当前位置:文档之家› 热管式平板导热仪及木材导热特性的研究

热管式平板导热仪及木材导热特性的研究

热管式平板导热仪及木材导热特性的研究
热管式平板导热仪及木材导热特性的研究

根据实验测得(1}]lo,tI(f)和fzp)求鲁

4)求五和c。由(1.19)式和(1.11)式求五,其中卿f可直接测量,g可由五:莎:睡产害㈤zz,式中所求导热系数五为中间温度r,=丁tl+12时材料的导热系数。

c。=五/锄)(1.23)

5)计算,b,验证是否满足,b≤0.5的条件,若不满足则重新选择计算所用的实验数据以满足该条件。

1.3.2国外平板导热仪研究现状

英国国家物理实验所(NPL)[41l,为了服务r英国建筑工业的发展,而致力于低导热系数的测量。该国家物理实验所也为制定欧洲的导热系数测定标准做了大量贡献。其研制的防护热平板导热仪如图1.5所示,它用来测量玻璃纤维板的导热系数。

圈1.5英国国家物理实验所(NPL)研制的平板导热仪装置图英国国家物理实验所(NPL)所研制的几种平板导热仪的基本参数如表1.2所示。后来,NPL义研制了两种新型的305mm的热防护平板导热仪,一种是真窀热防护导热仪,其使用范围.50℃~100℃可用来测量低导热系数真空绝热扳,且其冷板的发射率是己知的,当试样和冷板之间有孔隙时,可以测量试样表面的发射率。另一种是低温热防护平板导热仪,使用温度范围是.170“C~200℃。

第?章绪论

美国安特公司【”1按照美国材料试验标准(ASTM)研制了防护犁热流计法测量材料导热系数。

美国国家标准技术研究所(NIST)的建筑火灾实验室f”l,针对90K~900K温度范围内的绝热材料,研制了一种新型热防护板平板导热仪。应用有限元软件ANSYS,证明了这种新型热防护板平板导热仪能满足试样内部的一维导热。其纵向剖面图如图1.6所示。

图I6设计的防护热板导热仪的纵向剖面图

德国耐驰仪器制造有限公司【“1是全球顶尖级的热分析与热物性测试仪器专业生产企业之一。它向国际市场挺供一系列质量一流的具有世界领先技术的热物性测试仪器。它推出了保护热板法导热仪456系列见表1.3所示,测量原理如图1.7所示。

图17保护热板法导热仪测量原理图

伸展体传热特性实验报告

具有对流换热条件的伸展体传热特性试验之实验报告 实验人:刘罗勤 学号:PB07013045 班级:0701301 一、实验题目:具有对流换热条件的伸展体传热特性试验 二、通过实验和对试验数据的分析,使我们更深入了解伸展体传热的特性并掌握求解具有对流换热条件的伸展体传热特性的方法。 三、基本原理 略 四、实验要求 1. 解方程 22 2 0d m dx θθ-= (1) 棒沿X 方向的过余温度 f t t θ=-分布式: () x θθ=; 221122********* 210;,cosh()sinh()cosh() ,cosh()sinh(),sinh() cosh()sinh ()sinh() cosh()sinh()sinh()sinh() d m T T T T A mx B mx dx mL A A mL B mL A B mL mL m L x mx mx mx mL mL θ θθθθθθθθθθθθθθθ∞∞-==-=-?=+-==+?==--+∴=+= (2)分析沿X 方向,棒的温度分布曲线的可能形状。分析各参数:L 、U 、f 、λ、 α、1W t 、2W t 、f t 对温度分布的影响(由第2题数据得出)。 60 708090100110120130 140150160170180190θ / o C X /mm 图1-1.不同的m值所对应的过余温度分布曲线 由图1-1可知,当其它参数保持不变,仅改变m 的值时,m 的值越大,棒的对应点(端点除外)的温度越小。又因为m 2=αU /λf ,所以α、U 越大,λ、f 越小,棒的对应点

(端点除图1-1.不同的m 值所对应的过余温度分布曲线外)的温度越小。 由图1-2知,当其它参数保持不变,仅改变t f 的值时,t f 的值越大,棒的对应点(端点除外)的过余温度越小。而由图1-3知,当仅改变t f 的值时,t f 的值越大,棒的对应点(端点除外)的温度也越大。 由图1-4知,当仅改变t w 的值时,t w 的值越大,棒的对应点的温度也越大。由图1-5知, θ/ o C X /mm 图1-2.不同的tf值所对应的过余温度分布曲线 θ / o C X /mm 图1-4.不同的tw1值所对应的过余温度分布曲线 图 50 607080 90100 110120130 140 150160170180 190θ /o C X /mm 图1-5.不同的L值所对应的过余温度分布曲线 t / o C X/mm 图1-3.不同的tf值所对应的温度分布曲线

导热性能检测

导热性能测试导热系数测量方法 10.15当物体各部分之间不发生相对位移或不同的物体直接接触时,依靠物质的分子、原子及自由电子等微观粒子的热运动而产生的热量传递成为导热(热传导),所以理论上讲导热可以在固体、液体和气体中发生。在气体中,导热是气体分子不规则热运动时相互碰撞的结果。气体温度越高,其分子运动动能越大,不同能量水平的分子相互碰撞的结果使热量从高温处传到低温处。在导电固体中,相当多的自由电子在晶格之间像气体分子那样,通过相互碰撞传递能量。在不导电的固体中,热量的传递是通过晶格结构的振动,即原子、分子在平衡位置附近的振动来实现的。而对于液体的导热机理目前尚未获得统一的认识:一种观点认为液体的导热原因类似于气体分子的相互碰撞,只是液体分子之间的距离较小,分子间的作用力影响大于在气体分子间的作用力对碰撞过程的影响;另一种观点认为液体的导热原因类似于非导电固体,主要依靠弹性波的作用。 科标检测导热性能检测标准如下: GB/T10297-1998非金属固体材料导热系数的测定热线法 GB/T20671.10-2006非金属垫片材料分类体系及试验方法第10部分:垫片材料导热系数测定方法 GB/T22588-2008闪光法测量热扩散系数或导热系数 GB/T23800-2009有机热载体热稳定性测定法 GB/T24449-2009导热油烘缸 GB/T3139-2005纤维增强塑料导热系数试验方法 GB/T3399-1982塑料导热系数试验方法护热平板法 GB/T3651-2008金属高温导热系数测量方法 GB5598-1985氧化铍瓷导热系数测定方法 GB/T5990-2006耐火材料导热系数试验方法(热线法) GB/T7962.13-1987无色光学玻璃测试方法导热系数测试方法 GB/T8722-2008石墨材料中温导热系数测定方法 HG/T2546-1993导热油-400(联苯-联苯醚混合物) HG/T3684-2011搪玻璃双锥形回转式真空干燥机 HG/T4179-2011预硫化翻新轮胎硫化罐 JB/T3997-2011金属切削机床灰铸铁件技术条件 JC275-1980(1996)加气混凝土导热系数试验方法 JC/T675-1997玻璃导热系数试验方法 JJG255-1981三厘米波导热敏电阻座检定规程 SL237-20037-1999冻土导热系数试验(附条文说明) SY/T0524-2008导热油加热炉系统规范 YB/T4130-2005耐火材料导热系数试验方法(水流量平板法) YB/T5291-1999高炉炭块铁水渗透性、导热系数和氧化性试验方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等。10 科标化工以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

物理实验报告-稳态法导热系数测定实验

稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定材料的导热系数与温度之间的依变关系。 4、学习用温差热电偶测量温度的方法。 5、学习热工仪表的使用方法 二、实验原理 平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。 三、实验设备 实验设备如图2所示。 图2 平板式稳态法导热仪的总体结构图 1.调压器 2.铜板 3.主加热板 4.上均热片 5.中均热片 6.下均热片 7.热电偶 8.副加热板 9.数据采控系统10.温度仪表 11.试样装置12.循环水箱电位器13.保温材料14.电位器 键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。 数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。“RST”复位键:复位数据,重新选择。 控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。 四、实验内容 1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。 2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。 3、对实验结果进行分析与讨论。 4、分析影响制导热仪测量精度的主要因素。 5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。 五、实验步骤 1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。 2、测量加热板的内部电阻。 3、校准热工温度仪表。 4、向水箱内注入冷却水。 5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。 6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

具有对流换热条件的伸展体传热特性试验

五.具有对流换热条件的伸展体传热特性实验 一、实验目的 通过本实验和对实验数据的分析,加深对传热学教学内容的理解,掌握和了解伸展体传热的特性和求解具有对流换热条件的方法。 二、实验方法与设备 1. 设备的组装 将位于箱体风道中部的伸展体试验的封头取下,将图4所示的伸展体试件按铜管表面的刻线贴好热电偶(用单独的热电偶组)后插入风道,并使热电偶在背风处,如图16所示。将单独一组10对的热电偶接入热电偶组(一)接口,将伸展体试件的加热导线接入位于面板最右端的接线柱。 图16 伸展体试件安装于风道内 2. 实验原理 本实验所用试件为一圆紫铜管,其外径0d =19mm ,内径1d =17mm ,长度L=260mm ,具有对流换热的等截面伸展体(常物性),如图17所示,取导热微分方程为: 图17 等截面伸展体对流换热示意图

0222=-θ?m dx d (1) 式中:m ——系数,c A hp m λ=, (m 1) θ——过余温度,f t t -=θ, (℃); t ——伸展体温度, (℃); f t ——伸展体周围介质温度, (℃); h ——空气对壁面的表面传热系数,(c m W ο?2); p ——横截面的周长,0d p π=,(m ); λ——空气的导热系数,(m.℃) c A ——伸展体横截面面积,4) (10d d A c -=π,(2 m ); 伸展体内的温度分布规律取决于边界条件和m 值得大小。本实验采用的试件两端为第一类边界条件,即: f w f w t t L x t t x -===-===2211,,0???? ; (2) 由此,试件内的温度分布规律为式(3),伸展体在壁面1和壁面2的热流量分别用式(4)和式(5)计算。伸展体表面和流体之间的对流换热量用式(6)计算。 )()] ([)(12mL sh x L m sh mx sh -+=??? (3) ) (])([)(2101mL sh mL ch m A dx d A c x c θ?λθλφ-=== (4) ) ()]([)(212mL sh mL ch m A dx d A c L x c θ?λθλφ-=== (5) )(]1)()[(2121mL sh mL ch m A c --=-=θ?λφφφ (6) 根据0=dx d θ,可寻求过余温度最低值处的位置m in x })(/]/)([{12min m mL sh mL ch arcth x θθ-= (7) 3. 实验过程、数据的测量和整理

保温隔热绝热材料性能检测导热系数检测方法

保温隔热绝热材料性能检测导热系数检测方法 1.1 适用范围及引用标准 1.1.1 适用范围 本规程规定了保温、隔热、绝热材料导热系数的检测方法。 本规程适用于保温、隔热、绝热材料干燥匀质试件导热系数(被测试件的热阻应大于0.1 m2·K/W)的测定,且所测定的结果均为在给定平均温度和温差下试件的导热系数。 1.1.2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本规程的条文。使用本规程的各方应探讨使用下列标准最新版本的可能性。 GB 4132 绝热材料名词术语 GB 10294-1988 绝热材料稳态热阻及有关特性的测定防护热板法 GB 10295-1988 绝热材料稳态热阻及有关特性的测定热流计法 GB 10296-1988 绝热材料稳态热阻及有关特性的测定圆管法 GB 10297-1988 非金属固体材料导热系数的测定方法热线法 GB 3399-1982 塑料导热系数试验方法护热平板法

1.2 仪器设备 1.2.1 量具 应符合GB6342规定。 1.2.2 导热系数仪 导热系数仪根据测试原理不同可分为分为防护热板式导热系数仪、热流计式导热系数仪等。防护热板式导热系数仪示意图见图1.1,热流计式导热系数仪示意图见图1.2。 a双试件装置b单试件装置 图1.1 防护热板式导热系数仪示意图

a 单热流计不对称布置 b 双热流计对称布置 c 双试件式装置 图1.2 热流计式导热系数仪示意图 1.3 检测程序 1.3.1 绝热用模塑聚苯乙烯泡沫塑料(EPS)导热系数检测程序 EPS板导热系数的测定按GB 10294-1988或GB 10295-1988规定进行;仲裁方法时执行GB 10294-1988。

导热系数实验报告材料..

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

弯月面在电场作用下的传热特性

毛细蒸发弯月面在电场作用下的传热特性摘要:基于电场增强蒸发薄液膜的传热性能,本文将电场力对液膜的作用形式转化为气液界面间的压差,并据此针对正辛烷在施加电场的硅质管道中的流动特性和传热特性建立电场强化薄液膜区换热的数学模型。该模型结合薄液膜所受毛细力、范德华力以及电场力,运用数值计算分析方法得出电场强化薄液膜区域换热的结论。结果表明,电场能延长蒸发薄液膜区域,极大增强蒸发薄液膜的传热能力。 关键词:强化换热、电场、薄液膜、蒸发、弯月面 Heat transfer characteristics of the evaporating capillary meniscus under the electric field Abstract :Based on the electric field enhance the thin liquid film evaporation heat transfer performance.This paper forms the function of the electric field force of liquid membrane into a pressure differential between the gas-liquid interface.According to the flow characteristics and heat transfer characteristics of the octane in the siliceous pipe which applies an electric field,building a mathematical model of the heat transfer in the thin liquid film zone applying an electric field.This model combined with the thin liquid film by capillary forces, van der Waals forces and electric field https://www.doczj.com/doc/d06509582.html,ing numerical analysis method of the electric field to strengthen the conclusion of thin liquid film zone heat.The results show that the electric field can extend the thin liquid film evaporation area and greatly enhance the thin liquid film evaporation heat transfer ability. Key words: heat transfer enhancement, electric field, thin liquid film, evaporation, meniscus 毛细通道内蒸发弯月面上的蒸发传热过程是热管、微槽热管和回路热管等毛细驱动两相热传输装置的关键传热环节。有效地利用这一区域的相变传热,对提高此类装置的热传输性能有重要意义。近年来国内外实验和理论分析工作证实电场能够强化薄液膜区域换热。电场强化换热是指在换热表面的流体中施加电场,利用电场、流场和温度场之间的相互作用达到强化传热的效果[1]。实验结果

导热系数实验报告

用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、 秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相 距为 h 、温度分别为O K 6:的平行平面(设0/5),若平面面积均为S,在△『时 间内通过面积S 的热量A0免租下述表达式: △0 一胭 ?一 2) A/ h (3-26-1) & & & 丙1 T7T\ *TV T*?r?*7 TT m R

式中,普为热流量;2即为该物质的导热系数,兄在数值上等于相距单位长度的 两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是 W/(加?K )。 在支架上先放上圆铜盘P,在P 的上面放上待测样品B,再把带发热器的圆铜 盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都 是良导体,其温度即可以代表B 盘上、下表面的温度X 、02, Ox. 02分别插入A 、 P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中, 通过“传感器切换”开关G,切换A 、P 盘中的热电偶与数字电压表的连接回路。 由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 咚=久?_&2)凤 (3-26-2) 式中,弘为样品的半径,矗为样品的厚度。当热传导达到稳定状态时,X 和5的 值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等, 因此,可通过铜盘P 在稳定温度匚的散热速率来求出热流量昱。实验中,在读得 稳定时0】和匹后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘 P 的温度上升到高于稳定时的0:值若干摄氏度后,在将A 移开,让P 自然冷却。 观察其温度0随时间t 变化情况,然后由此求出铜盘在0:的冷却速率竺 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同 对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具 体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热, 样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢 和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程 达到平衡状态,则 ,而 △ & me —— ,就是铜盘P 在温度为0 2时的散热速率。

微通道换热器流动和传热特性的研究

微通道换热器流动和传热特性的研究 微通道换热器流动和传热特性的研究 杨海明朱魁章张继宇杨萍 (中国电子科技集团公司第十六研究所,合肥230043) 摘要:通过对微通道换热器流动和传热特性的研究,设计了实验方案并建立了相应的实验装置,结合流动、传热特性的相关准则,得出了雷诺数Re-摩擦系数f,雷诺数Re、普郎特数Pr-努谢尔特数Nu间关系的实验模型,并对该模型进行了分析。 关键词:微通道换热器;流动特性;传热特性;实验模型 1引言 通道式换热器是利用传热学原理将热量从热流体传给冷流体的,冷热流体分别在固体壁面的两侧流过,热流体的热量以对流和传导的方式传给冷流体。由于它结构紧凑、体积小、换热效果好,已广泛应用于红外探测、电子设备、生物医疗等工程领域的冷却中。然而随着现代科技水平的不断发展,被冷却的器件、设备其功能越来越强大,体积和重量越来越小,结构趋于复杂化,散热要求越来越苛刻,迫使采用通道式换热器的制冷器件向小型化、甚至微型化的方向发展,尤其是半导体激光器、T/R收发组件、微电子集成器件等电子仪器、设备对这方面的要求更高,于是微通道换热器(特别是微型节流制冷器MMR)的研制开发已迫切地提到了议事日程上来。 所谓微通道换热器即是采用拉丝或光刻等技术在金属、玻璃等基材上刻出几十至几百微米的细微槽道来构成换热器的壁面,再采用焊接或胶粘等方式形成封闭腔体来进行冷热流体的热交换,达到制冷的目的。国外对微通道换热特性的研究较多,但主要是进行直线微通道换热器特性的研究,早期关于其流动问题的研究是在微型Joule-Thomson制冷技术中完成的,由美国斯坦福大学利特尔(W.A. Little)教授发明,采用现代半导体光刻加工技术, 在微晶玻璃薄片上刻出几微米到几十微米的细微直线槽道,并采用胶粘技术构成气流的微型换热器、节流元件和蒸发器,从而获得了一种结构新颖的微型平面节流制冷技术以及一定的成果和专利。目前已经开发成微型制冷器,用于低温电子器件的冷却,产品照片如图3所示。 2流动、传热特性的相关准则

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。 h T T S t Q ) (21-??=??λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: B B h T T R t Q )(212-???=??πλ 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。 这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热

IC封装的热特性-热阻

IC封装的热特性 摘要:IC封装的热特性对于IC应用的性能和可靠性来说是非常关键的。本文描述了标准封装的热特性:热阻(用“theta”或Θ表示),ΘJA、ΘJC、ΘCA,并提供了热计算、热参考等热管理技术的详细信息。 引言 为确保产品的高可靠性,在选择IC封装时应考虑其热管理指标。所有IC在有功耗时都会发热,为了保证器件的结温低于最大允许温度,经由封装进行的从IC到周围环境的有效散热十分重要。本文有助于设计人员和客户理解IC热管理的基本概念。在讨论封装的热传导能力时,会从热阻和各―theta‖值代表的含义入手,定义热特性的重要参数。本文还提供了热计算公式和数据,以便能够得到正确的结(管芯)温度、管壳(封装)温度和电路板温度。结温-PN结度 热阻的重要性 半导体热管理技术涉及到热阻,热阻是描述物质热传导特性的一个重要指标。计算时,热阻用―Theta‖表示,是由希腊语中―热‖的拼写―thermos‖衍生而来。热阻对我们来说特别重要。 IC封装的热阻是衡量封装将管芯产生的热量传导至电路板或周围环境的能力的一个标准。给出不同两点的温度,则从其中一点到另外一点的热流量大小完全由热阻决定。如果已知一个IC封装的热阻,则根据给出的功耗和参考温度即可算出IC的结温。 Maxim网站(制造商、布线、产品、QA/可靠性、采购信息)中给出了常用的IC热阻值。 定义 以下章节给出了Theta (Θ)、Psi (Ψ)的定义,这些标准参数用来表示IC封装的热特性。 ΘJA是结到周围环境的热阻,单位是°C/W。周围环境通常被看作热―地‖点。ΘJA取决于IC封装、电路板、空气流通、辐射和系统特性,通常辐射的影响可以忽略。ΘJA专指自然条件下(没有加通风措施)的数值。 ΘJC是结到管壳的热阻,管壳可以看作是封装外表面的一个特定点。ΘJC取决于封装材料(引线框架、模塑材料、管芯粘接材料)和特定的封装设计(管芯厚度、裸焊盘、内部散热过孔、所用金属材料的热传导率)。 对带有引脚的封装来说,ΘJC在管壳上的参考点位于塑料外壳延伸出来的1管脚,在标准的塑料封装中,ΘJC的测量位置在1管脚处。对于带有裸焊盘的封装,ΘJC的测量位置在裸焊盘表面的中心点。ΘJC的测量是通过将封装直接放置于一个―无限吸热‖的装置上进行的,该装置通常是一个液冷却的铜片,能够在无热阻的情况下吸收任意多少的热量。这种测量方法设定从管芯到封装表面的热传递全部由传导的方式进行。 注意ΘJC表示的仅仅是散热通路到封装表面的电阻,因此ΘJC总是小于ΘJA。ΘJC表示是特定的、通过传导方式进行热传递的散热通路的热阻,而ΘJA则表示的是通过传导、对流、辐射等方式进行热传递的散热通路的热阻。 ΘCA是指从管壳到周围环境的热阻。ΘCA包括从封装外表面到周围环境的所有散热通路的热阻。 根据上面给出的定义,我们可以知道: ΘJA= ΘJC+ ΘCA ΘJB是指从结到电路板的热阻,它对结到电路板的热通路进行了量化。通常ΘJB的测量位置在电路板上靠近封装的1管脚处(与封装边沿的距离小于1mm)。ΘJB包括来自两个方面的热阻:从IC的结到封装底部参考点的热阻,以及贯穿封装底部的电路板的热阻。 测量ΘJB时,首先阻断封装表面的热对流,并且在电路板距封装位置较远的一侧安装一个散热片。如下图1所示:

材料导热系数测试实验

东南大学材料科学与工程 实验报告 学生姓名张沐天班级学号实验日期2015.11.27 批改教师 课程名称________________ 材料性能测试实验________________________ 批改日期 实验名称__________ 材料导热系数测试实验 ________________________ 报告成绩 一、实验目的 1?掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域,在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技术领域中,材料的导热性都是一个重要的问题。 1?材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1K,在1s 钟内,通过1m2面积传递的热量,单位为W/(m ? K),也叫热导率。热导率入由简化的傅 )dT q =-入— 里叶导热定律dx决定。 2?热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声子和光子,因此固体的导热包括电子导热、声子导热和光子导热。 1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在0.4-40pm间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3?影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高 而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较高的单质都具有较高的导热系数。 3)成分和晶体结构

第十八章 热传导反问题

第18章:热传导反问题 本章导读 Deform3d中得Inverse heat transfer wizard模块得目得就是获得工件热传导区域得热传导系数函数。具体方法就是一个被热电偶处理过得工件进行淬火处理或其她热处理,在热处理中把热电偶处理过得位置对应得时间温度数据收集起来做成数据文件。基于初始猜测得热传导系数,DEFORM3D将会运行一个淬火处理或其她热处理得仿真。最后DEFORM3D最优化程序将会对比仿真出来得时间温度数据与实验得到得时间温度数据,并且进行最优化运算直到达到一个最优值。 预备知识 热传导反问题就是反问题中得重要一类,即通过给出物体表面热流以及对物体内部得一点或多点得温度观测值,反过来推倒物体得初始状态、流动状态、边界条件、内部热源与传热系数等。由于在实际工程中,材料得热传导特性以及边界条件、内部热源位置等往往就是不知道得,她们很难测量得到甚至根本无法直接测量得到,从而以物体表面热流、部分内部点得温度测量值等温度信息为基础,借助一些反演分析方法进行辨识就是解决这类问题得有效方法。在反问题中,将反演参数作为优化变量,测点温度计算值与测量值之间得残差作为优化目标函数,通过极小化目标函数进行仿真。 热传导反问题(inverseheatconductionproblem, IHCP)就是基础传热学研究得热点之一,在宇宙航天、原子能技术、机械工程以及冶金等与传热测量有关得工程领域中已获得了广泛得应用研究。下面我们就热传导反问题在某些领域得应用做一简要概述: 1、无损探伤领域:对蒸汽管道、钢包等圆筒体进行疲劳分析时,需要知道内壁得温度等边界条件,但就是内壁温度往往很难直接测得,而外壁温度可以直接测得,为此,人们可以通过外壁温度分布信息来反演内壁温度得分布得情况,进而得到内壁得几何形状,实现无损探伤得目得。 2、宇宙航天领域:在引导航天器返回地面过程中,由于气动加热作用,航天器表面热流密度极高,甚至可能会影响到航天器得安全,但就是其准确值无法直接测量,可以通过测量航天器内壁得某些温度信息来推算外壁得热流。(热流量就是一定面积得物体两侧存在温差时,单位时间内由导热、对流、辐射方式通过该物体所传递得热量。) 3、生物医学领域:由于人体生理过程发生局部破坏时会伴有身体组织热状态得某些改变,因此在医学上可以利用人体表面温度场得变化特征作为病情得依据,对人体生理过程发生破坏情况进行分析。 4、冶金领域:在高炉炼钢过程中,由于钢水得高温作用,会不断复试炼钢炉内壁,当炼钢炉内壁腐蚀到一定程度时,就需要马上更换,如果更换不及时,可能会导致严重得安全生产事故,但就是如果盲目得停产来检查,也会带来很大得成本支出,为此,希望通过测量外面得温度来反推炉壁得厚度,以保证安全生产及最低得成本支出。 5、原子能技术领域:在核反应堆冷却装置中,由于链式反应产生了大量热能,需要用循

试验9不良导体导热系数的测定

实验九不良导体导热系数的测量 导热系数(热导率)是反映材料热性能的物理量,导热是热交换三种(导热、对流和辐射)基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各个研究领域的课题之一,要认识导热的本质和特征,需了解粒子物理而目前对导热机理的理解大多数来自固体物理的实验。材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。 因此,材料的导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、 温度、压力及杂质含量相联系。在科学实验和工程设计中所用材料的导热系数都需要用实验的方法测定。(粗略的估计,可从热学参数手册或教科书的数据和图表中查寻) 1882年法国科学家J?傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律基础之上,从测量方法来说,可分为两大类:稳态法和动态法,本实验采用的是稳态平板法测量材料的导热系数。 【实验目的】 1?了解热传导现象的物理过程 2 ?学习用稳态平板法测量材料的导热系数 3 ?学习用作图法求冷却速率 4 ?掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 YBF-3导热系数测试仪、冰点补偿装置、测试样品(硬铝、硅橡胶、胶木板)、塞尺等 【实验原理】 为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导 定律指出:如果热量是沿着z方向传导,那么在z轴上任一位置z o处取一个垂直截 面积ds,以dT表示在z处的温度梯度,以dQ表示在该处的传热速率(单位时间 dz dt 内通过截面积ds的热量),那么传导定律可表示成: .dT dQ=-:?()z0dsdt (9-1) dz 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。(9-1)式中比例系数'即为导热系数,可见热导率的物理意义:在温度梯度为

TCB型导热系数实验

稳态法测量固体导热系数 (TC-3B型固体导热系数测定仪) (集成温度传感器测温) 实 验 讲 义 杭州精科仪器有限公司 固体导热系数的测量 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质等因素都会对导热系数产生明显的影响,因此,材料的导热系数常常需要通过实验来具体测定。测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类为动态法。用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量。而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。本实验采用稳态法进行测量。 【实验目的】

1. 用稳态法测定出不良导体的导热系数,并与理论值进行比较。 2. 用稳态法测定铝合金棒的导热系数,分析用稳态法测定良导体导热系数存在的缺点。 【实验原理】 根据傅立叶导热方程式,在物体内部,取两个垂直与热传导方向、彼此间相距为h 、温度分别为21T ,T 的平行平面(设21T T >),若平面面积均为S ,在t ?时间内通过面积 S 的热量Q ?满足下述表达式: h )T T (S t Q 21-??λ=?? ( 1 ) 式中 t Q ??为热流量,λ即为该物质的热导率(又称作导热系数),λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是 11K m W --?? 。本实验仪器如 图1所示: 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B (圆盘形的不良导体),再把带发热器的圆铝盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于P ,A 盘都是良导体,其温度即可以代表B 盘 上、下表面的温度1T 、2T ,1T 、2T 分别由插入P ,A 盘边缘小孔铂电阻温度传感器E 来测量。通过变换温度传感器插入位置,即可改变铂电阻温度传感器的测量目标。由式(1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为: 2B B 21R h )T T (t Q ?π?-?λ=??? ( 2 )? 式中B R 为样品的半径,B h 为样品的厚度,当热传导达到稳定状态时,1T 和2T 的值不变,于是通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘

相关主题
文本预览
相关文档 最新文档