当前位置:文档之家› 美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用

美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用

美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用
美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用

遥感变化监测 流程

多时相土地利用/覆盖变化监测研究 方法及数据选取 土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。 由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。 一、遥感数据源的选取 不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。 1时间分辨率 这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。 2空间分辨率 首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。 一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。 3光谱分辨率 应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

长江中下游遥感影像数据库

长江中下游遥感影像数据库文档 1.引言 1.1数据库名 长江中下游遥感影像数据库 1.2 编写目的 为了便于本数据库的方便查询与高效使用,特编写了本文档。1.3 定义 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。有7个波段,其波谱范围:TM-1为0.45~0.52微米,TM-2为0.52~0.60微米,TM-3为0.63~0.69微米,以上为可见光波段;TM-4为0.76~0.90微米,为近红外波段;TM-5为1.55~1.75微米,TM-7为2.08~2.35微米,为中红外波段;TM-6为10.40~12.50微米,为热红外波段。影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更大比例尺专题图,修测中小比例尺地图的要求。 2.数据库内容说明 2.1数据库内容一般描述(限200字) 该数据集包括长江中下游地区TM和MSS影像,包括长江三角洲Landsat MSS合成JPG影像、江苏及长江三角洲MSS镶嵌影像(合成JPG)、长江三角洲LandsatTM、ETM数据以及江苏及长江三角洲TM影像(合成JPG)。该数据主要分三个时期,分别为1980年、1990年和2000年,数据格式为JPG格式,数据量为14.4G。 2.2字段(要素)名称解释

遥感影像分类精度与空间分辨率的关系验证

实验一遥感影像分类精度与空间分辨率的关系验证 实验目的: 1、掌握相同传感器多光谱影像与全色影像融合方法; 2、掌握监督分类的基本流程; 3、验证遥感影像分类精度与空间分辨率的关系。 实验要求: 1、对多光谱影像和全色影像进行融合; 2、利用马氏距离法进行监督分类; 理论基础:高分辨率影像能反映更多细节信息,但是过高的的空间分辨率也会造成地物类别内部光谱可分性下降(同物异谱和异物同谱现象更严重),通过不同分辨率遥感分类精度的比较来验证这一理论。 原始实验数据:北京市朝阳区2002年奥运公园规划区IKONOS多光谱影像4个波段与IKONOS 全色波段(两者成像时间都是2002年8月26日,即是同一传感器同时成像,植被覆盖情况一致),全色波段影像大小4000*4000。class1.roi是1m空间分辨率的参考分类ROI模板。 实验步骤: 1、将IKONOS多光谱影像4个波段与IKONOS全色波段数据进行融合,操作如下: (1)打开图像bjikonospan.img和bjikonosmultispectral.img,在Available band list对话框中,选中bjikonospan.img,点击右键,选择Edit header,查看bjikonospan.img的头文件。记 录该文件的行列数,下图1~2。

图1 图2 查看头文件

(2)在ENVI主菜单,点击Basic Tools→Resize Data,在弹出的对话框中,选择bjikonosmultispectral.img,点击OK,在接下来弹出的Resize Data Parameters对话框中,Samples后输入4001,点击回车,Lines后输入4001,点击回车,设置存储路径,OK。将重置了大小后的图像bj_resize按432的RGB模式显示,与前两个图像对比,观察其变化。 图3

遥感数据解译大面积监测

遥感数据解译大面积监测 每年夏收与秋收后,秸秆焚烧现象非常普遍。秸秆焚烧带来了很多危害,不仅严重影响大气环境质量,导致空气中总悬浮颗粒物数量明显升高,而焚烧产生的浓烟中含有大量的CO、CO2等气体,对人体健康产生不良影响,同时,还会造成能见度降低,甚至引发交通事故。广西善图科技有限公司 鉴于秸秆焚烧带来的种种危害,秸秆焚烧的监测变得尤为重要。而传统的监测手段(如逐点人工排查)具有效率低、覆盖率低、成本高等缺点。而遥感技术以其时效性、覆盖面广、分辨率高等优势使得快速大面积监测焚烧情况成为可能。 1.选择数据源 2.热异常数据地理定标 3.火点信息提取 4.土地覆盖数据地理定位与镶嵌 5.农用地信息提取 6.疑似秸秆焚烧点提取 7.输出结果(制图输出) 8.确定技术流程,进行业务化应用 介绍遥感动态监测知识,并以城市用地遥感变化监测为应用背景,从数据的选择、预处理、变化监测类型分析、方法的选择制定一个遥感流程,之后在ArcMAP中构建整个监测流程的业务模型,通过ArcGIS Server发布成Web Service,并在Web端构建应用。 地球表面信息每时每刻都在变化,遥感影像是我们监测地球变化最直接和权威的数据源,我们可以从遥感影像中可以获取的变化信息:海岸线、森林健康、城市扩张、农业生产、自然灾害、人为灾害、土地覆盖、冰雪范围、水面变化等。量测变化信息的方法可选择:简单的图像差异、特征变化、波谱曲线变化、图像变换、分类后比较等。 本应用专题以城市土地覆盖变化信息监测为应用背景,变化信息为植被覆盖和人工建筑物。演示如何构建遥感变化监测技术流程,并将整个流程部署到ArcGIS Server企业级应用中,包括以下步骤:

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

几种典型高分辨率商业遥感卫星系统

几种典型高分辨率商业遥感卫星系统 1.2.1 IKONOS卫星系统 1.基本情况 IKONOS是空间成像公司(Space Imaging)为满足高解析度和高精度空间信息获取而设计制造,是全球首颗高分辨率商业遥感卫星。IKONOS-1于1999年4月27日发射失败,同年9月24日,IKONOS-2发射成功,紧接着于10月12日成功接收到第一幅影像。 IKONOS卫星由洛克希德—马丁公司(Lockheed Martin)制造,重1600lb,由Athena II 火箭于加利福尼亚州的范登堡空军基地发射成功,卫星设计寿命为7年。它采用太阳同步轨道,轨道倾角98.1o,平均飞行高度681km,轨道周期98.3min,通过赤道的当地时间为上午10:30,在地面上空平均飞行速度为6.79km/s,卫星平台自身高1.8m,直径1.6m。 IKONOS卫星的传感器系统由美国伊斯曼—柯达公司(Eastman Kodak)研制,包括一个1m分辨率的全色传感器和一个4m分辨率的多光谱传感器,其中的全色传感器由13816个CCD单元以线阵列排成,CCD单元的物理尺寸为12μm x 12μm,多光谱传感器分四个波段,每个波段由3454个CCD单元组成。传感器光学系统的等效焦距为10m,视场角(FOV)为0.931o,因此当卫星在681km的高度飞行时,其星下点的地面分辨率在全色波段最高可达0.82m,多光谱可达3.28m,扫描宽度约为11km。传感器可倾斜至26o立体成像,平均地面分辨率1m左右,此时扫描宽度约为13km。IKONOS的多光谱波段与Landsat TM的1—4波段大体相同,并且全部波段都具有11位的动态范围,从而使其影像包含更加丰富的信息。 IKONOS卫星载有高性能的GPS接收机、恒星跟踪仪和激光陀螺。GPS数据经过后处理可提供较精确的星历信息;恒星跟踪仪用以高精度确定卫星的姿态,其采样频率低;激光陀螺则可高频地测量成像期间卫星的姿态变化,短期内有很高的精度。恒星跟踪数据与激光陀螺数据通过卡尔曼滤波能提供成像期间卫星较精确的姿态信息。GPS接收机、恒星跟踪仪和激光陀螺提供的较高精度的轨道星历和姿态信息,保证了在没有地面控制的情况下,IKONOS卫星影像也能达到较高的地理定位精度。 2.成像原理 与Landsat和SPOT-4卫星相比,IKONOS卫星的成像方式更加灵活,其传感器系统采用独特的机械设计,可以十分灵活地以任意方位角成像,偏离正底点的摆动角甚至可达到60o。IKONOS卫星360o的照准能力使其既可侧摆成像以获取异轨立体或缩短重访周期,也可通过沿轨道方向的前后摆动同轨立体成像,具有推扫、横扫成像能力。 IKONOS卫星能获取同轨立体影像。当卫星接近目标时,传感器光学系统先沿着轨道向前倾斜,照准目标区域并采集第一幅影像,接着控制系统操纵传感器向后摆动,大约100s 后再次照准目标区并采集第二幅影像,如图1.1所示。由于IKONOS卫星利用单线阵CCD 传感器,通过光学系统的前后摆动实现同轨立体成像。因此,相应的立体覆盖是不连续的。

遥感监测技术方案(特选参考)

农业生态遥感监测的内容为2014年北京市1期冬小麦面积监测,2014年北京市2期玉米(春、夏玉米)面积监测,2014年北京市4期设施农业占地面积,2014年秋季露地菜面积监测。具体的生产流程如下: 1、专题信息获取 专题信息主要指北京市冬小麦、玉米、设施农业、秋季菜田四类专题,具体监测方法和生产流程如下: 1.1专题监测方法 (1)小麦、玉米监测 小麦监测北京市2014年冬小麦数据,以2014年4-5月遥感影像为主;玉米监测2014年北京市玉米,以2014年6-9月遥感影像为主,具体的技术方法如下:在综合考虑北京市地形特点,小麦、玉米种植结构特点的基础上,经过对小麦、玉米种植物候,遥感生产的经验总结和对多种数据的对比、分析,提出一套基于“分目标、分区域、分数据、分技术”的“四分”技术方法,融生产标准规范、质量控制体系和用户响应机制为一体的小麦、玉米播种面积统计统计遥感调查方法。该方法按照一定的分层指标将北京市行政村进行划分,再对不同层级的村执行不同的数据计划和技术对策,最后采取分层抽样法评估信息提取结果的精度,并对未满足精度要求的区域进行成果修订(图1-1)。

业务需求与 统计制度 基于行政村成果的分层抽样 数据 采集 及预 处理 综合信息数据库 基于行政村的种植规模分区 分区现势影像数据采集与处理 信息 提取 及修 订 基于种植规模的不同提取方法 外业调查和内业修订 满足内业信息提取精度 成果 精度 评估外业调查及精度评估 成果 整理 矢量数据和统计报表标准化 分析反推修订 达标 未达标 分 目 标 , 分 区 域 , 分 数 据 , 分 技 术 标 准 规 范 与 质 量 控 制图1-1 总体技术路线图 为提高小麦、玉米播种面积统计遥感调查精度,充分发挥多源数据及人机交互解译的能力,研究出基于“四分”总体技术方法的小麦、玉米专题统计遥感生产流程。“四分”技术:指“分目标、分区域、分数据、分技术”。四分技术是对按照一定标准划分的区域,分别采取不同的目标、数据和技术策略,使信息提取更具有针对性、有效性,达到提高精度的目的。具体包括两大关键技术:解译分区技术体系和精度评估技术。 1)人机解译分层技术 根据北京市小麦、玉米分布范围,结合北京市地形特点和小麦、玉米种植特点,将分布区分为三大带:“山区带、丘陵带、平原带”。继而根据所分的三大区域,进一步研究小麦、玉米的种植特点和光谱纹理特征,结合地形地势、分布趋势、地块破碎程度、地块大小、占耕地面积以及解译难易程度等多方面指标,通过定性定量相结合将北京市小麦、玉米种植区域进一步细化区分,针对不同区域采用不同的目标、数据和技术策略,抓住重点、难点,优化目前提取方法,提高小麦、玉米统计遥感调查精度。

遥感影像数据下载

1.MODIS L1B 1km: https://www.doczj.com/doc/df6340552.html,/data/d ... _Level_1/index.html 免费注册,免费下载,daily data 2.https://www.doczj.com/doc/df6340552.html,/pub/imswelcome/ 3. https://www.doczj.com/doc/df6340552.html,/ https://www.doczj.com/doc/df6340552.html,ndsat etm+ and tm images for free https://www.doczj.com/doc/df6340552.html,/ortho/index.htm 5.EarthEtc ER MAPPER公司示范网站 https://www.doczj.com/doc/df6340552.html,/imagery.aspx该网站上可以欣赏世界各地的高清晰度卫星照片,以及覆盖全球的1990年版LANDSAT卫星拼图(NASA命名为Circa 1990)。该网站不提供文件下载,只能通过浏览器观看。 6.NASA已经将中国地区的卫星图像发表在其网站上,免费供公众下载。 https://https://www.doczj.com/doc/df6340552.html,/mrsid/mrsid.pl 7.ENVISAT ASAR数据 https://www.doczj.com/doc/df6340552.html,或者https://www.doczj.com/doc/df6340552.html, ENVISAT卫星是欧空局迄今为止研制的最大的环境监测卫星,其高级合成孔径雷达(ASAR)在C波段具有多极化、可变观测角度、宽幅成像等特性。其数据可以广泛应用于自然灾害监测、资源环境调查、雷达遥感教学与科研等领域。 8.美国航天飞机SRTM 高程数据 SRTM高程数据由NASA航天飞机上的雷达在2000年2月搜集,覆盖南纬56度到北纬60度之间的陆地区域。该数据分辨率为30米,但NASA出于“安全性”考虑将美国以外的地区缩减为90米分辨率。数据格式为HGT格式,采用ZIP压缩,文件名以经纬度网格的左上角点命名。该系列数据是“未完成”数据,里面有很多地方有数据空洞存在。 ftp://https://www.doczj.com/doc/df6340552.html,/srtm/Eurasia/ https://www.doczj.com/doc/df6340552.html,gs,gov/data/obtainingdata.html(“unfinished”Grade) https://www.doczj.com/doc/df6340552.html,gs,gov/products/elevation.html(“finished”Grade) Easy Download Site—GLCF ftp://https://www.doczj.com/doc/df6340552.html,/gl ... 0/SRTM_u03_n040e116 上述数据覆盖范围1*1度n040—北纬40度e116—东经116度 9.国家基础地理信息系统全国1:400万数据库

遥感影像数据产品级别

遥感影像数据产品级别 卫星数据服务商北揽宇方圆信息技术有限公司是国内规模最大、服务最稳定、服务质量最高的卫星影像数据综合应用服务企业,一直致力于为用户提供全球中、高分辨率卫星影像数据及基于遥感数据的应用服务。多颗国际领先的高分辨率遥感卫星数据资源,这些卫星群能够以极快地速度为用户提供全球各地的超高分辨率影像。 0级:经数据重构,未进行任何处理的原始数据;所有的通信信息(比如:同步帧、通信头和重复数据)被移除。 1A级:经数据重构,具有时间参考、辅助信息(包括辐射、几何校正系数等)以及地理坐标参数等(如:平台星历等,并没有应用于0级产品)的未进行任何处理的原始数据。 1B级:在1A级产品的基础上处理至传感器单元(并不是所有数据都有L1B级数据)。 2级: 与1级数据具有相同分辨率和位置的地球物理参量数据产品。 3级: 投影至统一时空格网尺度,通常具有一定完整性和一致性的数据产品。4级: 模型输出结果或从低级数据分析得到的结果。 该分级体系的一个重要方面是它的每一级是积累的,新的一个级别是由其下一级别生成同时它也是上一级产品的输入数据。0级数据基本上是原始的、未经任何处理的仪器和传感器数据。虽然它是基本的数据级别,但我们通常不会使用它,对传感器本身准确性和敏感性比较感兴趣的人将会是它的用户。0级数据的主要作用是作为数据处理链中的原始数据被用来生成更高级别的数据产品。1级数据可以恢复为0级,同时1级数据也是生成更高级别数据的基础。 2级数据可直接用于大多数的科学研究。相对于1级数据来说,2级数据可能由于某些原因(比如:在空间尺度或光谱范围等方面做了缩减)要小一些。3级产品可能会更小,以便其更容易被使用,同时规则的空间和时间组织使得这些数据更容易与不同数据源的数据结合使用。一般地,随着处理技术的改进,数据集本身将会变得更小,但其在科学应用中的价值和效用将会变的更大。 对于遥感影像预处理类型和程度来说,采用统一的处理级别体系来描述其优

高空间分辨率遥感森林参数提取探讨

高空间分辨率遥感森林参数提取探讨 刘晓双,黄建文,鞠洪波 (中国林业科学研究院资源信息研究所,北京100091) 摘要:介绍了高空间分辨率遥感在森林参数提取方面的研究和应用情况,并结合国内外学者在此方面所做出的研究成果,对不同森林参数的提取分别做了阐述,包括单木树冠轮廓信息、胸径、森林生物量、树种识别和分类、叶面积指数、森林郁闭度、木材结构和性质。最后分析了高空间分辨率遥感在森林参数提取方面存在的问题,并对该领域的应用前景作了展望。 关键词:高空间分辨率;遥感;森林参数;树冠提取;生物量 中图分类号:TP79 文献标识码:A 文章编号:1002-6622(2009)02-0111-07 Study on Extraction of Forest Parameters by High Spatial R esolution R emote Sensing L IU Xiaoshuang ,HUAN G Jianwen ,J U Hongbo (Research Instit ute of Forest Resources and Inf ormation Technique ,CA F ,Beiji ng 100091,Chi na ) Abstract :Study and application of forest parameters extraction by high spatial resolution remote sens 2ing was introduced in this article ,combined with achievements in this field made by researchers all over the world 1Extraction of such different forest parameters was described respectively as single tree crown contour ,diameter at breast height ,biomass ,identification and classification of species ,LAI ,canopy den 2sity ,wood structure and property 1Finally ,the problems of forest parameters extraction by high spatial resolution remote sensing were discussed ,and the prospect of forest parameters extraction by high spa 2tial resolution remote sensing was expected. K ey w ords :high spatial resolution ,remote sensing ,forest parameters ,extraction of tree crown ,biomass 收稿日期:2009-01-04;修回日期:2009-04-03 基金项目:中央级公益性科研院所基本科研业务费专项基金(RIFRITZ J Z 2007006);国家自然科学基金“基于高分辨率 遥感的树冠信息提取技术研究”项目(40771141) 作者简介:刘晓双(1985-),女,甘肃兰州人,在读硕士生,主要从事遥感、GIS 技术应用研究。通讯作者:鞠洪波(1956-),男,黑龙江人,研究员,研究方向:林业信息技术。 现代林业的经营管理得以顺利进行主要依赖于对各种森林参数的调查,而森林限于其特殊的自然地理条件往往会给研究数据的采集造成很大的困 难。传统的森林调查方法一般是基于随机抽样和统计学,其样本的选择是否具有代表性对调查的精确性有很大的影响。这种传统的以个体来推断总体的 2009年4月第2期林业资源管理 FOREST RESOURCES MANA GEMEN T April 2009No 12

水环境检测和遥感

摘要: 遥感技术在水环境监测方面得到了日益广泛的应用,不同含量和类别的水质参数的水体光谱特征不同, 这使得遥感影像能用于水体水质的监测。简要介绍了水体水质监测中遥感应用研究的发展和现状,阐述了水质遥感监测原理与方法、常用的遥感数据和几种主要水质参数的遥感监测进展,讨论了目前遥感在水质监测应用中存在的问题和未来该领域研究的重点。 关键词:遥感; 水环境监测; 水污染 1.引言 随着工农业生产的发展,江河湖海的各种水体受污染的程度不断加重。它们包括生活废水污染、泥沙等悬浮固体污染、石油污染、重金属污染、富营养化污染和热污染等。它们对人类社会的危害是十分严重的。因此,对这些污染进行监测非常重要。随着遥感技术的进步,遥感监测在水环境等领域的应用已引起环境保护等部门较广泛的重视。国内外通过各方面的努实践认为,各种水体污染在遥感图像上都有不同程度的反映(除有的不清晰外) 。因此目前,遥感已成为我们用以监测水环境的依据,而其在水环境监测中的应用也是一先进的技术途径。2.水环境污染 中国环境监测总站提供的资料表明,近10 年来, 我国的水污染成分发生了显著变化:无机污染减少,有机污染上升;工业污染下降,生活污染和面源污染增加。总之目前,我国水环境面临三大问题: ①主要污染物排放量远远超过水环境容量; ②江河湖泊普遍遭受污染; ③生态用水缺乏,水环境恶化加剧。水污染的现状可以表明,我国水环境污染形势严峻。因此,加大保护水资源的力度,提高水环境监测效率的工作势在必行。 水环境是由地球表层水圈所构成的环境,它包括在一定时间内水的数量、空间分布、运动状态、化学组成、生物种群和水体的物理性质。水环境是一个开放系统,它与土壤-岩石圈、大气圈、生物圈乃至宇宙空间之间存在着物质和能量的交换关系。 水环境的遥感监测多是对地表各种水体进行空间识别、定位、及定量计算面积、体积或模拟水体动态变化。随着遥感基础研究的进展,对水体本身的光谱特性有了深入研究,同时进行许多水质光谱数据测试。对水体的遥测也转换到水体属性特征参数的定量测定,如水深的控制、悬浮泥沙浓度的测定、和绿素含量的测定,以及污染状况的监测等。[1.2] 3.遥感水质监测方法 水体因为各组分及其含量的不同造成水体的吸收和散射的变化,使一定波长范围反射率显著不同,是定量估测内陆水体水质参数的基础。水质遥感监测常用的方法有3种:物理方法、经验方法和半经验方法。 3.1 物理方法 物理方法是以由辐射传输理论提出的上行辐射与水体中光学活性物质特征吸收和后向散射特性之间的关系为基础,利用遥感测量得到的水体反射率反演水体中各组分的特征吸收系数和后向散射系数,并通过水体中各组分浓度与其特征吸收系数、后向散射系数相关联,反演水体中各组分的浓度[3]。在实际的研究工作中,由于物理方法所要求的数据源难以满足,物理方法中的很多模型都只能采用经验的关系,基于物理方法得到的水质参数算法精度并不是很高。 3.2 经验方法 经验方法是伴随着多光谱遥感数据应用于水质监测而发展起来的一种方法。经验方法基于经

卫星影像数据库遥感卫星影像数据库

卫星影像---北京揽宇方圆信息技术有限公司高分遥感影你5折起. 北京揽宇方圆信息技术有限公司立足于国际,代理了国际主流高分卫星 1.美国Digital Globe公司的quickbird卫星worldview123卫星geoeye卫星ikonos卫星,worldview3全球最高高分辨率卫星数据0.3米的遥感数据产品,其中quickbird worldview geoeye是全球高分辨率卫星数据0.5米的遥感数据产品,IKONOS 1米高分辨率卫星数据。公司的销售服务网络向国内客户提供更及时、保障度更高的高分辨率遥感数据。 2.法国SPOT公司,SOPT1-SPOT6全系例遥感卫星影像数据,其中SOPT1-SOPT5,分辨率2.5到20米,时间是1986年至今,SPOT6卫星是1.5米分辨率卫星数据,2012年SPOT 公司又发射了pleiades卫星,这颗卫星是0.5米分辨率. 3.德国Rapideye卫星星座数据产品:由5颗相同的对地观测卫星组成的RapidEye卫星星座,空间分辨率5米,为全球首个能够提供“红边”波段的商业卫星,可通过5个光谱波段获取影像,这种获取方式可以监测植被变化情况,为植被分类以及植被生长状态监测提供有效信息。 4.美国军方解密锁眼卫星数据系例:锁眼(keyHole)卫星系列,即KH—1至KH—12型照相侦察卫星,锁眼卫星在世界先进的侦察卫星中可谓是大名鼎鼎,它们曾在在“海湾战争”和“科索沃战争”中立下汗马功劳。美国国家侦察局解密锁眼(keyHole)卫星系列遥感数据,目前解密年代的数据为1980年以前的历史数据。全色分辨率0.6米-10米。 5.日本的ALOS卫星数据,分辨率全色2.5米-多光谱10米,这颗卫星2011年4月停止运行了。 6.国内的高分卫星:资源3号和高分一号 7.智能化的遥感影像数据处理:-,融合匀色拼接等,二,地物地貌处理,三,生成正射影像,四,遥感解译等遥感技术应用服务。

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

相关主题
文本预览
相关文档 最新文档