当前位置:文档之家› 输入成形技术及其在柔性机械臂振动控制中的应用(硕士论文)200723

输入成形技术及其在柔性机械臂振动控制中的应用(硕士论文)200723

输入成形技术及其在柔性机械臂振动控制中的应用(硕士论文)200723
输入成形技术及其在柔性机械臂振动控制中的应用(硕士论文)200723

机械动力学论文

上海大学2015 ~2016学年秋季学期研究生课程考试 课程名称:机械动力学课程编号: 09Z078001 论文题目: 机械动力学在机械行业的应用与发展 研究生姓名: 学号: 论文评语: 成绩: 任课教师: 刘树林 评阅日期:

机械动力学在机械行业中的应用及发展 (上海大学机电工程与自动化学院,上海200072) 摘要:机械动力学在实际中的应用有很多方面,应用在机械行业是一个主要方向。机械动力学是数控机床和机器人实现智能化发展的基础之一。本文在阐述机械动力学发展的基础上,结合机器人中的实际应用重点分析。另外,引用最优控制理论的分析方法将会对机械动力学分析有着很大的促进作用。 关键字:机械动力学,机器人,智能化,最优控制 The application and development of mechanical dynamics in machinery industry (Mechanical and electrical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract: Mechanical dynamics in the actual application has many aspects, the application in the machinery industry is a main direction.Mechanical dynamics is one of the foundation for the development of the intelligence of NC machine and robots.In this paper, on the basis of the mechanical dynamics development, we are talking about robots combined with actual application.In addition,the reference analysis method of the optimal control theory will play great role in promoting of mechanical dynamics analysis. Key words: mechanical dynamics; robots; the intelligence;the optimal control 德国政府于2013年提出“工业4.0”的概念(1),推出不久,便引起了全球广泛的关注。“工业4.0”的三大主题:智能工厂、智能生产、智能物流。都离不开智能二字,未来的工业发展的目标也是智能化。中国也在加紧制定自己未来“工业4.0”的发展规划。那么,说到智能工厂、智能生产具体到实际中就是数控机床和机器人的智能化发展。而机械动力学是实现上述规划的发展动力和基础。 1 引言 随着工业的不断发展,机械行业在不断进步的同时(2),也呈现出了一些显著特点是,自动调节和控制装置日益成为机械不可缺少的组成部分。机械动力学的研究对象已扩展到包括不同特性的动力机构和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。高速、精密机械设计也都呈现了不同的特点,为了保证机械的精确度和稳定性,构件的弹性效应已成为设计中不容忽视的因素。例如,数控机床、机器人、车辆等设计。在某些机械的设计中,已提出变质量的机械动力学问题。各种模拟理论和方法以及运动和动力参数的测试方法,日益成为机械动力学研究的重要手段。 1.1 机械动力学研究的内容 任何机械,在存在运动的同时,都要受到力的作用。所谓机械动力学就是研究机械在力作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械的设计和

FXLMS算法用于压电柔性结构多通道振动控制_朱晓锦

FXL M S算法用于压电柔性结构多通道振动控制 朱晓锦, 高志远, 黄全振, 邵 勇 (上海大学机电工程与自动化学院 上海,200072) 摘要 以模拟太空帆板的压电机敏柔性结构为实验模型,针对结构振动响应主动控制技术需求,着重分析了多通道自适应滤波前馈控制方法及其FX LM S算法实现,以及受控通道模型参数辨识策略,并给出了详细的控制器设计结构图。针对实验模型对象设计、结构模态特性分析、压电元件优化配置、实验平台开发构建、相关软硬件测控环境、实验过程描述与结果分析验证,给出了研究思路与方法过程分析;进行了结构振动响应多通道主动控制实验并取得了良好的控制效果。结果表明,该控制器结构设计与自适应算法有效,为航天柔性结构振动响应分布式多通道控制提供了方法探索思路。 关键词 振动主动控制 自适应滤波控制 压电机敏结构 多通道FX LM S算法 实验模型与平台 中图分类号 T B535.1 T P273.2 引 言 伴随航天事业的不断发展,大型柔性结构在航天器上构成越来越多,由此带来的结构振动问题也愈加严重,如航天器太阳能帆板结构,在轨运行期间必须保证很高的运行精度。由于这类结构具有低刚度小阻尼、固有频率较低和低频模态密集的特点,同时太空环境又无外阻,因此极易受到扰动影响而发生振动。常规技术方法难以达到控制要求,由此机敏结构的研究成为解决上述问题的重要方向[1-2]。 C ra w ley[3]最早分析了梁与压电片之间的作用情况,开辟了以分布式压电陶瓷作为驱动器的结构振动主动控制研究方向,此后新的研究成果不断出现[4-7]。就控制方法与控制律设计而言,几乎涉及到现代控制理论的所有分支,诸如极点配置、最优控制、自适应控制、鲁棒控制、模糊控制、学习控制与智能控制等[8],由于自适应控制对系统参数变化具有较好的适应性,从而在研究进程中得到广泛采用[9]。 当前,自适应滤波前馈控制方法在机敏结构振动主动控制研究中获得积极关注[10],尤其用滤波-X 最小均方(filtered-X least m ean square,简称FXLM S)算法进行控制器设计,具有控制修正速率高、对非平稳响应适应能力强,并能够较快跟踪结构参数及外扰响应变化的特性,不足之处在于需要预知与外激扰信号相关的参考信号,同时多通道控制器结构设计也相对复杂。本文在简要描述压电元件工作机理的基础上,基于FXLM S算法过程,着重分析了多通道自适应滤波前馈控制方法,以及受控通道模型参数辨识策略,并给出详细的控制器设计结构图。在此基础上进行实验模型对象设计和实验环境开发,采用在线辨识方法获得实验结构受控通道模型参数,进而实现压电柔性结构振动响应的多通道自适应控制。实验结果表明了控制器结构与自适应算法的有效性和可行性,且具有快速收敛以及较低阶模型就能满足控制性能要求的优势。 1 压电元件本构方程 压电材料力学和电学行为关系,可以采用压电方程进行描述,取应力e和电场强度E为自变量,则压电方程可以表示为 Xλ=c Eλu e u+d jλE j λ,u=1,2,…,6 D i=d iu e u+_e ij E j i,j=1,2,3(1)其中:c Eλu为电场恒定时的弹性柔顺系数;d jλ为压电应变常数;_e ij为应力恒定时的介电常数。 一般在压电机敏结构振动控制中,使用的压电应变常数为d31,即沿压电驱动器极化轴3方向施加电场,通过d31的耦合在垂直于极化方向1轴,即元件长度l的方向上激发横向振动;具体驱动信号来自 第31卷第2期2011年4月 振动、测试与诊断 Jou rna l o f V ib ra tion,M easu re m en t&D iagno sis   V o.l31N o.2 A pr.2011 国家自然科学基金重大研究计划资助项目(编号:90405013,90716027);上海人才发展基金资助项目(编号:2009020);上海大学“十一五”“211”建设资助项目;上海市电站自动化技术重点实验室资助项目;上海市教委“机械电子工程”创新团队资助项目 收稿日期:2009-08-22;修改稿收到日期:2009-11-13

机械臂控制

江西理工大学应用科学学院微机控制课程设计报告 设计题目:机械手控制(继电器+发光二极管) 设计者: 学号: 班级:电气工程及其自动化 指导老师: 完成时间:2012/7/6

摘要 随着工业自动化的普及和发展,控制器的需求量逐年增大主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运, 可以更好地节约能源和提高运输设备或产品的效率,满足现代经济发展的要求。机械手技术涉及到电子、机械学、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。随着工业自动化发展的需要,机械手在工业应用中越来越重要。文章主要叙述了机械手的设计过程,文章中介绍了四自由度机械手的设计理论与方法。本设计以51 单片机为核心,利用继电器控制电机正转,反转和停止。本机械手的执行机构主要由四台电机组成,分别控制机械臂的X轴伸缩、Z 轴升降、底盘、腕回转功能。动作模式有两种:自动模式,手动模式。单片机驱动继电器,继电器动作由发光二极管指示(二极管代表各电机)。 【关键词】:四自由度机械手, 51 单片机,直流电机,继电器,发光二极管.

目录 摘要 (2) 目录 (3) 1 绪论 (1) 1.1 机械手概述 (1) 1.2 设计要求及设计内容 (3) 1.2 此次设计研究的主要内容应解决的问题 (3) 2 设计方案 (5) 2.1用户板抄板步骤及过程 (5) 2.1.1原理图绘制说明 (5) 2.2 户板检测步骤及过程 (7) 2.4 各部分电路介绍 (7) 2.4.1 51单片机系统板电路介绍 (7) 2.4.2 机械手控制电路介绍 (9) 2.4.3 主要器件介绍 (12) 3 系统程序设计 (14) 3.1、程序流程图 (14) 3.2、程序设计 (15) 3.3、电路总图 (19) 总结 (20) 致谢 (22) 参考文献 (23)

机械振动论文机械振动论文

机械振动论文机械振动论文 浅谈京石高速铁路客运专线CFG桩的施工 摘要: CFG桩是水泥粉煤灰碎石桩的简称,一般有三种成桩施工方法:即振动沉管灌注成桩、长螺旋钻孔灌注成桩和长螺旋钻孔管内泵压混合料灌注成桩。介绍成桩试验的机械选择、材料及配合比、施工过程及工艺流程。 关键词:高速铁路;CFG桩;工艺性试验 工程概况:由中铁十二局集团承建的京石高铁客运专线JS-4标段第三项目经理部全长12.6公里,新建路基2.36km,采用长螺旋钻机成孔泵送混合料CFG桩施工。 1 CFG桩施工工艺及现场在各阶段的质量控制要点 长螺旋钻机成孔泵送混合料施工CFG桩施工工艺及施工顺序:1)钻机就位:钻机就位后,应使钻杆垂直对准桩位中心,确保CFG桩垂直度容许偏差不大于1%。现场控制采用在钻架上挂垂球的方法测量该孔的垂直度,也可采用钻机自带垂直度调整器控制钻杆垂直度。2)钻进成孔:钻孔开始时,关闭钻头阀门,向下移动钻杆至钻头触地时,启动马达钻进,先慢后快,同时检查钻孔的偏差并及时纠正。在成孔过程中发现钻杆摇晃或难钻时,应放慢进尺,防止桩孔偏斜、位移和钻具损坏。根据钻机塔身上的进尺标记,成孔到达设计标高时,停止钻进。3)混合料搅拌:混合料搅拌必须进行集中拌和,按照配合比进行配料,每盘料搅拌时间按照普通混凝土的搅拌时间进

行控制。混合料出厂时塌落度可控制在160mm~200mm。4)灌注及拔管:钻孔至设计标高后,停止钻进,提拔钻杆20~30cm后开始泵送混合料灌注,每根桩的投料量应不小于设计灌注量。钻杆芯管充满混合料后开始拔管,并保证连续拔管。施工桩顶高程宜高出设计高程30~50cm,灌注成桩完成后,桩顶盖土封顶进行养护。5)移机:灌注时采用静止提拔钻杆(不能边行走边提拔钻杆),提管速度控制在2-3米/分钟,灌注达到控制标高后进行至下一根桩的施工。 2 铁路客专《验标》对长螺旋钻施工CFG桩质量要求 1)施工前应进行成桩工艺性试验(不少于2根试验桩),以复核地质资料以及机械设备性能、施工工艺、施打顺序是否适宜,确定混合料配合比、塌落度、搅拌时间、拔管速度等各项工艺参数,根据试桩中发现的问题修订施工工艺。2)在工程施工前,所选用的设备型号应符合设计桩经、设计加固深度的要求。3)现场施工的CFG桩数量、布置形式及间距应符合设计要求。桩长、桩顶标高及直径应符合设计要求。4)钻机应先慢后快。在成孔过程中,如发现钻杆摇晃或难钻时,应放慢进尺,否则容易导致桩孔偏斜、位移,甚至使钻杆、钻具损坏。5)混合料应按设计配合比经搅拌机拌和,塌落度、拌和时间应按工艺性试验确定的参数进行控制,且不得少于一分钟。6)CFG桩成孔到设计标高后,停止钻进,开始泵送混合料。先拔管20cm~30cm后开始泵送混合料,当钻杆芯充满混合料后开始拔管,严禁先提管后泵料。成桩时的拔管速度控制在2-3米/分钟。成桩过程应连

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性与柔性臂杆进行建模。 其中,Chang-Jin Li, T、S、 Sankar, 利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B、Subudhi ,A、S、Morris, 基于欧拉-拉格朗日法与假设模态法对多柔性杆与柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO,利用牛顿-欧拉公式与有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系与拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系与相对坐标系,如表1所示) 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形与剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。

根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 表3 动力学建模方法 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差,输出运动与输入运动不再就是线性关系;另外,关节臂驱动力就是通过电机来提供,电机中的电感电阻等元件,会影响电机力矩的产生,即关机建模的精细化问题,这里只进行简单的处理,不考虑精细化问题。柔性关节主要由分体式永磁同步电机,谐波减速器,永磁制动器,光电编码器与圆光栅等组成。谐波减速器为柔性关节的减速与驱动装置,一般把把关节视为转子-扭簧系统。

机械臂控制系统的设计

机械臂控制系统的设计 1 引言 近年来,随着制造业在我国的高速发展,工业机器人技术也得到了迅速的发展。根据负载的大小可以将机械臂分为大型、中型、小型三类。大型机械臂主要用于搬运、码垛、装配等负载较重的场合;中小型机械臂主要用于焊接、喷漆、检测等负载较小的场合。随着国外工业机器人技术的不断发展,尤其是一些中小型机器人,它们具有体积小、质量轻、精度高、控制可靠的特点,甚至研发出更为轻巧的控制箱,可以在工作区域随时移动,这样大大方便了工作人员的操作。在工业机器人的应用中最常见的是六自由度的机械臂。它是由6个独立的旋转关节串联形成的一种工业机器人,每个关节都有各自独立的控制系统。 2机械臂硬件系统设计 2.1 机械臂构型的选择 要使机器臂的抓持器能够以准确的位置和姿态移动到给定点,这就要求机器人具有一定数量的自由度。机器臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。为了使安装在双轮自平衡机器人上的机械臂能够具有完善的功能,能够完成复杂的任务,将其自由度数目定为6个,这样抓持器就可以达到空间中的任意位姿,并且不会出现冗余问题。在确定自由度后,就可以合理的布置各关节来分配这些自由度了。 由于计算数值解远比封闭解费时,数值解很难用于实时控制,这样,后3个关节就确定了末端执行器的姿态,而前3个关节确定腕关节原点的位置。采用这种方法设计的机械臂可以认为是由定位结构及其后面串联的定向结构或手腕组成的。这样设计出来的机器人都具有封闭解。另外,定位结构都采用简单结构连杆转角为0或90°的形式,连杆长度可以不同,但是连杆偏距都为0,这样的结构会使推倒逆解时计算简单。 定位机构是涉及形式主要有以下几种:SCARA型机械臂,直角坐标型机械臂,圆柱坐标型机械臂,极坐标型机械臂,关节坐标型机械臂等。 SCARA机械臂是平面关节型,不能满足本文对机械臂周边3维空间任意抓取的要求;直角坐标型机械臂投影面积较大,工作空间小;极坐标方式需要线性

东北大学机械振动论文作业

谈振动利用工程的认识及应用举例 作者姓名:刘营 作者学号:1200462 指导教师:李朝峰 东北大学机械工程与自动化学院 东北大学 2012年11月

Talk About The Vibration Application Engineering And Application Examples By Liu Ying Northeastern University November 2012

摘要 在一般情况下,振动是一种不需要的、有害的现象,应该加以消除或隔绝,但在很多场合,振动是需要的和有益的,应该加以利用。随着现代科技的进步,消振、减振、隔振、降噪的研究得到了迅速的发展,并在实际中得到大量的应用,对提高产品质量和保护生产环境起到了很好的保证作用。而振动利用的研究,也取得了丰硕成果,在工程领域中得到了广泛应用,出现了一批利用振动的振动机械,以及各种振动加工技术,并且由于近代科学发展和学科交叉,振动利用的研究和应用已经和许多学科结合跨出了工程领域,进人了社会经济领域及自然界振动利用领域的扩展,充实了振动工程学科的内涵,说明人们已经由认识振动,控制振动发展到利用振动来改造世界。这是一个更为重要的转变,必将进一步推动振动工程的发展,更好地造福于人类。 关键词:振动;机械;振动利用工程

Abstract Usually, vibration is a harmful phenomenon that we don't need and should be eliminated in our life. But in many cases, vibration is beneficial to us and should be used. Along with the progress of modern science and technology, vibration reduction, vibration isolation, noise reduction research have got a rapid development and a lot of application have been used in our life. This play a good role in improving product quality and protecting the environment. And the research of vibration using have made great achievements. It get a wide range of applications in engineering field. This result in a batch of using of the vibration of mechanical vibration, and various vibration processing technology. Because of the modern scientific development and course cross, the research and application of vibration using have combined with a cultural and engineering field and expand the vibration field. This enrichs the connotation of the vibration engineering discipline and explains people has realized that we can use and control the vibration to change our world. This is a very important change and will promote the development of vibration engineering to benefit mankind. Keywords: vibration; machinery; vibration using engineering

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性和柔性臂杆进行建模。 其中,Chang-Jin Li, T.S. Sankar,利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B.Subudhi ,A.S.Morris, 基于欧拉-拉格朗日法和假设模态法对多柔性杆和 柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO利用牛顿-欧拉公式和有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系和拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系和相对坐标系,如表1所示) 2),柔体离散化方法 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形和剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。 表2变形体离散化方法

3)动力学的建模方法 根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差, 输出运

机械臂建模与控制

一、柔性机械臂协调操作柔性负载 1. 建模方法 1) 假设模态法 假设模态法是利用有限个已知模态函数来确定系数的运动规律。连续系统的解可写作全部模态函数的线性组合,若取前n 个有限项作为近似解,则有 ()()1(,)n i i i y x t x q t φ==∑ 其中(),1,2,,i q t i n = 为广义坐标,(),1,2,i x i n φ= 应该为系统的实际模态函数,但计算时常近似地代以假设模态,也就是满足部分或者全部边界条件,但不一定满足动力学方程的试函数族。 采用以广义坐标表示的功和能来描述系统的动态性能,所有不做功的力和约束力在这种方法中均不出现,因此最后得到的方程是封闭形式的表达式,提供了关节力矩和关节运动之间的明显解析关系。同时,柔性机械臂由于连杆柔性会在工作过程中产生扭曲变形、轴向变形、和剪切变形,但考虑到机器人连杆的长度总比其截面线径大的多,运行过程中所产生的轴向变形和剪切变形相对于扭曲变形而言非常小。因而在系统的动力学建模过程中通常可以忽略轴向变形和剪切变形的影响,将每个柔性连杆简化为Euler 一Bemuolii 梁来处理。此时,在拉格朗日方程的基础上,采用假设模态法来描述弹性连杆的变形,该方法具有计算量相对少,方法简单,具有系统性和效率高的特点。即将弹性连杆的高阶模态忽略不计,可以得到离散化的维数较低的动力学方程,进而有利于系统的动力学分析和控制器设计。 2) 有限元法 有限元法是一种以计算机辅助分析为手段的,全新的结构分析方法。在利用有限元法进行建模的过程中,柔性物体被离散化为若干个弹性体单元,而这些弹性体单元在边界点(结点)处相互连接,从而组成整个柔性物体,各个弹性体单元的分布质量可以按照一定的格式集中到各自的结点上。对于每一个弹性体单元,其在物体坐标系内的挠度和转角,可以用结点位移的插值函数来表示,而插值函数实质上就是一种假定振型,这样,整个柔性物体的振动状态就可以用这些节点位移来表示,这里的节点位移并不是对整个结构或某个子结构所取的假定振型,而是具备简单物理意义的参数。 利用有限元法进行数学建模,所得到的数学模型的广义坐标不但维数有限,而且物理意义明确,这就使得获取某些参数不必经过复杂的数值运算而可以直接通过测量得到。从弹性体单元的选择到整个柔性物体运动方程的建立都有统一的方法,这就使得有限元法的相关数值运算可以利用计算机来完成。利用有限元法建立起来的柔性物体模型设计控制器时,不必考虑很多近似因素,可以更加准确的设计控制器。 3) 分布参数法 柔性机械臂分布参数模型的建立,主要利用哈密顿原理,由此得到的是一组复杂的高度非线性的常微分-偏微分耦合方程组,而考虑到在小的挠曲变形的假设下,可以得到一个相对简单的分布参数模型。 哈密顿原理是柔性臂系统分布参数模型动力学建模的理论基础,由哈密顿原理建模的步骤大致是:建立系统的动能、势能和虚功表达式;对系统的变分积分方程进行必要的推导和整理。该方法以能量方式建模,可以避免方程中出现内力项,适用于比较简单的柔性体动力学方程。而对于复杂的结构,函数的变分运算将变得非常繁琐。但是变分原理又有其特点,由于它是将系统真实运动应满足的条件表示为某个函数或泛函的极值条件,并利用此条件确

机械振动学论文

《矿物加工机械振动学》 课程结业论文 题目:选矿工艺中的振动筛 姓名 所在学院材料科学与工程学院 专业班级矿物加工11-2班 学号 2011302978 指导教师张东晨 二〇一三年十一月六日 课程论文指导教师评阅意见 学生姓名耿宴专业 班级 矿物加工 学号2011302978 矿加11-2班

(论文)题目选矿工艺中的振动筛 指导教师张东晨教师职称 课 程 论 文 评 语 评定成绩: 指导教师签名: 年月日

选矿工艺中的振动筛 矿物加工工程2011-2班 摘要:近年来,随着科技水平的提高,人们对商品的需求也越来越精细, 质量越来越高,振动筛的技术在制造业上也有更高的要求,同时随着国民经济的发展,筛分技术和设备在各行各业中的应用越来越广泛。筛分的主要设备是振动筛。振动筛广泛应用在选煤、选矿、电力、轻工、化工、有色金属等工业部门,对中、细粒度物料进行干湿式筛分、脱水、脱介、脱泥。结构先进,坚固耐用,振动噪声小,维修方便。 关键词:振动筛圆振动筛直线振动筛噪音 筛分机械被广泛用于许多工业部门,种类繁多,一般按筛面的结构形式和运动形式,将其分为以下几种类型。 一振动筛的分类 (1)固定筛。固定筛是最简单,也是最古老也是一种最简单的筛分机械,由许多平行排列的钢棒用横杆连在一起构成筛面,筛面按一定倾角放置、固定不动。根据筛缝大小,筛面可采用圆钢、方钢、钢轨或T形断面的型钢。物料由倾斜筛面的上方给入,靠自重由上而下沿筛面下滑,并进行筛分。 固定筛的优点是构造简单,寿命长,不需要动力,坚固可靠,设备成本和使用成本低,但是,它的缺点是单位面积处理能力低,筛分效率低,而且安装时要求比较大的落差。所以这种筛子一般只用于分级粒度≥50mm 时的筛分。 (2)辊轴筛。辊轴筛的筛面由许多根垂直筛上料的辊轴排列而成,各辊轴用电机通过链传动或齿轮传动带动而同向旋转,安装在辊轴上的是星轮对物料颠簸和输送,生产能力和筛分效率比固定筛高。辊轴筛结构坚固、工作可靠、运转平稳,但结构复杂、笨重,生产能力和筛分效率低。辊轴筛适用于入料粒度比较大时的原煤预先筛分。 (3)滚筒筛。滚筒筛的筛面为圆柱面或圆锥面筛筒,沿筛筒的对称轴线装有转轴,当传动装置带动转轴转动时,筛筒也随之回转。圆锥面筛筒水平安装,物料由筛筒小端给入,并随筛筒旋转被带起,当达到一定高度时,因受重力作用自落下,如此不断起落运动,使细粒透筛,粗粒则逐渐被运送到筛筒大端排出。滚筒筛运转平稳可靠,但生产能力低、筛孔易堵塞、筛分效率低,可用于粗、中粒物料的筛分。 (4)摇动筛。摇动筛的筛分工作面是一个带平面的矩形筛箱,筛箱利

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

机械制造技术基础论文

金属的切削加工 摘要:金属切削加工过程中刀具与工件之间相互作用和各自的变化规律是一门学科。在设计机床和刀具﹑制订机器零件的切削工艺及其定额﹑合理地使用刀具和机床以及控制切削过程时﹐都要利用金属切削原理的研究成果﹐使机器零件的加工达到经济﹑优质和高效率的目的。金属的切削加工主要内容包括金属切削中切削力和切削功、切削热和切削温度、刀具的磨损机理和刀具寿命、切削振动和加工表面质量、切屑的形成和变形等。 关键词:刀具机床切削原理切削加工切削热与切削温度 切削原理 工件与刀具之间相互滑移即表示金属切削的剪切变形经过这种变形以后,切屑从刀具前面上流过时又在刀、屑界面处产生进一步的摩擦变形。通常,切屑的厚度比切削厚度大,而切屑的长度比切削长度短,这种现象就叫切屑变形。金属被刀具前面所挤压而产生的剪切变形是金属切削过程的特征。由于工件材料刀具和切削条件不同,切屑的变形程度也不同,因此可以得到各种类型的切屑。 机械加工设备 机械加工是一种用加工机械对工件的外形尺寸或性能进行改变的过程。按被加工的工件处于的温度状态,分为冷加工和热加工。一般在常温下加工,并且不引起工件的化学或物相变化,称冷加工。一般在高于或低于常温状态的加工,会引起工件的化学或物相变化,称热加工。冷加工按加工方式的差别可分为切削加工和压力加工。热加工常见有热处理,煅造,铸造和焊接。 各种设备繁多,笼统的称:热处理设备、锻造设备、铸造设备、焊接设备、金属切削机床、压力机等等。金属切削机床大的类别有:车、钻、镗、磨、齿轮加工、铣、刨、拉、专用机床等等,一般以车床和铣床应用较广泛。 刀具种类及材料 金属切削过程是通过刀具切削工件切削层而进行的。在切削过程中,刀具的刀刃在一次走刀中从工件待加工表面切下的金属层,被称为切削层。切削层的截面尺寸被称为切削层参数。此外,在切削层中需介绍一重要概念-背吃刀量ap,对于外圆车削,它指已加工表面与待加工表面间的垂直距离。 金属切削刀具一般有45度车刀,90度车刀,镗刀,铰刀,拉刀,铣刀等,一般情况的加工车刀和铣刀应用较多,所以以下内容多以车刀为主。

电机学论文

步进电机 随着现代高新产业的发展,电机技术的逐渐成熟,各式各样的电机如雨后春笋般出现。也正是在这时,步进电机顺应着时代产生了。 步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。它是用电脉冲信号进行控制,将电脉冲信号转换成相应的角位移或线位移的微电动机,它最突出的优点是可以在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,并且用其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,研制步进电机驱动器及其控制系统具有十分重要的意义。步进电机转动使用的是脉冲信号,而脉冲是数字信号,这恰是计算机所擅长处理的数据类型。从20世纪80年代开始开发出了专用的IC驱动电路,今天,在打印机、磁盘器等的OA装置的位置控制中,步进电机都是不可缺少的组成部分之一。总体上说,步进电机有如下优缺点:1.不需要反馈,控制简单;2.与微机的连接、速度控制(启动、停止和反转)及驱动电路的设计比较简单;3.没有角累积误差;4.停止时也可保持转距;5.没有转向器等机械部分,不需要保养,故造价较低;6.即使没有传感器,也能精确定位;7.根椐给定的脉冲周期,能够以任意速度转动;但是,这种电机也有自身的缺点,比如说难以获得较大的转矩;不宜用作高速转动;在体积重量方面没有优势,能源利用率低;超过负载时会破坏同步,速工作时会发出振动和噪声。 说了这么多,那么步进电机到底是怎样的呢?现在让我们一起走入步进电机的世界探究探究吧。 首先说说步进电机的分类吧。步进电机在构造上有三种主要类型。他们分别是反应式(Variable Reluctance,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS)。他们由于组成不同自然也各有其优缺点。反应式步进电机定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。那么,这两种步进电机如果单独使用都不能满足达到最好效果,所以这时,混合式步进电机就应运而生了。它综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为1.8°/步,配上半步驱动器后,步距角减少为0.9°,配上细分驱动器后其步距角可细分达256倍(0.007°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进电机可配不同细分的驱动器以改变精度和效果。

柔性机械臂振动控制

柔性机械臂振动控制 1引言 随着人类科技水平的不断进步,机器人的应用越来越广泛。新一代机器人正向着高速化、精密化和轻型化的方向飞速发展, 传统的将机器人视为刚体系统的分析与设计方法已显得愈加不适用。近二十年,计及构件及关节弹性影响的柔性机器人动力学分析与振动控制问题已受到国内外学者的广泛关注[1]。在工业、医疗、军事等领域内,它能够代替人类完成大量重复、机械的工作。近些年,人类对外太空的探索不断深入,空间机器人因为具有较强的恶劣环境的适应能力,且完成任务的精确程度较高,正受到越来越多科研机构的关注和重视。 机械臂作为机器人的重要组成部分,其未来的发展趋势是高速、高精度和轻型化。操作灵活、性能稳定的柔性机械臂,无论在航天领域还是在工业领域都具有很高的应用价值。柔性机械臂系统的动力学特点是大范围刚体运动的同时,伴随着柔性臂杆的小幅弹性振动。柔性臂杆的弹性振动将极大地影响机械臂末端的定位精度,甚至影响机器人系统的稳定性。 2研究背景及意义 随着工业自动化程度的提高,工业机器人的应用范围也从传统的汽车制造领域推广到了机械加工业、电子电气业、食品工业、物流、医疗等领域,机器人的科,类包括了焊接机器人、喷涂机器人、洁净机器人和医疗机器人等。 瑞典ABB公司制造的“IRB5400-12”喷涂机器人(图1所示),具有6个自由度,工作时关节轴的最大转速137o/S,末端定位精度0.15mm,其性能特点是喷涂精确、工作域大、负载能力强且运行可靠性高。日本FANUC公司制造的“M-10iA”工业机器人(图2所示),工作半径1420mm,重复精度士0.8mm,主要用途包括搬运、弧焊、机床上下料等。

东南大学物理课程论文机械振动与RLC电路

机械振动与RLC电路对比 xxx (东南大学生物科学与医学工程学院,南京,211189 ) 摘要:本文主要从三个反面探究了机械振动与RCL电路的相似性,分别是:1、最简单的机械振动与电磁振荡;2、有阻尼的机械振动与电磁振荡;三、受迫振动与含电源的RCL电路。 关键词:机械振动,RCL电路,对比 物理体系是一个充满统一规律的体系,在物理课程的学习中,发现机械振动与电磁振荡虽然在性质上有本质的不同,但还是有很多可以对偶的方面,本文将在多种情况分析讨论机械振动与电磁振荡的相似之处。 一、最简单的机械振动与电磁振荡 1.1弹簧振子的简谐运动 图一是最简单、最典型的机械振动示意图,设定弹簧形变最大为Xm处于平衡位置右侧,系统无能量损失。 图一最简单的机械振动 作者简介: 作者简介:xxx,xxxx年,女,生物科学与医学工程学院,本科生 其中涉及到的物理量: 弹簧弹力:f弹 质点运动速度:v 质量:m 倔强系数倒数:1/k 角频率:ω 涉及到的物理关系: 胡克定律: dt df k v弹 1 = 牛顿第二定律: dt dv m f m = 弹性势能: () 弹 f k kx k kx Ep 1 2 1 1 2 1 2 1 2 2= = = 动能:2 2 1 mv E k = 角频率:m k w= 1.2最简单的RCL电路 图二是最简单、最典型的电磁振荡电路,设定C充满电,电压为u c,系统无能量损失。

图二 最简单的RCL 电路 其中涉及到的物理量: 电容电压:u c 电流:i 电感:L 电容:C 涉及到的物理关系: 电容元件伏安关系: dt du C i c = 电感元件伏安关系: dt di L u L = 电容储存的能量: 221c c Cu W = 电感储存的能量: 2 2 1L L Li W = 振荡频率:LC w 1= 1.3 对比分析 不难发现,上述两种物理过程中涉及到的物理量有如下对应关系: 弹簧弹力:f ----弹电容电压:u c 质点运动速度:v ----电流:i 质量:m ----电感:L 倔强系数倒数:1/k---电容:C 角频率 ---振荡频率 同时物理关系也有类似的对应关系,在此不再赘述。 二、有阻尼的机械振动与电磁振荡 在这一部分,将会在最简单的机械振动和电磁振荡上,加上阻尼部分进行研究。 2.1 弹簧振子的简谐运动 图三 含有阻尼的机械振动 受到的阻尼均为流体阻尼,设阻尼系数为k ,暂且用c 表示弹力系数。以平衡位置为原点,右侧为正方向建立坐标系。令t 时刻时小球横坐标为x ,则: 物块在水平方向上受两个力:F 弹=-cx ,F 阻=-kv 合力:F=-kv-cx 由牛顿第二定律:F=ma 则: ma=-kv-cx ma+kv+cx=0 根据加速度a 、速度v 的定义,有 m*d 2 x/dt 2 +k*dx/dt+cx=0 是二阶线性常系数齐次微分方程,用特征方程法解。 其特征方程为: mr 2+kr+c=0 解得: r 1=(k 2 -4mc)1/2 /2m-k/2m,r 2=-(k 2 -4mc)1/2 /2m-k/2m 现在要根据特征方程Δ的取值来确认解的情况。 情况一:Δ>0(即k 2 >4mc ) 则微分方程通解为 x=C 1e [(k^2-4mc)^(1/2)/2m-k/2m]t +C 2e [-(k^2-4mc)^(1/2)/2m-k/2m]t L C

结构振动控制

武汉理工大学 结构振动控制 Vibration Control of Structure 课程:工程结构振动控制理论 授课老师:周强 学生姓名:吴平 学号:104972081971 班级:土木研0803

结构振动控制 吴平 (土木研0803班) 摘要:本文主要介绍了结构振动控制的概念、基本原理以及分类。重点阐述了 被动控制、主动控制、半主动控制和混合控制的不同特点。 关键字:被动控制,主动控制,半主动控制,混合控制 Vibration Control of Structure Wuping (Department of Civil Engineering,Wuhan University of Technology) Abstract:This paper introduces the conceptand basic principles and classification of structural vibration control. Highlighted the differences among passive control, active control, semi-active control and hybrid control. Key words :passive control, active control, semi-active control,hybrid control. 引言 随着社会的发展,工程结构形式日益多样化以及轻质高强材料的应用,结构 的刚度和阻尼比变小。在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求。按照传统的抗风抗震设计方法,即通过提 高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震 方法,它很不经济,也不一定安全。而且失去了轻质高强材料自身的优势,还不 能满足口益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。 传统的抗震设计方法已不能满足需要,从而使结构振动控制理论在工程结构中开 始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应 和损伤,提高结构的抗震能力和抗灾性能。结构控制通过在结构上设置控制机构,由控制机构与结构共同控制抵御地震动等动力荷载,使结构的动力反应减小。结 构控制是人的主观能动性与自然的高度结合,是结构对策新的里程碑。

相关主题
文本预览
相关文档 最新文档