洗请联系188 038 18668 (1)凝汽器端差:凝汽器排汽压力所对应的饱和蒸汽温度与循环水出水温度的差值。端差则反映凝汽器传热性能、真空严密性和冷却水系统的工作状态况等,所以,在凝汽设备运行监测中, 传热端差是一个非常重要的参数,是衡量凝汽器换热性能的一个重要参数。 (2)哪些因素影响凝汽器端差:对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。凝汽器端差增加的原因有: A、凝器铜管水侧或汽侧结垢; B、凝汽器汽侧漏入空气; C、冷却水管堵塞;

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复;

给水温度原因分析

连城电厂#2机组给水温度低的原因分析 及高压加热器改造 乔万谋 甘肃电力公司连城电厂邮编:730332 【摘要】文章介绍了连城电厂#2汽轮机组高压加热器在制造、安装、检修和运行维护中存在的缺陷,分析了这些缺陷对高压加热器运行特性的影响和对给水温度的影响。并结合高加结构特点,在原有设备基础上进行了改造,改造后高压加热器端差减小,给水焓升增大,给水温度提高,效果明显。 【关键词】汽轮机高压加热器给水温度技术改造 1.概述 连城电厂安装两台北京重型电机厂生产的N100-90/535型凝汽式汽轮机,配套两台哈尔滨锅炉厂生产的HG410/100-10型锅炉,高压加热器为哈锅配套的GJ350-5、GJ350-6型高加,自82年投运以来,两台机组给水温度一直偏低,影响着全厂的经济运行。特别是随着运行小时数的增加,给水温度呈连年下降趋势,虽在历次设备大修中发现和处理了一些影响给水温度的重要缺陷,使给水温度有所好转,但都不能保证给水温度处比较稳定的状况。2000年#2机组大修前,我们对#2机#5、6高加进行全面的热力试验,并进行了认真分析,在大修中对高加各部分进行了仔细的检查,发现并处理了几处影响高加运行特性的缺陷,同时对高加结构进行了改进,使#5、6高加端差减小,给水焓升增大,给水温度提高,效果明显。 2.影响高加运行特性的因素及原因分析 额定负荷下设计工况和实测工况#5、6高加各运行参数如表所示。从额定负荷下设计工况 表:额定负荷设计工况和实测工况加热器运行参数 和实测工况的各主要参数可以看出,#5、6高加偏离设计工况的主要问题是端差较大,#5高加上端差10.4℃,下端差16.1℃,#6高加上端差8.5℃,下端差13.8℃,而加热器设计时一般选择其上端差为0℃,下端差为8℃。由于#6高加上端差的影响,造成给水温度降低8℃,下端差大于设计值5.8℃,其疏水进入#5高加,排挤二段抽汽,造成二段抽汽量减少。#5高加上端差使其出口的给水温度降低,势必导致加热不足的部分将在#6高加内部被加热,造成#6高加热负荷增大,#6高加用汽量增大,本可以用低压抽汽加热的部分给水焓升,而使用高压抽汽加热,降低了回热系统的经济性。 造成#5、6高加上、下端差增大的原因,经分析有以下几种因素: (1)、由于汽轮机相对内效率低于设计值,导致汽轮机的汽耗量增大,相应的给水流量也增大,从而引起高压加热器的热负荷增加。汽轮机制造厂保证给水温度达到设计温度的条件之一就是“汽轮机按制造厂设计热力系统运行,通过高压加热器的水量等于汽轮机的主蒸汽流量”。汽

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

高加疏水端差大原因分析

#2机#1高加疏水端差大原因分析 一、#2机通流部分改造前后#1高加疏水温度对比 由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。 二、加热器疏水端差大理论原因 1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。 2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上 升。 3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度 上升,疏水端差自行增大。 4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏 水端差增大。 5、疏水温度测量有误,温度指示高。 三、目前#2机#1高加疏水端差大原因分析 1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下: 试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。 2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽

汽压力必然下降,抽汽量必然相应增加。由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。同理#2 四、结论及有关建议 1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。目前#2机满负荷时如#1高加抽汽门不节流,给水温度基本能达到额定值(小于设计值约2℃),但夏季因真空的下降、抽汽量的增加,#3高加事故疏水频繁动作,#1高加抽汽电动门将被迫节流,给水温度下降约7~8℃,影响经济性。 2、经试验及就地核实,目前#1高加的实际水位定值700mm正常,疏水端差约20℃,但目前水位能保证加热器的安全运行。此外仪控部已检查#1高加疏水温度测量、显示正常。 1、建议利用检修机会,对#1高加内部汽流隔板及疏水段进行检查,消除可疑 点,同时也可确认加热器的安全状况。 五、附#2机通流部分改造前后高加运行参数

凝汽器端差大原因

凝汽器端差大原因分析 一、凝结器端差增大的主要原因有: 1.凝器铜管水侧或汽侧结垢; 2.凝汽器汽侧漏入空气; 3.冷却水管堵塞; 4.冷却水量增加等。 二、根据本机组实际情况分析 1、凝器铜管水侧或汽侧结垢,由于本机组凝汽器是新安装,而且胶球冲洗根据定期工作冲洗及时,因此凝汽器结垢的可能性较小。 2、本机组运行中真空较高且真空严密性试验为良好,可能是由于循环水入口水温过低造成端差过大,即凝结器产生过冷却; 1.循环水温度过低和循环水量过大,使凝结水被过度的冷却,过冷度增加。 2.凝结器漏入空气多或抽气器工作不正常,空气不能及时被抽出,空气分压力增大,使过冷度增加。 3、凝结器单位面积负荷过大造成: (1).低压加热器的疏水通过危机疏水门直接进入凝汽器,增加了凝汽器的热负荷; (2)主蒸汽管道旁路系统是否有漏气进入凝汽器。 4、循环水量多或少都可能引起端差的增大: (1).如果机组的负荷高,势必会导致排气量的增大,如果此时水量少了,肯定会引起排汽温度的升高,而一定量的循环水它的吸热能力是一定的是有限的,如果严重的话甚至会有溶于水的气体析出,这样无疑会使水侧换热效果变差,致使出水温度较此时真空对应下的排气温度相差很多,端差

变大,因为此时真空应该是下降的; (2)循环水量多也会引起凝汽器端差的变大,如果机组的排气量远远小于循环水量,这时循环水的温升很小,循环水出口温度很低【现在是冬季循环水的进水温度也低】这时就应该注意机组的真空严密性了,如果真空很高,这时肯定会有空气进入致使排汽温度也很高,端差变大; (2)假如凝汽器是完全严密的,如果是负荷低循环水量过剩的话,这时的排汽温度较循环水出水温度相差也是很大的,端差也会增大。

水位与端差

水位影响 低水位:疏水器故障,导致加热器长期处于无水位运行状态,大量的汽水混合物沿着加热器进入疏水管道,造成管子强烈振动,同时加热器无水位运行还造成加热器的疏水管道及弯头的严重冲刷,管壁很快就变薄,以致在运行中,发生爆破,造成事故。加热器无水位运行就是指疏水调节器故障,本级加热器疏水逐级自流到下一级加热器,与此同时大量的蒸汽串入下一级加热器,造成机组的热经济性大幅度降低。其原因之一是高能级抽汽贬为低能级使用;其二加热器的传热恶化造成加热器出口水温降低。 1、高加低水位运行,高加疏水不能降低到进入下一级时的压力和温度,对下级的加热器进汽发生排挤现象,使得下级加热器水位波动大,高加疏水调节阀频繁动作,加热器的出口管附近的换热管容易发生断裂。 2、高加长期低水位或无水位运行,破坏了加热器疏水口的虹吸现象,高温高压蒸汽通过疏水口直接进入下一级加热器,由于上一级的蒸汽压力大大高于下一级加热器,高压蒸汽在通过疏水调节阀时,由于压力急剧下降,比容急剧增大,流速急剧增大(最大可增加原流速20倍),发生汽液两相流,这种汽液两相流严重时会破坏高加疏水调节阀的工况,对高加疏水管进行严重冲刷,并引起高加疏水管道振动,诱发管道支吊架断裂及管道爆破。 由于上一级疏水进入下级加热器时流速急剧增大,在下一级的高压加器入口处的换热管,发生严重振动并可引起断裂。 高水位:会减小有效传热面积,导致加热器性能下降(给水出口温度降低)。过高蒸汽带水,水冲击 1)疏水调节阀不正常运行或失常。 2)加热器之间压差不够。 3)加热器超载荷。 4)高压加热器换热管损坏。 5)钢管胀口松弛泄漏。 出水温度下降的原因有: 1)抽汽阀门未开足或补卡住。2)运行中负荷突变引起暂时的给水回热不足。3)给水流量突然增加。4)水室内的分程隔板泄漏。5)高压加热器给水旁路阀门未关严,有一部分给水走了旁路,或保护装置进、出口阀门的旁路阀等未完全关严而内漏。6)疏水调节阀失灵,引起水位过高而浸没管子。7)汽侧壳内的空气不能及时排除而积聚,影响传热。8)经长期运行后堵掉了一些管子,传热面因之减小。 什么是高压加热器的上、下端差?上端差过大、下端差过小有什么危害? (1)上端差是指高压加热器抽汽饱和温度与给水出水温度之差;下端差是指高加疏水与高加进水的温度之差; (2)上端差过大,为疏水调节装置异常,导致高加水位高,或高加泄漏,减少蒸汽和钢管的接触面积,影响热效率,严重时会造成汽机进水; (3)下端差过小,可能为抽汽量小,说明抽汽电动门及抽汽逆止门未全开;下端差大原因或疏水水位低,部分抽汽未凝结即进入下一级,排挤下一级抽汽,影响机组运行经济性,另一方面部分抽汽直接进入下一级,导致疏水管道振动。正

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

凝汽器端差

凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。一个清洁的凝汽器,在一定的循环水温度和循环水量及单位蒸汽负荷下就有一定的端差值指标,一般端差值指标是当循环水量增加,冷却水出口温度愈低,端差愈大,反之亦然;单位蒸汽负荷愈大,端差愈大,反之亦然。实际运行中,若端差值比端差指标值高得太多,则表明凝汽器冷却表面铜管污脏,致使换热条件恶化。 端差增加的原因有:①凝器铜管水侧或汽侧结垢;②凝汽器汽侧漏入空气;③冷却水管堵塞;④冷却水量增加等(增加太多,端差低了,但循泵耗电多,综合比较定35万以上4-6度,以下为6-8度为经济)。 最佳答案 1.凝汽器铜管或钛管结垢、堵塞、脏污,影响换热效果。 2.汽轮机排汽温度高。 3.凝汽器真空系统泄露等原因造成的真空度低。 4.凝汽器循环水流量不足。 循环水流量增大后,凝结器端差减小,循环水流量减小后,凝结器端差减大. 5.凝汽器水侧上部积空气未排出。 6.凝汽器集水井水位高,淹没铜管。 7.表计误差等其它原因。 以上原因均可造成凝汽器端差偏大。 真空系统严密性下降后,凝汽器的传热端差为什么增大? 引起凝结器内真空下降的主要原因是: 1)冷却水温由于环境温度而升高,夏天较低,冬天较佳。 2)凝汽器冷却面积污脏,影响传热效果,引起真空下降。 3)冷却水供水中断或水量不足引起冷却水温升高,引起真空下降。 4)由于真空系统严密性不佳或轴封供汽中断,抽气器工作失常等原因,使漏气量增加而影响排汽压力,降低真空。 5)凝汽量水位升高,使部分调管淹没而减少传热面积,进而影响真空。 6)凝汽器水位过高,超过空气管口。 7)增加负荷或停用抽汽改为纯凝运行。

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式: F=Wq/(K*△T) 式中 F —换热面积 m2 Wq—换热量 W K —传热系数 W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

高压加热器泄漏原因分析及预防措施

高压加热器泄漏原因分析及预防措施 一、设备概述 我厂国产优化改进型300MW汽轮机的高压加热器,采用三台引进福斯特——惠勒公司技术制造的单列卧式表面加热器。高压加热器带有内置式蒸汽冷却段和疏水冷却段,如图一。蒸汽冷却段利用汽轮机抽气的过热段来提高给水温度,使给水温度接近或略高于该加热器压力下的饱和温度。凝结段是利用蒸汽凝结的潜热加热给谁。疏水冷却段是把离开凝结段的疏水热量传给进入加热器的给水,从而使疏水温度降到饱和温度下。 二、高压加热器泄漏后对机组的影响 高压加热器是利用机组中间级后的抽汽,通过加热器传热管束,使给水与抽汽进行热交换,从而加热给水,提高给水温度,是火力发电厂提高经济性的重要手段。由于水侧压力(20MPa)远远高于汽侧压力(4MPa),当传热管束即U型管发生泄漏时,水侧高压给水进入汽侧,造成高加水位升高,传热恶化,具体对机组的影响如下: 1.高加泄漏后,会造成泄漏管周围管束受高压给水冲击而泄漏管束增多,泄漏更加严重,必须紧急解列高加进行处理,这样堵焊的管子就更少一些。 2.高加泄漏后,由于水侧压力20MPa,远远高于汽侧压力4MPa,这样,当高加水位急剧升高,而水位保护未动作时,水位将淹没抽汽进口管道,蒸汽带水将返回到蒸汽管道,甚至进入中压缸,造成汽轮机水冲击事故。 3.高加解列后,给水温度降低,由280℃降低为170℃,从而主蒸汽压力下降,为使锅炉能够满足机组负荷,则必须相应增加燃煤量,增加风机出力,从而造成炉膛过热,气温升高,更重要的是标准煤耗约增加12g/kwh,机组热耗相应增加 4.6%,厂用电率增加约0.5%。 4.高加停运后,还会使汽轮机末几级蒸汽流量增大,加剧叶片的侵蚀。 5.高压加热器的停运,还会影响机组出力,若要维持机组出力不变,则汽轮机监视段压力升高,停用的抽汽口后的各级叶片,隔板的轴向推力增大,为了机组安全,就必须降低或限制汽轮机的功率,从而影响发电量。 6.高加泄漏,每次处理顺利时需要30小时,系统不严密时,则工作冷却时间加长,直接影响高加投运率的目标。 三高加泄漏的现象 1.高加水位高信号报警,泄漏检测仪亦报警,另外还有高加端差增大,远远高于正常值。 2.由于高加泄漏,水侧大量漏入汽侧,通过疏水逐级自流入除氧气,为使汽包水位正常,则给水泵转速增加,给水流量增大。 3.高加泄漏后,由于传热恶化,则造成给水温度降低。 四高加泄漏原因分析 1.运行中高加端差调整不及时。 300MW机组运行规程规定,高压加热器下端差正常为5.6——8℃。(端差是指高压加热器疏水出口温度与给水进口温度的差值。) 由于运行人员责任心不强,在疏水调节装置故障或其他原因造成高加水位大幅度波动的情况下,没有及时发现,未能及时处理,致使高加端差波动较大。 2.高加受到的化学腐蚀。 300MW机组给水品质规定:给水容氧<7μg/L,PH值为9.0——9.4. 给水容氧超标,将造成高加U型钢管管壁腐蚀而变薄,钢管与管板间的胀口受腐蚀而松弛,经长期运行,寿命逐渐缩短。 3.负荷变化速度快给高压加热器带来的热冲击。 在机组加减负荷时,负荷变化速度过快,相应抽汽压力、抽汽温度迅速变化,在给水温

小型火电机组凝汽器端差偏高原因分析及对策

小型火电机组凝汽器端差偏高原因分析及对策 摘要:本文根据杨庄煤矸石热电厂1#机组,针对凝汽器运行中,端差偏大的情况,从真空严密性及凝汽器铜管清洁程度等方面进行分析比较,并根据实际运行 情况提出了处理此类问题的对策。 关键词:凝汽器;端差高;分析及对策 中图分类号:TM621 文献标识码:A 文章编号:1006-4311(2010) 11-0104-01 0 引言 1#机组运行一段时间以来,凝汽器端差一直偏大,在12~30℃内变动,严重 影响了我厂汽机运行的安全,降低了汽机的经济性,对此我们通过调查分析。着 重判断分析端差偏高的原因。并在此基础上提出一些对策。 1 凝汽器端差δ值的意义 δ值是指凝汽器压力下的饱和温度与凝汽器冷却出口温度之差。它是反映凝 汽器铜管的污垢或凝汽器内是否积存空气的主要监视数值之一,是凝汽器运行的 主要监视指标,δ值一般不应超过10℃。δ值的变化标志着凝汽器运行状况的好坏,可作为判别凝汽器运行状态的依据。 2 凝汽器端差δ值的影响因素 δ值的大小决定于抽汽器效率、凝汽器构造(铜管的布置方式及换热面积)、管子内外表面清洁度、冷却水流量和流速、冷却水入口温度、进入凝汽器蒸汽流量、真空系统严密性等。以上除了设计因素外,主要取决于铜管内外表面的清洁 度和真空系统的严密性。 3 分析 对于正常运行的凝汽器(铜管无积污积垢现象、真空系统严密)δ值可用下 面的经验公式计算: δ=n×(dn+7.5)/(31.5+t1)d。=qml/A 式中:qm蒸汽负荷,kg/h;dn凝汽器单位面积的蒸汽负荷,(kg/m.h);A:凝汽器的传热面积,m2;n:常数,用设计条件下的t1和d。及δ值代入求得。 通常=5-7。据此,假设凝汽器运行正常,指铜管无积污积垢现象、真空系统严密,则代入n、t1、d。可算出我厂的δ值,若δ值小于实际运行的δ值,则说明凝汽 器运行不正常,要么是铜管堵塞、结垢、要么是真空系统不严密,要么是两者都 有之。我厂A=560m2、qmm=27000吨/h、h=5℃(冬季平均温度)、n=5~7,代 入经验公式得:δ理论min=7.60、δ理论max=11.64 从以上计算可以看出,我厂实际运行的δ值偏大(12~30℃)。尽管小机组可以 略高一点,但不能高得离谱,否则安全性、经济性将受到大的影响。为查清具体 原因,作以下判断:判断一:假设真空严密,首先可以通过做真空严密性试验来 确定是真是假;其次可以通过查阅汽机运行记录来判断,真空严密性不是很好, 这是导致端差过高的主要原因之一。判断二:现场打开凝汽器人孔门,检查铜管 积存污泥、结垢情况。自2009年3月份清洗过后,铜管一直未清理,从冷却塔 内挂片来看,结垢尚无,但污泥很多,由此判断,铜管水侧很脏。随后1#汽轮机 停机检查也证实,铜管水侧有大量污泥积存和老垢(很薄,投产前有一段时间没 有加药造成)。没有明显结垢现象。大量积存的污泥及其它悬浮物,极大地降低 了铜管的换热效果,进而端差增大。我厂冷却水在2009年9月份换用了新的阻 垢缓蚀剂,当时由于在运行期间,采用的是部分换水,而新的阻垢缓蚀剂跟以前

高压加热器疏水端差大原因分析及对策

高压加热器疏水端差大原因分析及对策 发表时间:2017-12-25T21:09:14.697Z 来源:《电力设备》2017年第25期作者:董诗峰[导读] 摘要:高压加热器是汽轮机发电机组回热系统中的重要辅机设备,运行高压加热器可提高锅炉给水温度,降低机组能耗。(淮北申皖发电有限公司安徽省淮北市 235000)摘要:高压加热器是汽轮机发电机组回热系统中的重要辅机设备,运行高压加热器可提高锅炉给水温度,降低机组能耗。本文从运行角度分析,根据系统运行参数、疏水装置、控制仪表附件以及操作人员水平等因素,分析了高压加热器疏水端差偏大的原因和危害,并提出详尽的应对策略,对高压加热器的设计、制造及电厂运行具有借鉴意义。 关键词:机组;高压;加热器;疏水;端差;偏大;原因;对策前言 高压加热器是电厂回热系统中的重要组成设备,其运行性能的好坏,与机组的经济性密切相关。衡量高压加热器性能参数主要有给水温升、给水端差、疏水端差及管、壳程介质压降等,其中疏水端差(又称下端差)是指离开加热器壳侧的疏水温度与进入管侧的给水温度之差。本厂高压加热器实际运行时的疏水端差较设计值偏差较大,最高达22℃,大大降低了回热系统的经济性和安全性。因此,找出导致疏水端差过大的原因并采取措施降低疏水端差显得尤为重要。设备简介:申皖公司一期两台汽轮机均采用上海汽轮机有限公司与德国西门子联合制造的产品,该机组四台高压加热器均为上海动力设备有限公司生产,其结构为卧式U型管管板式。A9(调整抽汽)、A8、A7(高压缸排汽)、A6级抽汽分别供给四台高压加热器,高压加热器疏水在正常运行时采用逐级串联疏水方式,最后一级(A6高加)疏至除氧器。 一、高压加热器疏水端差偏大的影响本厂自2016年投产以来,#1机组四台高加疏水端差均不同程度的高于设计值(5.6℃),其中A8加热器疏水端差最高达22℃。疏水端差过大会导致以下三方面问题:一是高压加热器的实际换热量低;二是疏水端差过大意味着疏水温度过高,因此疏水温度更接近饱和温度,在疏水管中容易产生汽液两相流,疏水容积流量增加,流速加快,造成疏水管道振动。由于流速增加,流体将对管道产生很大得冲刷力,严重的会使疏水管道弯头吹损、破裂、危及加热器及回热系统的安全;三是疏水温度过高会加重下级高加的工作负荷,造成下级疏水端差进一步增大。 二、高压加热器疏水端差偏大的原因本厂高压加热器为上海动力设备有限公司生产,在设计、制造方面已经比较成熟,本次分析暂且忽略设计、制造原因,仅从运行角度分析,系统运行参数、疏水装置、控制仪表附件以及操作人员水平等因素均可影响疏水端差数值,主要表现在以下几个方面: 高压加热器运行水位过低,不能浸没疏水冷却段的疏水入口,疏水中带有蒸汽,蒸汽就会进入疏水冷却段,使疏水温度增大,进而影响疏水冷却段内部的传热效果。 (2)压力表、温度计、液位计等系统仪表精度等级偏低或显示不准确;高压加热器系统内阀门密封不严,例如:危急疏水调节阀出现泄漏;正常疏水调节阀动作不灵敏,发生锈蚀等现象。 (3)水室内部的分程隔板、水室包壳板或管子与管板连接处出现泄漏,造成给水短路。(4)汽轮机组及回热系统内其他换热设备未正常运行,造成高压加热器系统运行参数偏离设计值过大。 三、应对策略 1、依据高压加热器设计部门提供的水位控制图标注的水位,对各台高压加热器单独进行水位调整试验,以确定该台高压加热器的合理运行水位。试验原因:尽管高压加热器在制造完工出厂前都表明正常水位位置,但是水位取样的上下接口处在不同的位置,在伯努利动量效应作用下,不同的流速会产生不同的静压,使上下取样口之间产生一个静压差,仪表显示的水位高于设备内部的真实水位。由于设备内部各处介质流速无法精确计算,现场多是根据加热器疏水端差设计值作为衡量标准,对水位进行调整,直至加热器疏水端差与设计值一致。 (2)确定原则:在水位调整试验过程中,要使给水出口温度基本不降低,将水位提高至一定高度后,监测并记录疏水端差的变化情况。 (3)试验过程:试验期间保持机组在设计工况下运行,负荷基本不变。试验全过程需汽机运行、热工控制及其他专业相关人参与,由专人统一指挥调度,同时解除高压加热器水位自动控制,由人工监控高压加热器运行。专人负责记录给水进出口温度、疏水出口温度、进汽压力、疏水调节阀开度及水位计读数等各项参数。试验开始后,首先将正常疏水调节阀开度缓慢关小,水位缓慢升高,每次升高水位5~10mm,然后保持稳定约15min,按要求记录各项运行参数。试验需分若干次操作并记录,直至该台高压加热器的给水出口温度开始呈现下降趋势时为止,即该水位已开始淹没部分凝结段换热管,此时应结束试验并恢复正常运行。试验结果:试验按高压加热器疏水端差由大到小的顺序逐步进行。经过水位调整试验后,A8高加的疏水端差降低到7℃左右,其他三台高加的疏水端差也都较接近设计值。可见,高加的水位对疏水端差的影响是很大的。 2、在高压加热器运行期间,需加强对设备、仪表等使用情况的检测。 (1)检查压力表、温度计、液位计等系统仪表准确性及灵敏度,对有问题设备进行校正或更换。 (2)检查给水三通阀、疏水调节阀、危急疏水调节阀等系统所有阀门的灵敏度,锈蚀程度及密封性。若存在缺陷,需及时检修改进,确保高压加热器系统无漏流短路。 3、设备检修期间,应打开水室人孔,检查水室内分程隔板的密封性,检查水室内包壳板是否有焊缝开裂及分程隔板变形等缺陷,如发现有缺陷应及时进行修复。 4、加强回热系统内其他换热设备的运行监视,若出现运行参数偏离设计值过大的情况,应及时进行分析处理。结束语通过对高压加热器疏水端差偏大的影响因素分析并采取了相应的对策,收效显著。高压加热器疏水端差的下降,不仅提高了机组的热经济性,而且还保证了机组的安全运行。参考文献

板式换热器的选型计算方法

1、压降控制 流体在流动中只有克服阻力才能前进,流速越大,阻力也越大。不同的板型或者统一板型不同板片结构参数,其阻力也不相同,阻力的大小直接关系到输送流体的泵或者风机的动力消耗和设备的投资费用。 如果将热侧允许压降设为0.05 MPa,则可以减少近10%的面积。因此,压降是影响换热换热器传热面积的影响因素之一。较大的集中供热项目一次网的压力损失基本确定在0.1 MPa左右是比较经济合理的。在此条件下得到的换热面积既可以满足运行工况的要求,也是最节约投资的。 由计算结果可以看出,允许压降适当计算面积可以减少近30%。 2、污垢热阻 污垢对传热、传质及流体流动带来负面影响,即随着污垢在传热表面上的积聚,流道表面的粗糙度增加,引起摩擦因数增大,并且流体的流通截面积减少,在相同的体积流量的情况下,流体流速增加,压力降增大。有人认为选取较大的污垢热阻比较可靠,其实这往往会带来更严重后果。这是因为在传热量一定的条件下,势必要加大传热面积或总平均温差,从而增加换热器成本。而传热面过大会导致热流体出口温度过低、冷流体出口温度过高,这不仅影响工艺要求,而且有时在运行中为避免此结果常将介质流速降低、致使壁面温度上升,这样反而促使污垢 更迅速地增长。 虽然换热面积没有减少,但是由于工况的污垢热阻较小,使得计算富裕量有很大增加。同样,不同的污垢热阻对换热面积影响也很大。设计换热器时,必须

采用正确的界膜导热系数,同时还必须采用正确的污垢系数,即使正确地确定了界膜导热系数。如果污垢系数的确定不准确,对换热器的设计误差也很大。由于板式换热器具有容易清洗的优点,所以定期对换热器进行清洗必不可少。 3、面积富裕量 换热器换热面积富裕量定义为设计值比计算值高出的百分比。其主要考虑工艺条件的变化稳态和持续积垢引起的热阻变化,还有一些未知因素,如积垢预测误差、工艺计算误差等。将裕量分为工艺裕量、设备老化裕量和控制裕量3个参数,还有一些不可知的因素需要再另加一些裕量。文献[1]在换热器计算中没有提到富裕量应该取值的问题,只是通过例题说明只要满足计算换热面积大于所需换热面积就可以。 板式换热器设计中,常取10%的面积富裕量。由序号6和序号7可以看出,面积富裕量对换热器计算的影响因素也很大。 4、温差推动力 温度推动力也叫平均对数温差。在传热过程中,冷、热流体的温度差沿加热面是连续变化的。但是由于此温度差与冷、热流体的温度成线性关系,因此可以用换热器两端温差的某种组合(即对数平均温差)来表示。对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬殊时,对数平均值要比算术平均值小得多。当换热器一端两流体温差接近于0时,对数平均推动力将急剧减小。

凝汽器真空分析

凝汽器真空分析 排汽真空度对汽轮机正常运行起着非常重要的作用。真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动, 甚至引起汽缸变形及动静间隙增大。如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。 凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作 为判别凝汽器运行状态的依据。运行中端差值越小, 则运行情况越好,机组的热效率越高。凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。 1.空气量 凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。空气的第二大危害是使凝结水的过冷度增大。降低空气量主要从真空严密性和真空泵的工作性能考虑。 2.真空严密性 真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调 试的经验, 真空系统易泄漏空气的薄弱环节有:

1)凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏 入空气, 造成严密性下降。 2)轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导 致空气漏入。 3)采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效 建立, 导致空气漏入。 4)低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由 于密封不严, 或防爆门出现裂缝, 导致空气漏入。 5)大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏, 另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。 6)凝结水泵进口法兰、凝泵水封泄漏也经常导致凝结水溶氧不合格。 7)管道安装。目前的新建机组, 安装质量较好, 压力管道均进行水 压试验, 真空管道均进地灌水试验, 由于法兰, 阀门盘根等原因导致泄漏的情况较小。 8)部分低压管道上的疏水阀、排汽阀, 关闭不严, 导致真空泄漏。 根据实际情况及分析研究, 可采用以下处理措施: 机组运行过程中维持轴封系统各疏水、U形水封的正常工作。 1)机组运行过程中维持好轴封加热器的正常水位。 2)按设计要求调整汽轮机轴端汽封间隙, 减小轴端漏汽量。 3)运行中严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不 正常, 应及时进行分析,不可随意提高汽封供汽压力、温度。

相关主题
文本预览
相关文档 最新文档