当前位置:文档之家› 8第八讲 复习圆锥曲线方程 高考数学专题复习双基 典例 精炼

8第八讲 复习圆锥曲线方程 高考数学专题复习双基 典例 精炼

8第八讲 复习圆锥曲线方程 高考数学专题复习双基 典例 精炼
8第八讲 复习圆锥曲线方程 高考数学专题复习双基 典例 精炼

第八讲 复习圆锥曲线方程

一、本讲进度《圆锥曲线方程》复习

二、本讲主要内容三种圆锥曲线:椭圆、双曲线、抛物线的定义、标准方程、几何性质等。 2、直线和圆锥曲线位置关系。 3、求轨迹方程的常规方法。

三、复习指导

1、上一章已经复习过解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹

方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。

在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究

(1)统一定义,三种圆锥曲线均可看成是这样的点集:?

??

???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的 距离,F ? ,如图。

因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。

(2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。

(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。

①定性:焦点在与准线垂直的对称轴上

椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。

②定量:

举焦点在x轴上的方程如下:

合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。

2、直线和圆锥曲线位置关系

(1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。

其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。

直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x或y方程的二次项系数为0。

(2)直线和圆锥曲线相交时,交点坐标就是方程组的解。

当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。

4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。

四、典型例题

例1、 根据下列条件,求双曲线方程。

(1)与双曲线116y 9x 2

2=-有共同渐近线,且过点(-3,32); (2)与双曲线14

y 16x 2

2=-有公共焦点,且过点(23,2)。 解题思路分析:

法一:(1)双曲线116y 9x 22=-的渐近线为x 3

4

y ±= 令x=-3,y=±4,因432<,故点(-3,32)在射线x 34

y -=(x ≤0)及x 轴负半

轴之间,

∴ 双曲线焦点在x 轴上 设双曲线方程为

1b y a x 2

22

2=-,(a>0,b>0)

???????=--=1b )32(a )3(34

a b 22

22 解之得:??

??

?==

4b 49

a 22 ∴ 双曲线方程为14y 49x 2

2=-

(2)设双曲线方程为

1b

y a

x 2

22

2=-

(a>0,b>0)

则 ???

??=-=+1b 2a

)23(20b a 222

222

解之得:?????==8

b 12

a 22

∴ 双曲线方程为18

y 12x 2

2=- 法二:(1)设双曲线方程为λ=-16

y 9x 2

2(λ≠0)

∴ λ=--16

)32(9)3(2

2 ∴ 4

1

=

λ ∴ 双曲线方程为14y 4

9x 2

2=-

(3)设双曲线方程为1k 4y k 16x 22

=+--???? ??>+>-0k 40k 16 ∴

1k

42k 16)23(2

2=+-- 解之得:k=4

∴ 双曲线方程为18

y 12x 2

2=- 评注:与双曲线

1b y a x 2

22

2=-

共渐近线的双曲线方程为

λ=-2222b y a x (λ≠0),当λ>0时,焦点在x 轴上;当λ<0时,焦点在y 轴上。与双曲线1b y a x 2

22

2=-

共焦点的双曲线为

1k

b y k

a x 2222=--

+(a 2

+k>0,b 2

-k>0)。比较上述两种解法可知,引入适当的参数可以提高

解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基本思想。

例2、设F 1、F 2为椭圆14

y 9x 2

2=+的两个焦点,P 为椭圆上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求

|

PF ||

PF |21的值。 解题思路分析:

当题设涉及到焦半径这个信息时,通常联想到椭圆的两个定义。

法一:当∠PF 2F 1=900时,由?????=+==+5c )c 2(|PF ||PF |6|PF ||PF |2

2

222121得:

314|PF |1=,3

4

|PF |2= ∴

2

7|PF ||PF |21=

当∠F 1PF 2=900

时,同理求得|PF 1|=4,|PF 2|=2 ∴

2|

PF ||

PF |21= 法二:当∠PF 2F 1=900

,5x P =

∴ 3

4y P ±

= ∴ P (3

4,5±

) 又F 2(5,0) ∴ |PF 2|=

3

4 ∴ |PF 1|=2a-|PF 2|=

3

14 当∠F 1PF 2=900

,由?

????=+=+14y 9

x )5(y x 22222得:

P (55

4

,553±±

。下略。 评注:由|PF 1|>|PF 2|的条件,直角顶点应有两种情况,需分类讨论。

例3、设点P 到M (-1,0),N (1,0)的距离之差为2m ,到x 轴、y 轴的距离之比为2,求m 取值范围。

解题思路分析:

根据题意,从点P 的轨迹着手 ∵ ||PM|-|PN||=2m

∴ 点P 轨迹为双曲线,方程为1m 1y m x 2

22

2=--

(|m|<1) ①

又y=±2x (x ≠0) ② ①②联立得:2

222

m 51)m 1(m x --=

将此式看成是2

22m

51)m 1(m --关于x 的二次函数式,下求该二次函数值域,从而得到m 的

取值范围。

根据双曲线有界性:|x|>m ,x 2

>m 2

22

22m m 51)m 1(m >--

又0

>0 ∴ 5

5

|m |<且m ≠0 ∴ )5

5,0()0,55(m -

∈ 评注:利用双曲线的定义找到点P 轨迹是重要一步,当题目条件有等量关系时,一般考

虑利用函数思想,建立函数关系式。

例4、已知x 2

+y 2

=1,双曲线(x-1)2

-y 2

=1,直线 同时满足下列两个条件:①与双曲线交于不同两点;②与圆相切,且切点是直线与双曲线相交所得弦的中点。求直线 方程。

解题思路分析:

选择适当的直线方程形式,把条件“ 是圆的切线”“切点M 是弦AB 中点”翻译为关于参数的方程组。

法一:当 斜率不存在时,x=-1满足; 当 斜率存在时,设 :y=kx+b 与⊙O 相切,设切点为M ,则|OM|=1 ∴

11

k |b |2

=+

∴ b 2

=k 2

+1 ①

由?

??=--+=1y )1x (b kx y 2

2得:(1-k 2)x 2-2(1+kb)x-b 2=0 当k ≠±1且△>0时,设A (x 1,y 1),B (x 2,y 2),则中点M (x 0,y 0),

2

02

21k 1kb 1x ,k 1)kb 1(2x x -+=

-+=

+

∴ y 0=kx 0+b=

2

k 1b k -+

∵ M 在⊙O 上 ∴ x 02

+y 02

=1

∴ (1+kb)2

+(k+b)2

=(1-k 2)2

② 由①②得:???????-==332b 33k 或 ???

????=-=332b 33

k ∴ :332x 33y -=

或33

2

33y +-= 法二:设M (x 0,y 0),则切线AB 方程x 0x+y 0y=1 当y 0=0时,x 0=±1,显然只有x=-1满足; 当y 0≠0时,0

00y 1

x y x y +-

= 代入(x-1)2

-y 2

=1得:(y 02

-x 02

)x 2

+2(x 0-y 0)2

x-1=0 ∵ y 02

+x 02

=1

∴ 可进一步化简方程为:(1-2x 02

)x 2

+2(x 02

+x 0-1)x-1=0 由中点坐标公式及韦达定理得:2

0200x 211x x x --+-

=∴

即2x 03-x 02

-2x 0+1=0 解之得:x 0=±1(舍),x 0=2

1 ∴ y 0=2

3

±

。下略 评注:不管是设定何种参数,都必须将形的两个条件(“相切”和“中点”)转化为关于参数的方程组,所以提高阅读能力,准确领会题意,抓住关键信息是基础而又重要的一步。

例5、A 、B 是抛物线y 2

=2px (p>0)上的两点,且OA ⊥OB , (1)求A 、B 两点的横坐标之积和纵坐标之积; (2)求证:直线AB 过定点; (3)求弦AB 中点P 的轨迹方程; (4)求△AOB 面积的最小值; (5)O 在AB 上的射影M 轨迹方程。 解题思路分析:

设A (x 1,y 1),B (x 2,y 2),中点P (x 0,y 0) (1)2

2OB 11OA x y k ,x y k == ∵ OA ⊥OB ∴ k OA k OB =-1 ∴ x 1x 2+y 1y 2=0 ∵ y 12

=2px 1,y 22

=2px 2 ∴ 0y y p

2y

p 2y 212

22

1=+?

∵ y 1≠0,y 2≠0 ∴ y 1y 2=-4p 2

∴ x 1x 2=4p 2

(2)∵ y 12

=2px 1,y 22

=2px 2

∴ (y 1-y 2)(y 1+y 2)=2p(x 1-x 2) ∴

2

12121y y p 2x x y y +=--

∴ 2

1AB y y p

2k +=

∴ 直线AB :)x x (y y p

2y y 12

11-+=-

∴ 2

11121y y px 2y y y px

2y +-++=

∴ 2

12112121y y y y px 2y y y px 2y ++-++=

∵ 221121p 4y y ,px 2y -==

∴ 2

12

21y y p 4y y px 2y +-++=

∴ )p 2x (y y p

2y 2

1-+=

∴ AB 过定点(2p ,0),设M (2p ,0) (3)设OA ∶y=kx ,代入y 2

=2px 得:x=0,x=

2

k p 2

∴ A (

k

p

2,

k p 22) 同理,以k

1-

代k 得B (2pk 2

,-2pk ) ∴ ???

???

?-=+=)k k 1(P y )k 1k (p x 022

0 ∵ 2)k k k 1(k

1

k 2

2

2+-=+ ∴

2)p

y

(p x 200+= 即y 02

=px 0-2p 2

∴ 中点M 轨迹方程y 2

=px-2p 2

(4)|)y ||y (|p |)y ||y (||OM |2

1

S S S 2121BOM AOM AOB +=+=

+=??? ≥221p 4|y y |p 2=

当且仅当|y 1|=|y 2|=2p 时,等号成立 评注:充分利用(1)的结论。 (5)法一:设H (x 3,y 3),则3

3

OH x y k =

∴ 3

3

AB y x k -

= ∴ AB :)x x (y x y y 33

3

3--

=- 即3333x )y y (x y x +--=代入y 2

=2p 得0px 2x p 2y x py 2y 33

2

3332=--+

由(1)知,y 1y 2=-4p 2

∴ 233

2

3p 4px 2x py 2=+ 整理得:x 32+y 32

-2px 3=0

∴ 点H 轨迹方程为x 2

+y 2

-4x=0(去掉(0,0)) 法二:∵ ∠OHM=900,又由(2)知OM 为定线段 ∴ H 在以OM 为直径的圆上

∴ 点H 轨迹方程为(x-p)2

+y 2

=p 2

,去掉(0,0)

例6、设双曲线12

y x 2

2

=-上两点A 、B ,AB 中点M (1,2) (1)求直线AB 方程;

(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,那么A 、B 、C 、D 是否共圆,为什么?

解题思路分析:

(1)法一:显然AB 斜率存在 设AB :y-2=k(x-1)

由??

???=--+=12y x k 2kx y 22得:(2-k 2)x 2-2k(2-k)x-k 2

+4k-6=0

当△>0时,设A (x 1,y 1),B (x 2,y 2) 则2

21k 2)

k 2(k 2x x --=+=

∴ k=1,满足△>0 ∴ 直线AB :y=x+1

法二:设A (x 1,y 1),B (x 2,y 2) 则???

????=-=-

12y x 12y x 2

2222

121 两式相减得:(x 1-x 2)(x 1+x 2)=2

1

(y 1-y 2)(y 1+y 2) ∵ x 1≠x 2 ∴

2

1212121y y )

x x (2x x y y ++=--

∴ 12

1

2k AB =?=

∴ AB :y=x+1

代入12

y x 2

2

=-得:△>0

评注:法一为韦达定理法,法二称为点差法,当涉及到弦的中点时,常用这两种途径处理。在利用点差法时,必须检验条件△>0是否成立。

(2)此类探索性命题通常肯定满足条件的结论存在,然后求出该结论,并检验是否满足所有条件。

本题应着重分析圆的几何性质,以定圆心和定半径这两定为中心

设A 、B 、C 、D 共圆于⊙OM ,因AB 为弦,故M 在AB 垂直平分线即CD 上;又CD 为弦,故圆心M 为CD 中点。因此只需证CD 中点M 满足|MA|=|MB|=|MC|=|MD|

由?

?

?

??=-+=12y x 1x y 22得:A (-1,0),B (3,4)

又CD 方程:y=-x+3

由??

???=-+-=12y x 3

x y 22得:x 2+6x-11=0

设C (x 3,y 3),D (x 4,y 4),CD 中点M (x 0,y 0) 则63x y ,32

x x x 004

30=+-=-=+=

∴ M (-3,6) ∴ |MC|=|MD|=

2

1

|CD|=102 又|MA|=|MB|=102 ∴ |MA|=|MB|=|MC|=|MD|

∴ A 、B 、C 、D 在以CD 中点,M (-3,6)为圆心,102为半径的圆上

评注:充分分析平面图形的几何性质可以使解题思路更清晰,在复习中必须引起足够重视。

五、同步练习 (一)选择题

1、方程|2y x |)1y (3)1x (322-+=+++表示的曲线是 A 、 椭圆

B 、双曲线

C 、抛物线

D 、

不能确定

2、把椭圆19y 25x 22=+绕它的左焦点顺时针方向旋转2

π

,则所得新椭圆的准线方程是 A 、441y ,49y ==

B 、4

41

x ,49x -== C 、4

9

y ,441y -==

D 、4

9

x ,441x -==

3、方程04y x )1y x (22=-+-+的曲线形状是 A 、圆

B 、直线

C 、圆或直线

D 、

圆或两射线 4、F 1、F 2是椭圆

1b y a x 2

22

2=+

(a>b>0)的两焦点,过F 1的弦AB 与F 2组成等腰直角三角

形ABF 2,其中∠BAF 2=900

,则椭圆的离心率是

A 、 2

B 、36-

C 、3

D 、

6

5、若方程11

m y 2|m |x 22

-=---表示焦点在y 轴上的双曲线,则它的半焦距C 的取值范围

A 、(0,1)

B 、(1,2)

C 、(1,+∞)

D 、与m

有关

6、以抛物线y 2

=2px (p>0)的焦半径|PF|为直径的圆与y 轴位置关系是 A 、相交 B 、相切 C 、相离 D 、以上

三种均有可能

7、直线y=kx-2交抛物线y 2

=8x 于A 、B 两点,若AB 中点横坐标为2,则|AB|为 A 、15

B 、152

C 、42

D 、

152 8、已知圆x 2

+y 2

=1,点A (1,0),△ABC 内接于圆,∠BAC=600

,当BC 在圆上运动时,BC 中点的轨迹方程是

A 、x 2

+y 2

=21 B 、x 2+y 2=4

1

C 、x 2+y 2

=

)2

1

x (21< D 、x 2

+y 2

=)4

1

x (41<

填空题9、已知A (4,0),B (2,2)是椭圆19

y 25x 2

2=+内的点,M 是椭圆上的动点,则|MA|+|MB|的最大值是____________。

10、椭圆

19y 8log x 2a 2=+的离心率为2

1

,则a=__________。 11、高5米和3m 的旗竿在水平地面上,如果把两旗竿底部的坐标分别定为A (-5,0),B (5,0),则地面上杆顶仰角相等的点的轨迹是__________。

12、若x ,y ∈R,且3x 2

+2y 2

=6,则x 2

+y 2

最大值是________,最小值是________。 13、抛物线y 2

=2x 上到直线x-y+3=0距离最短的点的坐标为__________。 (三)解答题

14、求以达原点与圆x 2

+y 2

-4x+3=0相切的两直线为渐近线且过椭圆4x 2

+y 2

=4两焦点的双曲线方程。

15、已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴距离比到点(1,0)距离小1 (1)求点P 轨迹C 的方程;

(2)设过M (m ,0)的直线交双曲线C 于A 、B 两点,问是否存在这样的m ,使得以线段

AB 为直径的圆恒过原点。

16、设抛物线y 2

=4ax (a>0)的焦点为A ,以B (a+4,0)为圆心,|BA|为半径,在x 轴上方画圆,设抛物线与半圆交于不同两点M 、N ,点P 是MN 中点 (1)求|AM|+|AN|的值;

(2)是否存在这样的实数a ,恰使|AM|,|AP|,|AN|成等差数列?若存在,求出a ;若不存在,说明理由。

17、设椭圆中心为0,一个焦点F (0,1),长轴和短轴长度之比为t (1)求椭圆方程;

(2)设过原点且斜率为t 的直线与椭圆在y 轴右边部分交点为Q ,点P 在该直线上,且1t t |

OQ ||

OP |2-=,当t 变化时,求点P 轨迹。 18、已知抛物线y 2

=2px (p>0),过动点M (a ,0)且斜率为1的直线 与该抛物线交于不同两点A 、B ,|AB|≤2p , (1)求a 取值范围;

若线段AB 垂直平分线交x 同于点N ,求△NAB 面积的最大值。

参考答案

(一)选择题

1、A

2、A

3、D

4、B

5、C

6、B

7、D

8、D (二) 填空题

9、10210+ 10、4

2或9

16 11、圆,222)8

75

(y )885x (=+- 12、3,2 13、2

1

(

,1) (三) 解答题14、19

x 3y 22=- 15、(1)y 2

=4x (2)0,4 16、(1)8 (2)不存在 17、(1)

11

t 1x 1

t t y 22222=-+

- (2)抛物线的部分弧,)2

2x (y 22x 2>=

,)22x (y 22x 2-<-

= 18、(1)4

p a 2p -≤<- (2)2

p 2

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。以下是圆的方程专题练习,请考生查缺补漏。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0 和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________. [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x

联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1, 而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高考数学专题复习第二轮第 4讲 函数与方程的思想方法

第4讲函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n ( (n∈N*)与二项式定理是密切相关的,利用这个函数用 ax) b 赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆的方程-高考文科数学专题练习

一、填空题 1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为________. 解析:解法一(直接法) 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1. 解法二(数形结合法) 作图,根据点(1,2)到y 轴的距离为1易知圆心为(0,2),故圆的方程为x 2+(y -2)2=1. 答案:x 2+(y -2)2=1 2.若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则实数a 等于________. 解析:由a 2=a +2得a =-1或2, 又当a =2时, 4x 2+4y 2+4x +2=0不表示任何图形, 故a =-1. 答案:-1 3.已知点A (4,9),B (6,3),则以AB 为直径的圆的标准方程为________. 解析:由题意可知圆心为(5,6), 半径r =12|AB |=1 2(6-4)2+(3-9)2=10, 故圆的标准方程为(x -5)2+(y -6)2=10. 答案:(x -5)2+(y -6)2=10 4.已知圆的方程为(x -2m )2+(y +m )2=25. (1)若该圆过原点,则m 的值为________; (2)若点P (m,0)在圆内,则m 的取值范围为________. 解析:(1)由题意可知点(0,0)满足(x -2m )2+(y +m )2=25, 即5m 2=25,解得m =±5. (2)由题意可知(m -2m )2+(0+m )2<25, 即2m 2<25, 解得-522

答案:(1)±5 (2)-522

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

微专题19圆锥曲线的标准方程的求法答案

微专题19 1.答案:x 2=2y . 解析:假设抛物线标准方程x 2=2py (p >0),因为准线方程y =-12=-p 2 ,所以p =1,抛物线标准方程为x 2=2y . 2.答案:x 28-y 28 =1. 解析:因为e =c a =2,又b a =4c ,所以b =22,a =22,所以双曲线的E 的标准方程为x 28-y 28 =1. 3.答案:x 24+y 22 =1. 解析:由c a =22,2a 2c =42解得a =2,c =2,所以b = 2.所以椭圆的方程为x 24+y 2 2=1. 4.答案:y =±2x . 解析:因为m +4m =3,得出m =2,所以渐近线方程为x 22-y 2 4 =0,所以y =±2x . 5.答案:x 216+y 2 8 =1. 解析:由???c a =22,c +a 2 c =62,解得???a =4,c =22 则b =22,所以椭圆C 的标准方程为x 216+y 28=1. 6.答案:x 2-y 2 3 =1. 解析:因为c a =2,不妨设焦点为(c ,0),渐近线为y =b a x ,即bx -ay =0,所以bc b 2+a 2=b =3,c 2=4a 2=a 2+b 2,所以 a 2=1,双曲线C 的标准方程为x 2-y 23 =1. 7.答案:x 24+y 2 4 3 =1. 解析:因为a =2,由|OC →-OB →|= 2|BC →-BA →|,得|BC →|=2|AC →|,所以|OC →|=|AC →|,又由AC →·BC →=0,所以|OC →|=|AC →|=2,则点C (1,-1)代入椭圆E ,得b 2=43,所以椭圆E :x 24+y 2 4 3=1.

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

年高考第一轮复习数学圆的方程

7.5 圆的方程 ●知识梳理 1.圆的方程 (1)圆的标准方程 圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程 二次方程x 2+y 2+Dx +Ey +F =0.(*) 将(*)式配方得 (x +2D )2+(y +2 E )2=4422 F E D -+. 当D 2+E 2-4F >0时,方程(*)表示圆心(- 2D ,-2 E ),半径r = 21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0)叫做圆的一般方程. 说明:(1)圆的一般方程体现了圆方程的代数特点: a.x 2、y 2项系数相等且不为零. b.没有xy 项. (2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2 E ),当D 2+E 2-4 F <0时,方程(*)不表示任何图形. (3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ, y =r sin θ ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ, y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程. 2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件 若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分. 在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +A F =0, 仅当( A D )2+(A E )2-4·A F >0,即D 2+E 2-4AF >0时表示圆. 故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0. ●点击双基 1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 A.-10,得7t 2-6t -1<0, 即-7 1

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

2020高考数学圆锥曲线复习方法

2020高考数学圆锥曲线复习方法 2017高考数学圆锥曲线复习方法 圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了 椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点 做对称圆锥,则可得到双曲线。 在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研 究平面曲线的性质. 那么接下来,我们就就着这两个问题来说啦 1、曲线与方程 首先第一个问题,我们想到的就是曲线与方程的这部分内容了。 在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹 方程的方法。在这里呢,简单的说一下,一共有四种方法:1.直接 法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的 几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这 种方法叫直接法. 2、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方 法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 3、相关点法

若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法). 4、待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (二)椭圆,双曲线,抛物线 这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。(不会的通宵快去恶补~~~) 在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,准线,渐近线等等。这些性质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看△;直线与双曲线的位置关系,先看联立之后的方程中的a,如果a=0方程有一解,直线与双曲线有一个公共点(直线与渐近线平行),a≠0的时候,还是看△啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当a=0直线与抛物线有一个公共点(直线与抛物线的轴平行或重合),a≠0的时候,还是看△。

相关主题
文本预览
相关文档 最新文档