当前位置:文档之家› SAR图像处理的最新研究与应用

SAR图像处理的最新研究与应用

SAR图像处理的最新研究与应用
SAR图像处理的最新研究与应用

收稿日期:2002-07-10;修订日期:2002-08-10

基金项目:国家自然科学基金重点资助项目(批准号:69831040)。

作者简介:宋建社(1954-),男,教授,博士生导师,主要研究方向为遥感图像处理、信息融合及系统工程。

SAR 图像处理的最新研究与应用

宋建社,袁礼海,薛文通

(第二炮兵工程学院信息工程研究所,陕西西安 710025)

摘要:系统地阐述了SAR 图像的特点、研究难点、处理过程、国内外最新研究方法及应用。结合国内外SAR 图像最新研究动态对SAR 图像消噪、纹理分割、线性特征的提取、多目标的识别、分数维方法的应用等几个热点问题作了论述。具体地论述了利用SAR 图像进行目标探测与识别、目标变化评估;在民用上利用SAR 图像进行矿藏资源的探测、洪涝灾害的趋势分析,并介绍了SAR 信号处理算法在医学等领域取得的显著成绩。

关 键 词:合成孔径雷达;图像处理

中图分类号:TP 75 文献标识码:A 文章编号:1004-0323(2002)05-0284-05

1 引 言

合成孔径雷达(SAR)的概念是1951年美国的Wiley C 第一个提出的。SAR 是一种能产生高分辨率遥感图像的相干系统。对接收到的连续不断信号的幅值和相位进行处理进而产生图像。SAR 具有全天时、全天候、多波段、多极化工作方式、可变侧视角、穿透能力强和高分辨率等特点,这使得SAR 在工业、民用和军事上都有十分广泛的用途。对SAR 图像的处理和识别研究成了信息工程领域研究的一个热点问题。许多新的数学方法如:模糊信息处理、小波分析、分数维方法等与SAR 图像研究的结合不仅促进了SAR 图像研究水平的提高,而且也大大促进了它在各行各业的应用。

SAR 图像的特征决定其应用的广泛性,同时也增加了对SAR 图像处理与识别的复杂性。它不像光学图像那样清晰直观、边缘易于检测。SAR 图像不仅具有光学图像的几何特征,同时还具有重要的电磁特征。由单幅SAR 图像不仅可以提取目标的几何特征,而且可以提取目标的三维高程信息和运动速度信息。这些信息的提取不仅需要较系统的数学知识,而且需要较系统的电磁理论知识,从而增大了图像理解的难度,使得研究者众多。合成孔径雷达在我国研究较晚,上世纪80年代末期才从美国引进了机载合成孔径雷达,90年代研制出了我国第一部数字

合成孔径雷达,对SAR 图像的研究起步更晚。最近几年,我国对SAR 的研究发展较快。中科院电子所、信息产业部第14所、第38所等相继研制出了不同的机载合成孔径雷达并完成了实验。对SAR 图像处理的研究也取得了很大的进展。本文仅就SAR 图像处理的研究与应用进行总结,以引起更多读者的关注,促进SAR 图像研究的发展与应用。

2 SA R 图像的处理过程

在发达国家,对高分辨率的SAR 图像的应用研究已相当普遍,因此迫切需要研究SAR 后处理、图像应用和图像理解等问题。SAR 后处理技术分为两类:天线方向校正和几何畸变校正。以ERS-1卫星数据为例,具体步骤如下:

(1)原始数据(Raw Data,RAW)经预处理获得单目合成图像(Single Look Com plex Image,SLCI and SLCN )。

(2)在SLC 图像的基础上应用多目处理、天线方向校正进而获得细节图像(Precision Im age ,PRI )。

(3)PRI 图像中能获得图像的方向,进而运用几何畸变校正,查找每个像素准确的位置,最后获得了通用椭圆几何编码图像(Ellipsoid Geocoded Image,GEC,各阶段图像见图1)。

地形几何编码算法(geocoding algorithms )是确

第17卷 第5期2002年10月

遥 感 技 术 与 应 用

REM OT E SENSING T ECHNOLOGY AND APPLICATION

V ol .17 N o .10Oct .2002

SLC 图像 PRI 图像 GEC 图像

图1 SAR 图像的处理各阶段示意图〔

1〕

定图像的方向,准确定位像素的位置。在数字地图上运用地形几何编码算法,并分析SAR 图像的纹理特征,如道路、河流等,然后进行诸如飞机跑道和海岸线的特征提取,以供进一步的研究。

3 SA R 图像处理的研究

3.1 SAR 图像消噪

成像雷达获得的SAR 图像是地物对雷达波散射特性的反映。由于成像雷达发射的是纯相干波,这种信号照射目标时,目标的随机散射信号与发射信号的干涉产生斑点噪声,并使图像的像素灰度值剧

烈变化,即在均匀的目标表面,有的像素呈亮点,有的呈暗点,模糊了图像的精细结构,使图像解释能力降低。

SAR 图像斑点噪声大,如果幅度分布是高斯型的,相位分布是均匀的,则像素幅度为瑞利分布。相干的结果可能是增强型的,也可能是削弱型的,这取决于是增强型干涉还是削弱型干涉。去除斑点噪声采用空域滤波算法,如均值滤波、中值滤波、Frost 滤波、Lee 滤波、Gamm a M AP 滤波等,同样在频域也可进行滤波处理。文献〔2〕在一般方法基础上提出了小波包域值法去除合成孔径雷达图像斑点噪声方法。文献〔3〕提出了基于自适应加权中值滤波前处理的多尺度非线性阈值斑点噪声消除算法和利用Harr 小波基抑制条纹干扰的算法,取得了很有意义的研究成果。

3.2 SAR 图像纹理分割

纹理分割是基于特征的。描述纹理的特征很多,但目前还没有提出一种纹理特征可以描述所有纹理。经多年研究表明,寻找可以描述任何纹理、可以区分任何纹理的特征是不切实际的。实际中针对不同的应用寻找适合某类纹理的特征,由此得到满意

的分割才是切实可行的。在各类分割方法中,基于算

子的特征计算较为简单,但大多方法抗噪声能力差;基于统计的特征计算量大、分割精度差,同样受到噪声的影响;分形模型使用范围较小,只在个别分辨率下有分割纹理的能力,分数维门限值确定困难,分割精度差。基于随机场的模型对大尺寸、灰度级较多的图像分割计算量是极大的;多分辨小波的纹理特征具有先天的缺点(逐点采样造成的纹理信息不全),很难得到稳定的纹理特征,并且计算量较大;结构方

法仅适合规则纹理〔4〕

。法国的Roger Fjortoft ,Arm and Lopes 和Philippe M arthon 提出了SAR 图像中最佳的多边缘检测算法〔5〕

,他们提出针对SAR

图像的边缘检测器,这种检测器在随机多边缘模型下以最小均方误差判断是最优的。3.3 SAR 图像线性特征的提取

法国巴黎高等电信工程学院的Tupin F 等人提

出了适合贝叶斯框架下检测线性特征的算法〔6〕

。该

方法分为两步:

第一步,从包含斑噪的雷达图像中提取线性特征,并作为道路分割的基元。它在作用线性检测器D1和D2后进行两种检测器的融合,从而得到路的片断结果。两种检测器都是基于斑点噪声的随机特性。

第二步,将路的片断连接成真实的道路。主要采用在路的片断结果中定义马尔科夫随机域,引入道路目标的相关先验知识(路的长度、曲率、是否交叉等),采用模拟退火算法求马尔科夫随机域中的能量极小点,为了提高检测的准确程度,算法中还采用了一些后处理方法。在此算法的基础上,Florence T upin 、Isabelle Bloch 和Henri Maitre 通过几种结构

检测器结论对SAR 图像的自动解释做出了贡献〔7〕

,并进一步研究了运用SAR 图像和多视角的有效性

285

第5期 宋建社等:SAR 图像处理的最新研究与应用

对高密集度市区道路检测问题〔8〕。针对道路的描述,论文作者对道路长度、宽度的计算,道路方向、质地的判别进行讨论,给出了相应的算法〔9〕。

3.4 SAR图像中多目标的识别

美国珀德尤大学电子工程学院爱德华教授针对SAR图像提取多目标特征提出了一套新方法。该方法中目标检测是基于局部明亮的像素,并通过像素的聚类分析完成。

第一步,首先运用基于像素值反差统计,采用恒定错误预警率,在SAR信号中搜索局部明亮的区域来确定可能的目标。

第二步,在上面所获得的数据基础上,使用基于数据空间分布的聚类分析方法将数据集合成组,多个属于同一目标的数据能集合一起形成簇。

3.5 雷达影像分维方法信息提取

Mandelbrot首先提出采用分形维数来描述和测量分形的特性。分数维是一个对图像的不规则程度和碎裂程度的度量,它包含相应集几何性质的许多信息,反映分形体的比例性质及自相似性。对同一自然景观,分维大小反映其表面的不规则程度和粗糙度,即分形维数越大,对应的图像表面越粗糙;反之,分形维数越小,对应的图像表面越光滑。其灰度图像的分维反映灰度分布的特征并间接反映出自然表面的某些特性。采用构造影像灰度面的虚拟表面积和体积方法,在小窗口下以单像点为中心逐点计算影像分维特征图。由于分形表面积是灰度表面复杂程度的一种度量,分维提取的是图像表面复杂度分布的变化,对雷达图像多噪声、多斑点的特征提取具有较好效果。文献〔10〕提出一种尺度分维(Scale Fractal Dimension,SFD)的概念,用于描述实际中遇到的分形,指出尺度分维反映了不同尺度对应的局部分形维数的大小,并提出了一种基于图像纹理特征具有良好抗噪性能的边缘提取方法。

3.6 SAR图像处理存在的问题

在当今解决图像处理问题的同时,也存在如下一些问题:

(1)基于模型的方法一般对图像的要求较高,对模型比较敏感,在图像与模型不相符时,可能会得不到满意的结果。

(2)实际生活中,往往对图像处理实时性要求较高,这样对于运算代价较高的一类算法在实际情况中是不现实的。

(3)图像目标检测是一个信息不足的不确定问题,经典数学方法在解决此类问题难度很大,促使人们寻找一种自动或半自动的图像解译系统。

(4)如何恰当描述经典数学语言难以描述的先验知识,将是在图像处理领域取得突破的关键所在。

(5)为了更好解决视觉处理中分割精度与实时性之间的矛盾,人们将多分辨的思想引入其中,但是多分辨思想解决视觉问题的主要困难在于高分辨与低分辨层间的信息接口问题,而且多分辨的搜索策略必须依赖于先验知识。

(6)图像处理方法众多,得到的信息量、价值量参差不齐。缺乏数学方法和多种处理结果的有机融合。

4 SA R图像研究的应用

4.1 军事目标的识别与毁伤效能评估

SAR以其不可比拟的优势已广泛地应用在军事领域。新世纪对合成孔径雷达的要求不再局限于全天候和全天时侦察,而且要求它可以穿透云雾以及植被,还能探测一定深度的目标,能显示动目标和实时传送图像等。“全球鹰”堪称目前世界上技术最先进的无人机,它的主要工具则是安装在机头里的合成孔径雷达。同样采用了高性能的合成孔径雷达, U-2R的探测距离大大增加。美军许多战斗机上也都安装了专用的合成孔径雷达。因此,美军要求合成孔径雷达对地面目标的分辨率能达到0.3~3m,能通过获得多种图像辨别真伪目标,识别隐身目标,并通过对攻击前后的图像作“差”评估打击的效果。如图2,(a)美国纽约世贸大厦受攻击前的SAR图像, (b)美国纽约世贸大厦受攻击后的SAR图像。图像经相关处理后便能分析出大厦的毁伤程度。

4.2 矿藏资源的探测

SAR图像在矿藏资源的探测中已被广泛地使用。过去探测矿藏主要是地质勘探人员亲临各地,做土壤、地质等的采样,然后进行样本分析、实验求证,最终得出结果。这种方法工作量大,耗费人力、物力、财力。由于采样的局限性给结果带来了许多的不确定性。采用SAR图像进行矿藏资源的探测,具有探测范围广、准确程度高等优点,而且探测周期大大缩短,探测的成本也大为降低。因而在矿藏资源的探测领域,SAR图像的应用将更加广泛深入。图3为我国广东肇庆地区的SAR图像,黄金矿藏已作了相关的标注。

4.3 灾情探测与防治

在1998年长江特大洪水期间,中国主要遥感单位利用6颗卫星和3套航空遥感系统,对灾区进行

286

遥 感 技 术 与 应 用 第17卷

(a)受攻击前图像 (b)受攻击后图像

图2 美国纽约世贸大厦受攻击前后的SAR

图像

图3 我国广东肇庆地区的SAR 图像 图4 1998年不同时期洪涝状况的SAR 图像

5~7次覆盖,取得100多幅灾情图像,为灾情监测评估和灾后重建提供了科学数据。图4是1998年7月与8月ERS -2拍摄的灾区图像。经过分析能迅速把握受灾区域,根据灾前、灾中、灾后卫星数据的融合,可对灾情进行较为客观的评估,给抗洪指挥领导提供直观、全面的依据。1987年5月6日~6月2日,东北大兴安岭发生特大森林火灾期间,我国气象卫星和陆地卫星地面接收站及有关单位的遥感飞机与技术人员,先后投入大兴安岭火灾的灭火工作。监视了整个火灾的全过程,每天提供火区范围、火势变化、火头位置移动、新火点出现以及扑火措施效果等方面的信息,有力地支持了灭火指挥和灾后重建家园、恢复生态环境的工作。平时从卫星图片上结合专家知识,既可分析一定的致灾因子,又可评估灾害防治措施的可行性,为灾害防治规划提供依据。4.4 医学图像处理中的应用

在医学领域中运用SAR 系统中的DSP 算法同样能产生医学图像。雷达工程师Hounsfield G 因在医学数据中应用SAR 信号处理算法而获得医学诺贝尔奖

〔14〕

。他主要将雷达处理中的技术“转移”到医

学领域。原来采用X 射线照射技术产生模糊的骨胳图像,现在Hounsfield 采用雷达数字信号处理算法

产生了完整清晰的二维骨胳和软组织切片图像。

5 SA R 图像处理研究与应用的前景

数学形态学、分数维、信号处理、模糊聚类、小波分析、证据理论等技术引入到SAR 图像的研究,大大促进了SAR 图像研究的进程,已经取得了理想的效果。在对SAR 图像较好的物理理解、模型和实验

结果的基础上,人们试着最大限度去寻找一种完整

的、准确的、易处理的、有价值的模型〔15〕

。这种模型

能自动或半自动对SAR 图像的特性进行较好的表征,更好地解决应用中的许多问题。

随着SAR 图像研究的不断深入,技术的不断成熟,SAR 图像的应用也必将会越来越广泛。它渐渐地深入到工业、农业、军事及其它各行各业,并发挥着越来越重要的作用。尤其在军事目标识别、矿藏资源的探测、监测全球气候指标、各种灾害的防治等等方面可以发挥不可比拟的作用。

参考文献:

〔1〕 http ://cafe .postech .ac .kr /research /sar /jeonbk -1/S AR -eng .

html

〔2〕 刘永昌,张平,严卫东,等.小波包域值法去除合成孔径雷达图

像斑点噪声〔J 〕.红外与激光工程,2001,30(3):160~162.

287

第5期 宋建社等:SAR 图像处理的最新研究与应用

〔3〕 屈晓荣.小波分析在SAR 图像处理中的应用〔D 〕

.第二炮兵工程学院硕士学位论文,2000.

〔4〕 赵锋,赵荣椿.纹理分割及特征提取方法综述〔J 〕.中国体视学

与图像分析,1998,3(4):238~244.

〔5〕 Fjortoft R,Lop s A,M arthon P,et al .An Opti m al M ultiedge

Detector for SAR Image Segmentation 〔J 〕.IEEE T rans Geoscience an d Remote Sensing (TGARS ),1998,36(3):793~802.

〔6〕 T upin F,M aitre H,Nicolas J M ,et al .Detection of Linear

Features in S AR Images:Application to Road Netw ork

Extraction 〔J 〕

.IEEE T rans Geosci Remote Sensing ,1998,36(2):434~453.

〔7〕 T upi n F,Bloch I,M aitre H.A First Step Tow ard Automatic

In terpretation of SAR Images Using E vidential Fusion of Several Structure Detectors 〔J 〕.IEEE Trans Geosci Remote Sensing ,1999,37(3):1327~1343.

〔8〕 Tupin F,Houshmand B,Datcu M .Road Detection in Dense

Urban Areas Using S AR Imagery and the Usefulness of M ultiple View s 〔C 〕.Submitted to IEEE T rans Geosci and

Remote S ensing ,2001.

〔9〕 袁礼海,宋建社,薛文通.航拍图像中道路识别的模型和算法

〔A 〕.中国电子学会第八届青年学术年会论文集〔C 〕.2002,668~671.

〔10〕 薛东辉,朱耀庭,朱光喜,等.基于尺度分维的图像边缘检测方

法研究〔J 〕

.华中理工大学学报,1996,24(8):1~3.〔11〕 都世民.望穿长空的电眼-合成孔径雷达〔J 〕.军事科技,

2000,375(10):41~42.\=〔12〕 章新华.一种特征选择的动态规划方法〔J 〕.自动化学报,1998,24(5):675~679.\=〔13〕 Jianshe S.Automatic Recogniti on of Road an d Hydrological Netw orks of SAR Im age Using W avelet T ransform and Fuzzy Cluster 〔M 〕.T SI ENST Paris,M arch 2000.

〔14〕 2D Digital Signal Processing:M edical Imaging Exampleshttp://

w w https://www.doczj.com/doc/dd5672545.html,/~jw adams/Image -Processing.pdf

〔15〕 Oliver C,Quegan S.Understanding Synthetic Aperture Radar

Images 〔M 〕.Artech House INC .Boston Lon don ,1998.〔16〕 裴继红.基于模糊信息处理的图像分割方法研究〔D 〕.西安电

子科技大学博士研究生学位论文,1998.

Recent Researches and Applications of SAR Image Processing

SON G Jian-she,YU A N Li-hai,XU E Wen-tong

(I nstitute of I nf ormation Engineer ing of The Second A rtillery Engineering I nstitute ,X i 'an 710025,China )Abstract :Sy nthetic Aperture Radar (SAR )is very important in study of m icrow ave remote sensing in modern remote sensing technology ,w hich is independent of time and the w eather conditions.The method of generating im age and inform ation is different to visible sensor.This paper gives the detail of SAR image information characteristics ,processing procedure ,algorithm developm ent and various applications .Denoising algorithms ,texture analy sis,linear feature and multi features ex traction from SAR images and so on are studied em phatically.SAR images have m ost w ide https://www.doczj.com/doc/dd5672545.html,itary applications are primarily concerned w ith detecting and recognizing targets.Unique properties of SAR data are now being ex ploited to aid further the ex ploitation of natural resources by detecting the lineament features and anti -cline structures w hich may indicate the presence of mineerl deposits.SAR sig nal processing algorithm s have been applied to medical data to produce detailed imag es.Finally,prospects for further developm ent of techniques for extracting inform ation from SAR im ages is discussed based on its current state .

Key words :Synthetic aperture radar (SAR );Image processing

288 遥 感 技 术 与 应 用 第17卷

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

南京邮电大学数字图像处理与图像通信复习资料

2016年上学期《数字图像处理与图像通信》资料 ===================================================== 一、选择题(共20题) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增 强。( B) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中 D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。( B ) A 平均灰度 B 图像对比度 C 图像整体亮度 D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以 便引入一些低频分量。这样的滤波器叫 B。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 11、下列算法中属于图象锐化处理的是: C A.低通滤波 B.加权平均法 C.高通滤 D. 中值滤波 12、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( A ) A、256K B、512K C、1M C、2M 13、噪声有以下某一种特性( D ) A、只含有高频分量 B、其频率总覆盖整个频谱 C、等宽的频率间隔内有相同的能量 D、总有一定的随机性 14. 利用直方图取单阈值方法进行图像分割时:(B) a.图像中应仅有一个目标 b.图像直方图应有两个峰 c.图像中目标和背景应一样大 d. 图像中目标灰度应比背景大 15. 在单变量变换增强中,最容易让人感到图像内容发生变化的是( C )

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势 摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。由此,本文主要探讨数字图像处理技术的现状及发展趋势。 关键词数字图像处理技术;现状;发展趋势 现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。 1 数字图像处理技术发展现状 数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。 2 数字图像处理技术的特点 数字图像处理技术有以下几个特点:①图像处理的多样性特点。数字图像处理技术可以编写多样的算法,以不同的程序模式施加于数字图像技术上,根据实际需求对图像进行处理,因此最终获取的图像效果也截然不同。②图像处理精度高。应用数字图像处理技术处理的图像,其精度和再现性都提高了一个层次,尤其是在各种算法和程序的支撑下,进一步确保了计算的精度和正确性。③交叉融合了多门学科和新技术。数字图像处理的应用基础包含了众多学科和技术,其中数学和物理是关键,而通信、计算机、电子等技术则是确保其处理质量的关键技术。④数据处理量大[3]。图像本身就包含了大量的信息,数字图像处理技术可以更好地区分有用信息和冗余信息,从而获取处理的关键性信息。

数字图像处理与图像通信

实验名称:图像的锐化处理 一、实验目的: 学习用锐化处理技术来加强图像的目标边界和图像细节。对图像进行梯度算子、Roberts 算子、Sobel算子边缘检测处理和Laplace算子边缘增强处理,是图像的某些特征(如边缘、轮廓等)得以进一步的增强及突出。 二、实验内容: (1) 编写梯度算子和Roberts算子滤波函数。 (2) 编写Sobel算子滤波函数。 (3) 编写拉普拉斯边缘增强滤波函数。 三、实验方法及编程: function new buf=RobF ilter(o ldbuf,M,N); % ************************************************************************ % 函数名称: % RobFilter() % 说明: % ‘Robert梯度’滤波算法。 % ************************************************************************ for i=1:M-1 for j=1:N-1 newbuf(i,j)=abs(o ldbuf(i,j)-oldb uf(i+1,j+1))+a bs(oldb uf(i+1,j)- oldbuf(i,j+1)); end end %------------------------------------------------------------------------- function new buf=SobF ilter(o ldbuf,M,N); % ************************************************************************ % 函数名称: % SobFilter() % 说明: % ‘Sobel’滤波算法。 % ************************************************************************ for i=2:M-1 for j=2:N-1 sx=oldbuf(i+1,j-1)+2*old buf(i+1,j)+oldb uf(i+1,j+1)- oldbuf(i-1,j-1)-2*oldbuf(i-1,j)-oldbuf(i-1,j+1); sy=oldbuf(i-1,j+1)+2*old buf(i,j+1)+old buf(i+1,j+1)- oldbuf(i-1,j-1)-2*oldbuf(i,j-1)-oldbuf(i+1,j-1); newbuf(i,j)=abs(s x)+abs(sy); end end %-------------------------------------------------------------------------function new buf=LapF ilter(o ldbuf,M,N);

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

数字图像处理技术及其应用_李红俊

·620· 计算机测量与控制.2002.10(9)  Computer Measurement &Control 设计与应用 收稿日期:2001-12-04。作者简介:李红俊(1974-),男,山西省平遥县人,硕士研 究生,主要从事机械电子方向的研究。 文章编号:1671-4598(2002)09-0620-03 中图分类号:T P391.41 文献标识码:B 数字图像处理技术及其应用 李红俊,韩冀皖 (太原理工大学机械工程学院,山西太原 030024) 摘要:介绍了数字图像处理的基本概念、基本原理,对其中一些算法进行了详细的说明,对不同算法进行了比较。同时,在对现有图像处理方法进行应用的同时,对滤波做了一些新的尝试。最后,将像素细分算法应用于实际生产中, 获得了较好的效果。 关键词:数字图像处理;边缘检测;滤波;像素细分算法 Digital Image Processing and Its Application LI Hong -jun ,HAN Ji -w an (Taiy uan University of T echnolo gy ,T aiyuan 030024,China ) Abstract :T he basic co ncepts and basic principals of digital imag e processing are introduced .Some arithmetics and compari -so n between different arithme tics are expounded .New methods of sieve are adopted when existing image processing methods is being applied .A t last ,the arithmetic of subpixel is applied into practice and obtains effect preferably . Key words :digital image processing ;edge detecting ;sieve ;arithmetic of subpixel 1 序言 图像处理技术基本可以分成两大类:模拟图像处 理(Analog Image Processing )和数字图像处理(Dig -ital Image Processing )。数字图像处理,通俗地讲就是利用计算机对图像进行处理。因此也称之为计算机图像处理(Computer Image Processing )。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。存在的问题主要在于处理速度,特别是进行复杂的处理更是如此。数字图像处理概括地说主要包括如下几项内容:几何处理(Geometrical Pro -cessing )、算术处理(Arithmetic Processing )、图像增强(Image Enhancement )、图像复原(Image Restora -tion )、图像重建(Image Reconstruction )、图像编码(Image Encoding )、图像识别(Im age Recognition )、图像理解(Image Understanding )。图像处理技术的发展涉及越来越多的基础理论知识,雄厚的数理基础及相关的边缘学科知识对图像处理科学的发展有越来越大的影响。总之,图像处理科学是一项涉及多学科的综合性科学。 2 边缘检测 所谓边缘应是物体的轮廓或物体不同表面之间的交界在图像中的反映。它的形成是由于物体的材料不同或表面的朝向不同,引起在图像中的边缘处存在明暗、色彩、纹理的变化。因此反过来在图像中检查不 同灰度、色彩等特性区域的交界处就可得到边缘。边缘轮廓是人类识别物体形状的重要因素,也是图像处理中重要的处理对象。 图1 边缘和灰度值模型示意图 如上所述,边缘常常发生在灰度突然变化的部 位,如图1(a )所示,两边为不同的灰度级g 1、g 2,则x 0处为边缘。但实际上由于物体表面交界处灰度常常缓慢变化,在图像中表现为边缘是有一定宽度的,如图1(b )所示,而且由于物体表面的曲折变化加上噪声干扰,边缘时常显得模糊不清,这给边缘的检测带来一定的困难。另外,有的物体本身为条状的区域,例如河流、道路或物体表面的裂缝,它们的边缘表现为狭长的平行线(1~2个像元宽度),如图1(c )所示,而且两边灰度相同或相近,因此检查的方法也有所不同。 边缘检测主要采用各种算法来发现、强化图像中那些可能存在边缘的像素点。边缘检测算子可分为微分(梯度)法、模板匹配法和区域拟合法3种基本方法。对于边缘检测影响较大的是图像中的噪声、退化、模糊等因素,这些都需要特殊的算法来解决。 3 滤波 当图像输入到计算机的时候,由于输入转换器件(如光敏器件、A /D 转换器等性质的差别)及周围环 DOI :10.16526/j .cn ki .11-4762/tp .2002.09.022

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

数字图像处理技术的应用与发展

郑州航空工业管理学院 2013 - 2014 学年第2 学期 《信息管理前沿讲座》(双语I) 课程论文 题目数字图像处理技术的应用与发展 专业信息管理与信息系统班级1304972 姓名学号 任课教师职称副教授 二О一四年五月三十日

数字图像处理技术的应用与发展 130497227王琼菲 摘要数字图像处理是将图像信号转换成数字信号并利用计算机对其进行处理的过程。文章简述了数字图像处理技术的主要特点和优点、以及数字图像处理的过程、数字图像处理技术的应用、数字图像处理技术的研究方向和内容,并根据最新进展,阐述了数字图像处理技术5个主要研究方面的最新热点,最后总结了数字图像处理技术领域中面临的主要发展领域和未来发展方向。 关键词数字图像处理,采集,识别,应用 Application and Development of the Digital Image Processing Technology 130497227 Wang Qiongfei A bstract D igital image processing is to process the image signal into digital signal and processed by computer to its。This paper briefly introduces the digital image processing technology, and the main characteristics and advantages of digital image processing, the application of digital image processing technology, the digital image processing technology research direction and content, and according to the latest advances in digital image processing technology, introduces 5 new hot main research aspects, summarizes the main development faces in the field of technology in the field of digital image processing and the development direction in the future。Key words Digital image processing, Collection, Identification, Application

数字图像处理应用论文数字图像处理技术论文

数字图像处理应用论文数字图像处理技术论文 关于数字图像处理及其应用的研究 摘要:首先对数字图像处理的关键技术以及相应的处理设备进行详细的探讨,然后对数字图像处理的应用领域以及发展趋势进行详尽论述。 关键词:数字图像处理:关键技术;应用领域 0 引言 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪50年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代扔,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系,成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。

1 数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原,以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节。或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

数字图像处理

实验一、图像的输入、输出和显示 一、实验目的: 熟悉由图像输入设备、图像处理设备及图像输出设备组成的数字图像处理系统。熟悉MATLAB软件开发环境。学习MATLAB编程环境下对图像的输入输出操作、颜色分量的理解、格式转换操作以及对图像的像素级运算操作。 二、实验设备: 计算机、matlab 7.0软件 三、实验原理 利用MATLAB图像处理工具箱中的函数,在MATLAB编程环境下,1)实现对彩色图像的颜色分量的操作;2)实现将彩色图像转换为灰度图像;3)实现对灰度图像的象素级运算,改变指定象素的灰度级。 四、实验内容: 1.将自己在课前准备好的真彩色图像文件输入计算机,运行MATLAB集成开发环境。 2.在MATLAB编程环境下,读取和显示该真彩色图像,通过对其颜色分量进行操作而显示仅保留G颜色分量的图像,并存入另一个文件; 3.将该真彩色图像转换为灰度图像,并显示; 4.对灰度图像进行象素级运算,使位于101-200行,101-200列的矩形区域内的像素的灰度值减半,显示运算结果; 5.将以上4种图像在同一窗口显示。 1 clc clear A=imread('C:\MATLAB7\toolbox\images\imdemos\greens.jpg') subplot(2,2,1); imshow(A);title('原始图像'); A(:,:,1)=0; A(:,:,3)=0; subplot(2,2,2); imshow(A);title('保留G颜色图像');

imwrite(A,'C:\MATLAB7\toolbox\images\imdemos\1.jpg'); B=rgb2gray(A); subplot(2,2,3); imshow(B);title('灰度图象'); imwrite(B,'C:\MATLAB7\toolbox\images\imdemos\2.jpg') for i=101:200 for j=101:200 B(i,j)=uint8(0.5*double(B(i,j))); end end subplot(2,2,4); imshow(B);title('灰度值减半的图像'); imwrite(B,'C:\MATLAB7\toolbox\images\imdemos\3.jpg'); 原始图像保留G颜色图像 灰色图像灰度值减半的图像

数字图像处理试卷及答案-百度文库

1、列举数字图像处理的三个应用领域 2、存储一幅大小为10241024,256个灰度级的图像,需要 8M bit。 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越差。 4、直方图均衡化适用于增强直方图呈分布的图像。 5、依据图像的保真度,图像压缩可分为 6、图像压缩是建立在图像存在编码冗余、像素间冗余、心理视觉冗余 三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是、亮度。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法:(g(x,y)mgin)*255gm/(g ax 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。( B ) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中 D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。( B ) A 平均灰度 B 图像对比度 C 图像整体亮度 D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV T4、采用模板[-1 1]主要检测( A )方向的边缘。 A.水平 B.45 C.垂直 D.135 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时,RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器

数字图像处理技术

数字图像处理技术 一.数字图像处理概述 数字图像处理是指人们为了获得一定的预期结果和相关数据利用计算机处理系统对获得的数字图像进行一系列有目的性的技术操作。数字图像处理技术最早出现在上个世纪中期,伴随着计算机的发展,数字图像处理技术也慢慢地发展起来。数字图像处理首次获得成功的应用是在航空航天领域,即1964年使用计算机对几千张月球照片使用了图像处理技术,并成功的绘制了月球表面地图,取得了数字图像处理应用中里程碑式的成功。最近几十年来,科学技术的不断发展使数字图像处理在各领域都得到了更加广泛的应用和关注。许多学者在图像处理的技术中投入了大量的研究并且取得了丰硕的成果,使数字图像处理技术达到了新的高度,并且发展迅猛。 二.数字图象处理研究的内容 一般的数字图像处理的主要目的集中在图像的存储和传输,提高图像的质量,改善图像的视觉效果,图像理解以及模式识别等方面。新世纪以来,信息技术取得了长足的发展和进步,小波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产生了新的图像处理方法和理论。比如,数学形态学与神经网络相结合用于图像去噪。这些新的方法和理论都以传统的数字图像处理技术为依托,在其理论基础上发展而来的。数字图像处理技术主要包括: ⑴图像增强 图像增强是数字图像处理过程中经常采用的一种方法。其目的是改善视觉效

果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或加强特征的措施就称为图像增强。 ⑵图像恢复 图像恢复也称为图像还原,其目的是尽可能的减少或者去除数字图像在获取过程中的降质,恢复被退化图像的本来面貌,从而改善图像质量,以提高视觉观察效果。从这个意义上看,图像恢复和图像增强的目的是相同的,不同的是图像恢复后的图像可看成时图像逆退化过程的结果,而图像增强不用考虑处理后的图像是否失真,适应人眼视觉和心理即可。 ⑶图像变换 图像变换就是把图像从空域转换到频域,就是对原图像函数寻找一个合适变换的数学问题,每个图像变换方法都存在自己的正交变换集,正是由于各种正交换集的不同而形成不同的变换。图像变换分为可分离变换和统计变换两大类。 ⑷图像压缩 数字图像需要很大的存储空间,因此无论传输或存储都需要对图像数据进行有效的压缩,其目的是生成占用较少空间而获得与原图十分接近的图像。 ⑸图像分割 图像分割的目的是把一个图像分解成它的构成成分,图像分割是一个十分困难的过程。图像分割的方法主要有两类:一种是假设图像各成分的强度值是均匀的,并利用这个特性。另一种方法是寻找图像成分之间的边界,利用的是图像的不均匀性。 ⑹边缘检测 边缘检测技术用于检测图像中的线状局部结构。边缘是图像中具有不同平均

数字图像处理学习报告

数字图像处理学习报告 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1. 数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要 求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易 分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的 退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。

数字图像处理技术的现状及其发展方向

数字图像处理技术的现状及其发展方向 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane 电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪5O年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代初,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系。成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。 1.数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原:以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节,或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。 2.数字图像处理设备研究 通常,要把模拟图像转化为数字图像,需要用到相应的一些图像数字化设备。常见的数字化设备有数字相机、扫描仪、数字化仪等。一般来说,图像的数字化包括采样和量化两个过程。图像在空间上的离散化称为采样。用空间上部分点的灰度值代表图像,这些点称为采样点。模拟图像经过采样后,离散化为像素。但像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。通常来说,采样点数越多,图像质量越好,但占空间大。当图像的采样点数一定时,量化级数越多,图像质量越好。数字图像处理系统由图像数字化设备、图像处理计算机和图像输出设备组成。 为完成上述功能,图像数字处理系统应当包含以下五个组成部分:1)采样孔;2)图像扫描机构;3)光传感器;4)量化器:将传感器输出的连续量转化为整数值;5)输出存储装置。 3.数字图像处理的应用领域研究 目前,数字图像处理主要被应用在以下几个方面:通信:图象传输,电视电话,HDTV 等;生物特征识别:基于生理特征的身份识别:指纹、人脸、虹膜等,基于行为特征的身份识别:步态、语音等,可以用于安保、视频监控等;光学字符识别:印刷体识别(例如:扫描识别软件),手写体识别(例如:手机手写字符识别);宇宙探测:星体图片处理;遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的

数字图像处理与通信复习题(前面几个题的复习资料+实验程序)

数字图像处理与通信复习题 这次考试包含中英文题目,还有实验题。注意:实验题如果没做好,实验报告的成绩就会不及格! 实验用到的MA TLAB语句的含义。 MATLAB中的命令:图像读取命令:imread、图像显示命令:imshow 图像运算:点运算:对图像的每个像素点的灰度值按一定的映射关系进行运算,得到一幅新图像的过程。模板运算: 图像增强、复原的异同:都是为了改善图像视觉效果,以及便于后续处理。只是图像增强方法更偏向主观判断,而图像复原则是根据图像畸变或退化原因,进行模块化处理。 直方图原理,作用:灰度级直方图是图像的一种统计表达,它反映了该图中不同灰度级出现的统计概率。由于图像的视觉效果与直方图有对应关系,即直方图的形状和改变对视觉的感知影响很大,因此采用直方图变换的方法可以增强图像。直方图均衡化:使得图像的灰度分布趋向均匀,图像所占有的像素灰度间距拉开,加大了图像反差,改善视觉效果,达到增强的目的。 图像变换方法特点:离散傅里叶变换:1.可分离性2.平移性质3.旋转不变性。离散余弦变换:能量主要集中在频率平面的左上角。沃尔什-哈达玛变换:变换矩阵只由+1和-1组成,与数值逻辑的两个状态相对应,故更适用于计算机实现,同时占用空间少,且计算简单。 DCT的特点和意义:能量主要集中在频率平面的左上角。DCT用于图像数据压缩。 分割的含义:图像分割是将数字图像划分成互不相交(不重叠)区域的过程,区域是像素的连通集,是所有像素都有相邻或相接触像素的集合。 图像压缩方法的分类:从信息论角度分,无失真压缩编码和有限失真编码。按照压缩原理分,预测编码、变换编码、标量量化编码和矢量量化编码、信息熵编码、子带编码、结构编码和模型编码。JPEG实现框图,为什么要把RGB转化为YUV;直流交流量化不同,无损压缩的实现。 图像按其亮度等级的不同,可以分成二值图像和灰度图像两种。按其内容的变化性质不同,有静态图像和活动图像之分。 图像质量的含义包括两方面,一个是图像的逼真度,另一个是图像的可懂度。图像质量的评价方法主要有主观评价方法和客观评价方法。 面向硬件设备最常用的颜色空间是RGB三基色模型,而在彩色电视系统中采用的是YUV颜色空间,它包含亮度信号和色度信号。另一类是面向以彩色处理为目的的应用,常用的有HSI,构成该彩色空间的三个分量分别是色调、饱和度和强度。 数据压缩的目的是节省存储空间、传输时间、信号带宽或发送能量等。根据压缩前后能否完全恢复被压缩信源信息,数据压缩分为无损压缩和有损压缩。著名的静态图像压缩标准有JPEG等。 著名的动态图像压缩标准有MPEG等。 从信息交流的角度来看图像通信的应用大致上可以分为两类:交互式应用和广播式应用。 从网络结构的角度来看,图像通信方式可以分为两类:点对点的通信方式和多点之间的通信方式。基于IP网络的H.323是典型的视频会议标准,其视频编码标准为H.261/H.263。 基于PSTN的H.324是典型的可视电话标准,传输码率低于64kbit/s 。 采用数字图像处理有何优点?优点:具有数字信号处理技术共有的优点:处理精度高、重现性好、灵活性好。

相关主题
文本预览
相关文档 最新文档