当前位置:文档之家› 近年来长江流域气溶胶光学厚度时空变化特征分析

近年来长江流域气溶胶光学厚度时空变化特征分析

近年来长江流域气溶胶光学厚度时空变化特征分析
近年来长江流域气溶胶光学厚度时空变化特征分析

S型热气溶胶自动灭火装置简介

洁净环境S型热气溶胶自动灭火装置(以下简称S型自动灭火装置)是由东莞永业消防设备有限公司利用现代消防化工技术研制和生产的环保型混合气体灭火产品。在生产过程中无毒、实施灭火过程中效率高、压力低、无残留物、对被保护物无腐蚀、安全性强、不存在F、C1、Br、CO等有害物质,pdp=0、GEP ≤0.35、目前是消防领域用途比较广泛的灭火产品。 S型热气溶胶自动灭火装置的原理是以物理、化学、水汽降温三种灭火方式同时进行的全淹没灭火形式: 物理性质:以物理性稀释空气中氧气“窒息灭火”为主要方式,切断火焰反应链进行链式反应破坏火灾现场的燃烧条件,迅速降低自由基的溶度。 化学性质:存在抑制链式燃烧反应进行的化学灭火方式。 水汽性质:水蒸气冷凝与气化降低燃烧物温度。 适用范围 S型热气溶胶灭火系统为全淹没系统,适用于扑灭相对封闭空间的A、B类火灾以及电气电缆初起火灾。 a、扑灭A类火灾: 如木材、纸张等固体物质初起火灾,适用于木制品库、档案库、博物馆、图书馆、资料室等场所。 b、扑灭B类火灾: 适用于生产、适用或贮存才有(-35号柴油除外)、重油、变压器油、动物油、植物油等各类丙类可燃液体场所火灾。 c.扑灭电气电缆火灾: 适用于变(配)电间、发电机房、电缆夹层、电缆井、电缆沟、电子计算机房、通讯房等场所的火灾。 不适用范围 1、S型自动灭火装置不能用于扑救下列物质引起的火灾: 2、无空气仍能迅速氧化的化学物质,如硝酸纤维、火药等。 3、活泼金属,如钾、钠、镁、钛、锆、铀、钚等。 4、能自行分解的化合物,如某些过氧化物、联氨等。 5、金属氢化物,如氢化钾、氢化钠等。 6、能自燃的物质,如磷等。 7、强氧化剂,如氧化氮、氟等。 不适用场所 商业、饮食服务、娱乐等人员密集场所。 存放易燃、易爆物资的场所。

沈阳地区气溶胶光学性质研究

沈阳地区气溶胶光学性质研究 1.引言 大气气溶胶是指均匀分散于大气中的固体微粒和液体微粒所构成的稳定混合体系,其中的微粒统称为气溶胶粒子。此类粒子的空气动力学直径在100μm以下,主要包括沙尘气溶胶、碳气溶胶、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶6类气溶胶粒子。气溶胶在紫外、可见光、红外等波段对辐射的吸收和散射对全球天气过程和气候产生重要影响(Boucher etc. , 1995;Breon etc. , 2002;Satheesh etc. , 2005)。而气溶胶的增加会使空气质量恶化,进而影响人体健康。所以气溶胶对于气候变化和人体健康有着重要的意义。 AOD(Aerosol Optical Depth,气溶胶光学厚度),物理意义是沿辐射传输路径,单位截面上因气溶胶吸收和散射对太阳辐射产生的总削弱。它与垂直方向上大气柱总的气溶胶浓度有关,是表征大气浑浊度的重要物理量(Reddy and Venkataraman, 2000;Lata etc. ,2003;Kaskaoutis etc. , 2006)。 在地理上,沈阳市位于中国东北地区南部,辽宁省中部,以平原为主,山地、丘陵集中在东南部,而辽河、浑河、秀水河等途径境内,属于温带半湿润大陆性气候,平均海拔约50m。沈阳也是建国初期国家重点建设起来的以装备制造业为主的全国重工业基地之一,工业门类达到142个,到2013年为止规模以上工业企业4000多家,地区生产总值7000多亿元。在2015年4月3日沈阳市环保局发布了影响环境空气质量主要污染源有:工业污染、燃煤锅炉和生活炉灶、交通运输、城市扬尘。 目前,对于沈阳地区AOD的研究相对较少,而AOD的变化特征对研究大气环境有着重要意义。因此,笔者基于沈阳2004年8月至2011年10月光学厚度资料,结合地面常规气象观测资料,分析沈阳市AOD变化特征以及气象因子对其影响,希望能对沈阳市大气环境治理提供参考。 2.数据资料 中国科学院大气物理研究所联合国内外单位于2004年7月建立了中国地区太阳分光观测网CSHNET为定量评估中国区域气溶胶的气候和环境效应提供基础观测数据。观测网包括19个中国生态系统研究网络(CERN)定位站、4个典型城市站、香河站和拉萨站两个长期标定站。观测网统一采用新一代便携式LED太阳分光光度计,选取每天10:00~14:00进行观测,0.5h观测一次,每次3组数据,每天至少观测15组数据(天空总云量超过8时不可进行观测)。本文所使用地面光学厚度观测资料来自其中沈阳站。 沈阳站地处松辽平原南部,站点的地理位置为北纬41.52°,123.63°,海拔31m,位于辽中南城市群所在地,是我国重工业基地及乡镇企业迅速发展的地区之一,我国重要的商品粮基地。高投入农业和工业污染给本区农业持续发展带来一系列待解决的生态环境问题。从地理位置上讲,沈阳神态站正好处于由东到西水分因子驱动和由南到北热量因子驱动的横穿我国境内的两条样带上,具有很好的区域代表性和网络研究的重要性。沈阳气候类型属于暖温带半湿润大陆性季风气候,年平均气温7.0~8.0℃,无霜期147~164天,年降水量650~700mm(辛金元,2006)。 Angstrom【1964】给出了气溶胶光学厚度与波长间的关系为 τaerosol(λ)=βλ-α τaerosol(λ)为波长为λ的AOD反映大气气溶胶光学厚度 β为Angstrom混浊系数,与测站上空垂直气柱内的气溶胶质粒总数有关,以代表大气

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

气溶胶灭火系统说明书

一、热气溶胶灭火技术简介 1、YHQRR 热气溶胶灭火机理 .... 2、YHQRR 热气溶胶灭火技术性能 目录 .2 二、 YHQRR 热气溶胶灭火装置的技术特点 3... 1、可靠的启动装置 2、独特的冷却装置 3、产品选型及分类 4、灵活的应用方式 5、市场技术优势 .. 3 3 3 4 4 三、 YHQRR 热气溶胶灭火系统设计要求 4 .. 1、YHQRR 热气溶胶灭火系统适用范围 ..... 2、YHQRR 热气溶胶灭火系统设计基本参数 3、YHQRR 热气溶胶灭火剂设计用量计算 4、YHQRR 热气溶胶灭火系统配置要求 ..... 4 4 5 5 四、 YHQRR 热气溶胶灭火系统注意事项 7.. 1、YHQRR 热气溶胶灭火系统设计、施工注意事项 2、YHQRR 热气溶胶灭火系统调试注意事项 ...... 3、YHQRR 热气溶胶灭火系统管理注意事项 ......

、热气溶胶灭火技术简介 1、YHQRR 热气溶胶灭火机理 “气溶胶” 是指液态或固态的微粒悬浮于气体介质中的一种物质,其灭火机理如下所述: 1.1、吸热降温灭火机理 热气溶胶产物中的固体微粒主要为M20 、M2C03 和MHC03 ,这三种物质在火焰上均会发生强烈的吸热反应。 M20在温度大于350C时就会分解,M2C03的熔点为891 C,超过这个温度就会分解,MHC03在100C开始分解, 200 C时完全分解,这些都是强烈的吸热反应,另外,M20和C在高温下还可能进行如下吸热反应: M20+CH2 M+C0 2M 20+CH4M+C02 上述反应都是强烈的吸热反应,这些固体微粒在火场中发生上述化学反应之前的物理气化过程中还需要从火焰 中吸收大量的热,使其达到上述反应所需的温度而进行反应。任何火灾在较短的时间内所释出的热量是有限的,如果在较短的时间内,气溶胶中的上述固体微粒能够吸收火焰的部分热量,那么火焰的温度就会降低,则辐射到可燃烧物燃烧面时,用于气化可燃物分子和将已经气化的可燃烧分子裂解成自由基的热量就会减少,燃烧反应的速度就会得到一定程度的抑制,这种作用在火灾初期尤为明显。 1.2、化学抑制灭火机理 ①气相化学抑制作用通过上述的一系列吸热反应以后,气溶胶固体微粒所分解出的M 可以以蒸气或失去电子的阳离子形式存在。它 与燃烧中的活性基团H ?、0 ?和0H的亲合力反应能力要比这些基团以及这些基团与其它可燃物分子或自由基之间的亲合反应能力大得多,故可在瞬间与这些基团发生多次链式反应: M + - 0hH M0H M +0-HM0 M 0H+- 0hHK0+H20 M 0H+H H M +H20 如此反复大量消耗活性基团,并抑制活性基团之间的放热反应,从而将燃烧的链式反应中断,使燃烧得到抑制。 ②固相化学抑制气溶胶中的固体微粒是很微小的,具有很大的比表面积和表面能,属典型的热力学不稳定体系,它具有强烈地 使自己表面能降低以期达到一种相对稳定状态的趋势。因此它可以有选择性地吸附一些带电离子,使其表层的不饱和力场得到补偿而达到某种相对稳定状态。另外这些微粒虽小,但相对于自由基团和可燃物裂解产物的尺寸来说却要大得多,相比对活性自由基团和可燃物裂解产物具有相当大的吸附能力。这些微粒在火场中被加热以致发生气化和分解是需要一定时间的,而且也不可能完全被气化或分解。当它们进入火场以后,当受到可燃物裂解产物和自由活性基团的撞碰冲击后,瞬间对这些产物和基团进行物理或化学吸附,并可在其表面与活性的基团发 生化学作用。可发生以下反应: M 2O+2- HH2K0H M 0H+- HH M0+H20 M 0+- HH KOH M 2CO3+2 - H H TM HCO3 通过以上化学或物理作用达到消耗燃烧活性自由基团的目的,另外吸附了可燃物裂解产物而未被气化分解的微粒,可使得可燃物裂解的低分子产物不再参与产生活性自由基的反应,这将减少自由基产生的来源,从而抑制燃烧速度。 1.3、惰性气体窒息机理热气溶胶灭火剂是一种自携氧可燃混合型药剂,其配方设计一般为正氧平衡和零氧平衡,这使得其在反应释放气溶胶的过程中不需消耗空中的氧,所以它一般不会降低防护区的氧含量。那么其所释放的惰性气体是如何局部对燃烧区的氧含量进行降低呢?这应该是通过C02 来实现的,因为C02 比空气重(C02 的分子量为44,空气的平均分子量为29),所以当火源较低时, C02 气体通过重力可下降到燃烧区取代空气使这一区域氧含量局部降低。 总的来说,热气溶胶的灭火作用是以上两种机理协同发挥作用的结果,其中以固体微粒的吸热降温和化学抑制作用为主,惰性气体的窒息作用为辅。 2、YHQRR 热气溶胶灭火技术性能 2.1、技术经济性热气溶胶灭火装置形态多样、配置灵活、启动可靠,可干净、迅速、高效、低成本的早期灭火和抑爆,是目前较理想的环保型灭火系统。热气溶胶灭火系统工作时,是在固体气溶胶发生剂通过热化学燃烧反应过程中生成的,气溶胶灭火剂释放到被保护空间。同时无需管网和高压容器等,灭火装置直接安装在防护区内,体积小、安装方便,可大大节省建设投资,可靠性好,无需维护,运行费用低。 2.2、对设备的安全性 热气溶胶发生剂以电启动或化学启动后通过热化学燃烧反应生成的产物,即气溶胶灭火剂。该灭火剂中按质量 百分比,60%为气体,其成分主要是氮气(N2)、水蒸气(H2O),少量的二氧化碳(CO2)及微量的一氧化碳(CO)、氮氧化物(NOx)、氧气(O2)和碳氢化合物;占灭火剂40%的固体微粒主要是金属氧化物、碳酸盐、碳酸氢盐及 少量金属碳化物。对于机电设备间、电缆设施等防护空间,热气溶胶灭火剂不会对其设备造成影响,只要在热气溶胶灭火系统释放后及时通风、清扫即可,完全符合工业领域消防要求的需要。

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

外文文献翻译-:上海冬季亚微米级气溶胶吸湿性增长特性说课讲解

冬季上海地区亚微米级城市气溶胶的吸湿性增长 摘要: 吸湿性增长因子和混合状态的信息对理解被严重污染的长三角地区的雾的形成机制具有重要的作用。在此研究了环境气溶胶的吸湿性增长。用HTDMA测量了复旦大学校园中粒径在30-250nm的干粒子的吸湿性增长因子,研究两种模式化的表面混合物。较少吸湿组在85%的相对湿度下的吸湿性增长因子为1.10。较少吸湿组的平均数部分在0.33-0.17范围内呈现多样化,随着干粒子的尺度的增长有轻微的减少。较多吸湿组的吸湿性增长因子显示出爱根核与积聚模态的粒子有显著的不同。爱根核为接近1.3,而积聚模态为1.4以上。在以硫酸铵盐为基础的模式中,较多吸湿组的吸湿体积增长分数在0.47-0.70这个范围内,而且爱根核和积聚模态的粒子的吸湿性增长分数的界限很清晰。以相对湿度测试为背景的吸湿性增长不仅显示出潮解相对湿度决定于粒子大小,同时也显示出硝酸盐粒子的增长最初是由硫酸盐的凝结提升的。结果也表明了大多数积聚模态的粒子在有雾的情况下都会潮解。 1前言: 近20年来,随着经济的快速增长和城市化进程的加快,中国超大城市的空气污染问题越来越受到关注。由化石燃料燃烧排放的一次污染物和由光化学氧化和多相反应而来的二次污染物对城市居民的环境和健康造成了极大地威胁。雾这种能见度小于十公里的现象是由于高浓度的微粒排放造成的。长江三角洲是中国四大雾区之一。作为长三角的经济中心,上海为国家GDP做出了4.6%的贡献。作为全国最大的超大城市,上海有1800万的常住居民和280万的流动人口(Geng等人,2008)。由当前研究为基础做出结论,上海雾天能见度的下降主要是由于PM2.5浓度升高造成的(Fu等人,2008)。 很多因素影响着大气能见度,比如化学组成、粒子大小的贡献、气溶胶的构成和气溶胶的混合状态。水相、海盐和矿物尘埃的参与促进了硝酸的吸湿反应。N2O5在对流层表面的水解(Dentener和Crutzen,1993;Mongili等人,2006),硫酸盐在有雾状态下的组成(Tursic等人,2004)。环境气溶胶的吸湿增长会改变粒子大小和光学特性(Gasso等人,2000;Kotchenruther等人,1999;Swietlicki等人,1999)。作为相对湿度RH的功能之一的光散射性质是衡量大气气溶胶直接影响气候的衡量参数之一,有些人已经试图将吸湿性增长因子包含到全球气候模型中去(Boucher 和

S型气溶胶自动灭火系统技术介绍

S型气溶胶自动灭火系统技术介绍 1 概述 DKL固定式自动灭火装置(以下简称DKL灭火装置)是国内首创,具有世界先进水平的新型环保消防产品。它是在国际蒙特利尔协定和我国环境保护意识增强的背景下诞生的造福人类的高科技绿色消防产品,是哈龙灭火装置的理想替代产品,适用于通讯机房(Telecommunications facilities)及电子计算机房(Computer rooms)。 1.1 产品特点:灭火速度快,全方位灭火,不受火源位置影响;通过自动灭火控制器自动灭火,无须人员值守;运行储存于常压状态;无须敷设管网,简便易行,安装维修简单;可组合安装;无毒害,无腐蚀;不损耗大气臭氧层。 1.2 主要用途及适用范围(包括不适用范围及场所) 1.2.1 DKL灭火装置主要应用于通讯、邮电、冶金、电力、金融等行业的消防灭火。 1.2.2 DKL灭火装置适用于在相对封闭条件下扑救下列火灾 1.2.2.1 通讯机房、电子计算机房、变(配)电间、发电机房、电缆井、电缆沟、等场所的电气火灾。 1.2.2.2 生产、使用或贮存柴油(-35号柴油除外)、重油、变压器油、润滑油、动物油、植物油等各种丙类可燃液体场所的火灾。 1.2.2.3 生产、使用或贮存可燃固体物质场所的固体物质表面火灾。 1.2.3 DKL灭火装置不能用于扑救下列物质的火灾 1.2.3.1 无空气仍能迅速氧化的化学物质和能自行分解的化学物质。 1.2.3.2 活泼金属、金属氢化物、强氧化剂和自燃的物质。 1.2.3.3 可燃固体物质的深位火。 1.2.4 DKL灭火装置不适用于下列场所 1.2.4.1 爆炸危险区域。 1.2.4.2 商业、交通、饮食服务、文体娱乐等公共场所。 1.2.4.3 人员密集场所。 1.3 S型DKL气溶胶自动灭火装置规格型号

气溶胶自动灭火装置使用说明书解读

新一代环保洁净型气溶胶自动灭火装置 使 用 说 明 书

广州海安消防设备有限公司 目录 第一章概述 (1) 第二章S型自动灭火装置的灭火原理 (1) 第三章适用范围和不适用范围 (1) 第四章装置构成及型号编制 (1) 第五章S型灭火装置的主要技术参数 (2) 第六章简明设计指南 (2) 第七章S型灭火系统控制模式 (3) 第八章S型灭火装置的安装、日常维护和使用 (4)

第一章概述 金海安牌(S)环保型自动灭火装置(以下简称S型自动灭火装置)是由广州海安消防设备有限公司利用现代化工技术自行研制和生产的环保型混合气体灭火产品。在生产过程中无毒、无污染、无公害,实施灭火过程中效率高、压力低、无残留物、对被保护物无腐蚀、安全性强、不存在F、Cl、Br、CO等有害物质,ODP=0、GWP≤0.35、不破坏大气臭氧层。是目前消防领域代替哈龙产品的理想产品。 第二章 S型自动灭火装置的灭火原理 1、IVS型灭火剂的特性 IVS型灭火剂是一种固体含能化学物质,属于烟火药剂。利用电子气化启动器激活IVs 型灭火剂,使其发生化学反应,能产生大量惰性气体、水汽和微量固体颗粒,形成混合气体,混合气体从IVS型自动灭火装置的喷口向外释放喷射,扑灭火灾。 2、S型自动灭火装置的灭火原理 S型自动灭火装置的灭火机理是以物理、化学、水汽降温三种灭火方式同时进行的全淹没灭火形式: a、以物理性稀释空气中氧气“窒息灭火”为主要方式,切断火焰反应链进行链式反应 破坏火灾现场的燃烧条件,迅速降低自由基的浓度; b、存在抑制链式燃烧反应进行的化学灭火方式; c、水蒸汽冷凝与气化降低燃烧物温度。 第三章适用范围和不适用范围 1、适用范围 S型气溶胶系统为全淹没系统,适用于扑灭相对封闭空间的A、B类火灾以及电气电缆初起火灾。 a、扑灭A类火灾: 如木材、纸张等固体物质初起火灾,适用于木制品库、档案库、博物馆、图书馆、资料室等场所;

大气气溶胶表面化学与光学特性研究进展

大气气溶胶表面化学与光学特性研究进展 陈建民* 复旦大学全球环境变化研究所,上海,200433 复旦大学环境科学与工程系,上海,200433 *Email:jmchen@https://www.doczj.com/doc/d75127536.html, 大气气溶胶有一次排放的矿尘、黑炭(soot)、海盐等,二次气溶胶富含硫酸盐、硝酸盐、铵盐、有机物等成分。大气气溶胶作为污染物的载体或反应床,其表面界面化学反应及消光(光吸收、光散射)特性,对空气质量、大气能见度产生影响,其消光特性对气候效应产生直接影响、作为云凝结核影响成云与降雨表现出对气候效应产生间接影响。本文对近年来矿尘、黑炭、海盐、混合气溶胶与SO2、NOx、有机物、O3等大气污染物表面化学反应机理研究前沿进行了分析,特别对大气气溶胶表面变化引起的光吸收、光散射特性的变化规律进行介绍,指出该领域发展前沿难点问题及重要的研究方向。 Progress on Aerosol Surface Chemistry and its Optical Property Jianmin Chen* Research Institute for the Global Environment Change, Fudan University, Shanghai , 200433 Department of Environmental Science & Engineering, Fudan University, Shanghai , 200433 Aerosol includes primary emission such as dust, black carbon(soot), sea-salt, and secondary evolutings like sulfate, nitrate, ammonium and organics et.al. Aerosol provides surfaces serving as a carrier or reaction bed for pollutants. The atmosperic chemistry of aerosol and its optical extinction (light adsorption and scattering) during heterogeneous reaction have significantly effects on air quality, visibility. Aerosol light extinction has both direct impact on climate change through absorption and scattering of solar radiation, and indirectly, through the modification of cloud properties and wet deposition. This paper concerns recent progress on surface chemistry of heterogeneous reaction mechanism between dust, soot, sea-salt and SO2、NOx、organics、O3 et al..The focus of significant research effort has been paid on light adsorption and scattering yet remaining highly uncertain and a significantvconstraint on the evaluation of climate sensitivity.

气溶胶光学特性的反演方法研究

气溶胶光学特性的反演方法研究 韩 冰,高 飞,李铜基 (国家海洋技术中心,天津 300111) 摘 要:气溶胶是大气重要组成部分,其对地球的辐射收支平衡以及气候变化均有非常重要的贡献。文中根据非线性辐射传输理论,研究了从自动观测太阳光度计(CE318)多角度的天空扫描数据获取气溶胶粒子谱分布、散射相函数等光学特性的反演方法,并对2000年10月27日、30日南海试验的观测数据进行了分析,取得了较好效果。关键词:气溶胶;粒子谱分布;散射相函数;辐射传输 中图分类号:T P722.4 文献标识码:B 文章编号:1003-2029(2006)03-0055-06 1 引言 气溶胶的严格含意是指悬浮在气体中的固体和(或)液体微粒与气体载体共同组成的多相体系[1]。相应地,大气气溶胶是指大气与悬浮在其中的固体和液体微粒共同组成的多相体系。大气气溶胶粒子的直径多在10-3~102L m之间,包括可溶性的(如海盐粒子)和不可溶性的(如化石燃料的氧化物)粒子。依其形成机制则可分为自然因子与人为因子,前者主要是经由地表的自然风化过程和海洋表面的碎浪过程而进入大气,后者则是来自人类工业文明所产生微小污染物[2]。气溶胶对地球的辐射收支平衡继而气候变化均有非常重要的贡献,但是目前人们对气溶胶的了解非常欠缺。气溶胶的辐射贡献包括两部分:一是直接辐射贡献,即气溶胶对太阳辐射进行吸收、散射等引起的;二是通过改变云的微观物理特性而产生的间接影响。 首先,气溶胶对气候的影响方面,M cCo rm ick和L ud-wig认为[3],气溶胶会增加太阳辐射的反照率,进而导致地球的长期性冷却效果,而Char lso n和Pilat[4]也曾提出气溶胶对大气系统能量收支的影响,即气溶胶透过吸收、散射和放射过程直接影响地球能量的收支。其次,在卫星数据校正方面,气溶胶对卫星信号的贡献是很难准确估算的部分,因而通过研究气溶胶的光学特性必然会提高估算的准确性。 利用地面的光谱辐射计对大气进行观测,是目前广泛使用的研究大气特性的方法之一。其中自动太阳光度计是一种不受天气限制、自动跟踪并存储数据的辐射计,在世界范围内得到认可并大量使用,例如A ERO N ET气溶胶观测网[5]采用的就是这种仪器。CE318具有天空辐亮度扫描的 收稿日期:2006-01-20功能,利用其测量数据可反演气溶胶粒子谱分布、散射相函数等信息。本文以2000年10月27日、30日海南三亚的观测数据为例,利用CE318多角度的天空扫描数据,采用非线性数值方法对气溶胶光学特性反演方法进行了研究。 2 太阳光度计测量原理 CE318是法国CIM EL公司生产的一种自动跟踪扫描太阳辐射计,该仪器在可见近红外设有8个观测通道,它不仅能自动跟踪太阳作太阳直射辐射测量,而且可以进行太阳等高度角天空扫描、太阳主平面扫描和极化通道天空扫描。CE318能自动存储和传输测量数据,实现自动测量采集和远程数据传输。CE318天空扫描主要有两种模式:平维圈扫描和主平面扫描。平维圈扫描是指观测时保持仪器的天顶角与太阳天顶角相同,而仪器与太阳的相对方位角逐渐变化;主平面扫描是指观测时仪器与太阳之间的相对方位角不变,而仪器的天顶角变化[5]。 CI M EL318辐射计测量太阳直射辐射F和漫射辐射E: F=F0ex p(-m S)(1) E(H0,<)≡E(()=m XS P(()F$8+q(()(2)式中:F0是大气层外的辐射通量;S是总的大气光学厚度; m是大气光学质量;H0是太阳天顶角;<是观测的方位角;(是散射角;X是整个大气层内单次反照率;P(()是总的相函数(包括瑞利散射和气溶胶散射两部分);$8是观测辐射计的立体观测角;q(()表示多次散射的贡献[6]。 为了减少仪器带来的系统误差,我们将观测数据用太阳直射辐射进行标准化,即: E(()≡ m XS P(()F$8+q(() Fm$8 =XS P(()+r(()(3) 通过多角度的天空扫描,我们可以通过非线性数值方 第25卷 第3期2006年9月 海 洋 技 术 OCEAN T ECHNOLOGY Vol.25,No.3 Sept,2006

气溶胶灭火系统的特点及应用

气溶胶灭火系统的特点及应用 摘要:本文简介了气溶胶灭火系统的组成、灭火机理和灭火效能,结合工程实例,讨论了气溶胶灭火剂的适应场所和范围,提出了气溶胶应用的发展方向。 关键词:气溶胶灭火机理应用 近年来,“气溶胶”灭火剂在国内被迅速推广,几乎所有的生产厂家都将之喻为“卤代烷”灭火剂的最佳替代物,并且在国家规范中要求使用清洁灭火剂的场所大力推崇。由于没有相关的国家规范,设计、安装一般都是依照厂标及地方标准进行。其适应场所及应用范围在国内一直都有较多争议,本文就此作一些讨论。 一、概述 60年代的前苏联曾使用烟雾型灭火剂扑救地下火灾。80年代末,俄罗斯、美国等开始大量研究此类灭火剂,并应用于一些无人机械舱等部位。90年代初,我国研制出了EBM气溶胶灭火剂,并在全国推广。由于第一代气溶胶产品在喷放时有高温和喷焰缺陷,导致了一些重大事故。经过改进后的新一代气溶胶产品,基本解决了以上缺陷,且工程造价低、安装简便,得以广泛应用。 二、系统组成 气溶胶灭火剂,是由氧化剂、还原剂及粘合物结合成的固体状态含能化学物质,属于烟火型灭火剂。气溶胶灭火系统由气溶胶灭火剂以及相应的贮存和启动装置组成,灭火剂在贮存装置内燃烧反应后直接喷

放到防护区,属于无管网灭火系统。气溶胶胶粒具有高分散度、高浓度特点,大部分微粒直径小于1um,可较长时间悬浮在空气中,较易粘附在物体表面。其主要成份有金属盐类、金属氧化物以及水蒸汽、CO2、N2等,碱金属盐(钾盐等)和金属氧化物(K2O等)起主要灭火作用,灭火效率较高。 三、灭火机理 气溶胶的灭火机理主要是化学抑制,也有降温冷却的作用。 1、化学抑制 当燃料(烃类—RH)燃烧时,产生活性游离基H+、O--和OH-,并发生链式反应: RH+O2→H++2O--+R+(可燃物分解,吸热反应) O--+H+→OH- 2OH-→H2O+O--(放热反应) 最后一步为强烈的放热反应,放热量远大于第一步可燃物分解的吸热量,同时再次分解出游离O--,使得燃烧得以持续。 在高温燃烧区,气溶胶微粒分解出活性游离基K+,它迅速与H+和OH-发生以下反应: K++OH-→KOH KOH+H+→K++H2O 密集的气溶胶微粒提供了较大的表面反应区域,K+不断再生,夺走燃烧链所需的载体OH-和H+,燃烧无法延续。因此,气溶胶的灭火机理

气溶胶光学厚度

第2章 气溶胶光学厚度反演的原理和方法 气溶胶光学厚度(Aerosol Optical Depth )简称AOD ,定义为介质的消光系数在垂直方向上的积分,描述的是气溶胶对光的消减作用[7]。它是气溶胶最重要的参数之一,表征大气浑浊程度的关键物理量,也是确定气溶胶气候效应的重要因素。。通常高的AOD 值预示着气溶胶纵向积累的增长,因此导致了大气能见度的降低。现阶段对于AOD 的监测主要有地基遥感和卫星遥感两种方法。其中地基遥感又有多种形式:多波段光度计遥感、全波段太阳直接辐射遥感、激光雷达遥感等。其中多波段光度计遥感是目前地基遥感研究中采用的最广泛的方法。美国NASA 和法国LOA-PHOTONS 联合建立的全球地基气溶胶遥感观测网AERONET 所使用的就是多波段太阳光度计(Sun/Sky Photomerers ),在全球共布设1217个站点长期观测全球气溶胶的光学特性,积累了大量的AOD 数据,并用作检测气溶胶光学厚度反演精度的标准。而近年来卫星遥感技术的快速发展,多种传感器被用来研究气溶胶特性,加上经济发展带来的大气污染问题使得利用卫星遥感资料反演AOD 成为热门课题。 2.1 气溶胶光学厚度反演的基本原理 大气光学厚度是指沿辐射传输路径单位截面上气体吸收和粒子散射产生的总消弱,是无纲量值。在可见光和近红外波段,它可以由下列公式计算得出: )()()()()()(a 21m λτ+λτ+λτ+λτ+λτ=λτμωω (2-1) 其中)(λτ表示大气总的光学厚度,)(m λτ表示整层大气的分子散射光学厚度,)(1λτω表示氧气的吸收光学厚度,)(2λτω表示臭氧的吸收光学厚度,)(λτμ表示 水汽的吸收光学厚度,)(a λτ表示气溶胶光学厚度[21; 22]。 卫星遥感反演大气气溶胶是利用卫星传感器探测到的大气顶部的反射率,也称为表观反射率,可以表示为[23]: F /L s s * μπ=ρ (2-2)

中国大气气溶胶气候效应研究进展

李明华,范绍佳 中山大学大气科学系(510275) Email:lmh20000@https://www.doczj.com/doc/d75127536.html, 摘要:全球和区域气候变化是当今各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题。本文总结了二十世纪九十年代以来我国科学家在大气气溶胶气候效应研究方面的一系列成果,讨论了未来研究的主要难题及研究方向。 关键词:中国;大气气溶胶;气候效应 1.引言 全球和区域气候变化是当前各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题[1-4]。 大气气溶胶是指大气与悬浮在其中的固体和液体微粒共同组成的多相体系,习惯上用来指大气中悬浮的10-3~101μm固体和液体粒子。大气气溶胶对气候的影响主要通过两种方式:一种是大气气溶胶粒子通过吸收和散射太阳辐射改变地-气系统的能量收支,直接影响气候;另一种是大气气溶胶粒子作为云凝结核(CCN)改变云的光学特性、分布和生命期,间接影响气候。理论上,只要知道大气气溶胶浓度时空分布的信息及其物理、化学、光学特性、尺度分布和大气含量的准确信息,便可精确计算其直接辐射强迫的大小。而实际上所缺乏的也正是对这些量和其变化过程的详细了解。因此,对其直接辐射强迫的估计只能是基于现有实验结果和观测资料基础上的理论数值模拟。模式结果表明,目前对人为大气气溶胶(硫酸盐、硝酸盐、煤烟、矿尘和生物大气气溶胶等)全球年平均直接辐射强迫的估值大体介于-0.3~-1.0W/m2 之间,不确定性是估值的两倍。由于理论上对云的夹卷和混合过程,以及大气气溶胶-云-辐射-气候之间的微物理和化学反应过程了解还很不全面,准确地估计大气气溶胶间接辐射强迫的大小是相当困难的。全球年平均间接辐射强迫估值介于0~-1.5W/m2之间,不确定性更大,还没有一个合理的中间估值[5]。 大气气溶胶的气候效应比温室气体复杂得多,尽管大多数研究认为大气气溶胶对气候的影响与温室效应气体的影响是反向的,但二者不能简单抵消[6]。从二者寿命来看,对流层大气气溶胶的寿命只有几天到几周,它的辐射强迫作用集中在排放源附近,而且基本只影响北 - 1 -

气溶胶灭火系统设计及安装说明

气溶胶灭火系统设计及 安装说明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

气溶胶灭火系统设计及安装说明 一、设计依据 1、GB 50370-2005《气体灭火系统设计规范》 2、GB 50263-2007《气体灭火系统施工及验收规范》 3、GB 50116-98《火灾自动报警系统设计规范》 二、设计条件 本工程对防护区:3个变电室进行气体灭火深化设计, 并且在这些使用气体灭火的防护区使用S型气溶胶灭火系统。 三、系统设计方案 1、系统构成:本系统由火灾自动报警系统、灭火装置(S型气溶胶) 等组成。 1.1、火灾自动报警系统由火灾探测器、气体灭火控制器、声光报警 器、放气指示灯、紧急启停按钮及系统布线组成。 1.2、灭火装置(S型气溶胶)由气溶胶发生剂、发生器、冷却装置 (剂)、反馈元件、壳体等组成。 2、设计原理 本系统具有自动、手动两张控制方式。保护区均设二路独立探测 回路,当第一路探测器发出火灾信号时,发出警报(警铃报 警),指示火灾发生的部位,提醒工作人员注意;当第二路探测 器亦发生火灾信号后,自动灭火控制器开始进入延时阶段(0~30s 可调),声光报警器报警和联动设备动作(关闭通风空调,防火 卷帘门等),此阶段用于疏散人员。延时过后,向保护区的灭火

装置发出灭火指令,启动阀打开,然后向保护区喷放气溶胶灭火 剂,同时报警控制器接收灭火装置的反馈信号,喷放指示灯亮, 当报警控制器处于手动状态,由值班人员确认火警后,按下报警 控制面板上的应急启动按钮或保护区门口处的紧急启停按钮,即 可启动系统喷放气溶胶灭火剂。 四、本系统具备的基本功能 1、保护区域内具有独立的火灾自动探测、自动报警、灭火控制及气 体灭火功能。 2、具有系统自动、手动两张启动方式。 3、在自动方式下,系统具备在两只不同类型火灾探测器复合动作的 情况下,自动释放S型气溶胶气体灭火的功能。在开始释放气体 前,具有0~30秒可调的延时功能,同时在保护区内外可发出声光报警,已通知人员疏散撤离。 4、在手动启动方式下,人员可在保护区外,利用启动按钮启动气溶 胶灭火设备,气体释放前同样具有延时声光报警功能。(这种手 动启动方式在自动状态下同时有效)。 5、采用自动方式启动了气体灭火装置时,在开始释放前的延时阶 段,可以在区域外利用手动紧急停止按钮,终止系统的进一步动 作。 6、无论在手动或自动状态下,任一探测器的动作都会引起有效的报 警。

气溶胶介绍

气溶胶介绍 气溶胶是由固体颗粒、液体颗粒或液体及固体颗粒悬浮于气体介质中形成的均匀分散的多体系,它们的粒子大小约在100~10000纳米之间,属于粗分散物系,可长时间悬浮于空气中。气溶胶在气体介质中不因重力作用而沉降。环境科学中一般定义大气气溶胶为悬浮在大气中的尺度为几十埃到几百微米的固体或液体粒子体系。 气溶胶粒子是悬浮在大气中的多种固体微粒和液体微小颗粒,气溶胶有自然或人类两种来源。有的来源于自然界,如火山喷发的烟尘、被风吹起的土壤微粒、海水飞溅扬入大气后而被蒸发的盐粒、细菌、微生物、植物的抱子花粉、流星燃烧所产生的细小微粒和宇宙尘埃等;有的是由于人类活动,如煤、油及其他矿物燃料的燃烧物质,以及车辆产生的废气排放至空气中的大量烟粒等。 气溶胶粒子具有分布不均匀、变化尺度小、复杂性的特点,多集中于大气的底层,对云的凝结核、雨滴、冰晶形成,进而对降水的形成起重要作用。气溶胶甚至可以改变云的存在时间,能够在云的表面产生化学反应,决定降雨量的多少,影响大气成分。 气溶胶粒子能够从两方面影响天气和气候。一方面可以将太阳光反射到太空中,从而冷却大气,并会使大气的能见度变坏;另一方面却能通过微粒散射、漫射和吸收一部分太阳辐射,减少地面长波辐射的外逸,使大气升温。

气溶胶中的粒子具有很多特有的动力性质,光学性质,电学性质。比如布朗运动,光的折射,象彩虹,月晕之类都是因为光线穿过大气层而引起的折射现象,而大气中含有很多的粒子,这些粒子就行成了气溶胶。 根据光电子能谱(XPS)对气溶胶燃烧后的固体颗粒的分析,可知其固体产物中主要含有元素C、N、O、K,这四种元素存在的形式有金属碳化物、C、CO32盐、C的有机物、-COO盐、K2O、K2CO3、KN3、KNO2、KNO3。可以看出固体产物微粒中的主要成分是金属碳化物和碳酸盐。 另外,有些气溶胶配方会加入一定量的碘化银(AgI)。碘化银的熔点为558℃,沸点1506℃,放于光中变色,最后变黑。几乎不溶于水易和稀酸,微溶于氨水,溶于氰化钾溶液。在人工降雨中,用于冰核形成剂,还能防冰雹、防霜冻、防雪、防风暴,甚至可以防台风。在北京2008奥运会上,碘化银配方气溶胶被应用于人工消雨,成功保证了北京奥运会开、闭幕式顺利进行。

气溶胶灭火系统设计要求

℃~55℃,环境相对湿度不大于90%。 防护区不宜有不能关闭的开口,防护区内与其它空间相通的开口,应能在灭火剂喷放前自动关闭;否则应将防护区扩大到与之相通的空间或采取防止或补偿灭火剂流失的措施。 防护区不能关闭的小孔隙会影响到防护区的非密封度(总开口面积与防护区空间容积之比,用λ表示,单位:m-1)。当非密封度D≤ 时,补偿泄漏问题可忽略不计。否则应计算泄漏补偿量。但非密封度D 最大不宜超过。 气溶胶灭火装置释放时超压很小(ΔP≤100Pa),可通过门窗的缝隙泄压,一般不需要泄压口。 气溶胶灭火剂用量计算 灭火设计密度不应小于灭火密度的倍(见GB50370-2005)。 灭火剂的设计用量应按下式计算: W=C﹒V﹒Kv 式中:W——气溶胶灭火剂设计用量,kg; C——灭火设计密度,kg/m3; 固体表面火灾的灭火密度为kg/m3,C=kg/m3; 通讯机房和电子计算机房等场所的电气设备火灾,C=kg/m3; 电缆隧道(夹层、井)及自备发电机房火灾,C=kg/m3; V——防护区容积,m3; Kv——容积修正系数。V<500m3,Kv =;500m3≤V<1000m3,Kv=;V≥1000m3,Kv =。 计算出防护区内灭火剂用量后,可根据使用要求合理选择气溶胶灭火装置的型号并确定灭火装置数量。同一防护区的吊顶和地板下需要同时保护时,应将灭火剂量分配到相应的各层空间中。

防护区内多台灭火装置宜分散布置,每台灭火装置的保护半径不宜大于6m。 例:某设备间做单一防护区,其长、宽、高分别为、、。 1)计算防护区的净容积 V = 6 . 6 X 5 . 0 X 3 . 5 = 1 1 5 . 5 m 3 2)计算气溶胶灭火剂用量 W=C﹒V﹒Kv (V<500m3,Kv =) W =0 . 1 3 X 1 1 5 . 5 X 1 . 0 =1 5 . 0 ,选用气溶胶灭火装置15kg 一台。(见下图) 系统控制与操作 气溶胶灭火防护区应设置符合国家标准的火灾自动报警系统。 自动控制装置应在收到防护区内两个独立的火灾报警信号后才能启动(如感烟探头信号和感温探头信号),并相应发出两种不同的声音报警信号,如警铃和电子声光装置,以便使现场人员能够分辨出预警信号和火灾确认信号。 采用自动控制启动方式时,根据人员安全撤离防护区的需要,应有不超过30s 的延迟释放。

相关主题
文本预览
相关文档 最新文档