当前位置:文档之家› 实验五 交流参数的测量------三表法

实验五 交流参数的测量------三表法

实验五 交流参数的测量------三表法
实验五 交流参数的测量------三表法

实验五 交流参数的测量------三表法

一、实验目的:

1.了解实际电路器件在低频电路中的主要电磁特性,理解理想电路与实际电路的差异。明确在低频条件下,测量实际器件哪些主要参数。

2.掌握用电压表、电流表和功率表测定低频元件参数的方法。

3.掌握调压变压器的正确使用。 二、实验原理:

交流电路中常用的实际无源元件有电阻器、电感器和电容器。

在低频情况下,电阻器周围的磁场和电场可以忽略不计,不考虑其电感和分布电容,将其看作纯电阻。可用电阻参数来表征电阻器消耗电能这一主要的电磁特征。

电容器在低频时,可以忽略引线电感,忽略其介质损耗和漏导,可以用电容参数来表征其储存和释放电能的特征。

电感器的物理原型是导线绕制成的线圈,导线电阻不可忽略,在低频情况下,线匝间的分布电容可以忽略。用电阻和电感两个参数来表征。

交流电流元件的等值参数R 、L 、C 可以用专用仪器直接测量。也可以用交流电流表、交流电压表以及功率表同时测量出U 、I 、P ,通过计算获得,简称三表法。

本实验采用三表法,由电路理论可知,一端口网络电压电流及功率有以下关系: |Z|=U/I cos ?=P/(UI) 电阻:R=|Z|=U/I 电容:R=|Z|cos ? C=1/(ω|z|sin ?) 电感:R=|Z|cos ? L=X L /ω=|Z|sin ?/ω 三、实验内容:

三表法测交流参数的电路如图所示:

W 被 元

测 件

1.按图一接线,分别测电阻(1K ),电感线圈(镇流器)电容(4uf )的等效参数。

2.将测量数据分别记入表一、表二、表三。每个原件各测三次,求其平均值。

表一: 电阻的测量数据

次序

测试记录 计算结果

U/V

I/MA P/W 1 10 2 20 3

30

平均值

b c W

a 220V 50HZ Z

A V

图一

表二电容的测量数据

次序测试记录计算结果

U/V I/MA P/W R/?C/uf

1 30

2 60

3 90

平均值

表三电感的测量数据

次序测试记录计算结果

U/v I/MA P/W R/?L/H

1 30

2 60

3 90

平均值

四、仪器设备

1.调压变压器

2.交流电压表

3.功率表

4.交流电流表

5.电感电容电阻。

五、注意事项:

1.测量电路的电流限制在1A以内。

2.单相调压器使用时,先把电压调节手轮调在零位,接通电源后再从零位开始升压。每做完一项实验随手把调压器调回零再断开电源。

六、报告要求:

根据测试结果,计算各元件的等效参数,并与实际设备参数进行比较。

七、思考题

若调压变压器的输出端与输入端接反,会产生什么后果?

交流参数的测定三表法

实验八 交流参数的测定——三表法、三电流表法 一、实验目的 ⒈ 学习用交流电压表、交流电流表和功率表组成的三表法测量元件的交流等效参 数的方法。 ⒉ 学习用三电流表法测量元件的交流等效参数的方法。 ⒊ 学习使用功率表。 二、原理与说明 ⒈ 三表法 ⑴ 用三表法测量交流电路的参数 在交流电路中,元件的阻抗值或无源一端口网络的等效阻抗值,可以用交流电压表、交流电流表和功率表分别测出元件(或网络)两端的电压U 、流过的电流I 和它所消耗的有功功率P 之后,再通过计算得出,其关系式为: 阻抗的模 U Z I = 功率因数 cos P UI λ?== 等效电阻 cos P UI λ?== 等效电抗 sin X Z ?= 或 2L X X fL π== , 1 2c X X fC π== 这种测量方法简称为三表法,它是测定交流阻抗的基本方法。 ⑵ 判断阻抗性质的方法 元件的阻抗性质有容性或感性,用三表法测得的U 、I 、P 的数值还不能判别被测阻抗属于容性还是感性,一般可以用以下方法加以确定。 ① 在被测元件两端并接一只适当容量的试验电容器,若电流表的读数增大,则被测元件为容性;若电流表的读数减小,则为感性。 试验电容的电容量C '可根据下列不等式选定: 2B B '<

式中B ¢为试验电容的容纳,B 为被测元件的等效电纳。 ② 利用示波器观察阻抗元件的电流及端电压之间的相位关系,电流超前电压为容性,电流滞后电压为感性。 ③ 电路中接入功率因数表或数字式相位仪,从表上直接读出被测阻抗的cos ?值或阻抗角,读数超前为容性,读数滞后为感性。 ⑶ 三表法的接线方式 前述交流参数的计算公式是在忽略仪表内阻的情况下得出的,和伏安表法类似。三表法有两种接线方式,如图8-1所示。若考虑到仪表的内阻,测量结果中显然存在方法误差,必要时需加以校正。对于图8-1(a )的电路,校正后的参数为 2 I I P R R R R I '=-= - I I X X X X '=-= 式中,R 、X 为校正前根据测量计算得出的电阻值和电抗值;I R 、I X 为电流表线圈 及功率表电流线圈的等效电阻值和等效电抗值。 图8-1 (a) (b) 对于图8-1(b )电路,校正后的参数为 2U U P G G G G U '=-= - 一般情况下,电压表和功率表电压支路的电抗可以忽略,因此 B B '==式中G 、B 为校正前根据测量计算得出的电导值和电纳值;U G 为电压表线圈及功率表电压线圈支路并联的等效电导。 ⒉ 三电流表法 实验电路如图8-2所示,以电压为参考正弦量,该电路的相量图如图8-3所示。

交流电路元件参数的测定电路分析

深圳大学实验报告 课程名称:电路分析 实验项目名称:交流电路元件参数的测定学院: 专业: 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务部制

实验目的与要求: 1.正确掌握交流电流表、电压表、功率相位组合表的用法。 2.加深对交流电路元件特性的了解。 3.掌握交流电路元件参数的实验测定方法。 方法、步骤: 电阻器、电容器和电感线圈是工程上经常使用的基本元件。在工作频率不高的条件下,电阻器、电容器可视为理想电阻和理想电容。一般电感线圈存在较大电阻,不可忽略,故可用一理想电感和理想电阻的串联作为其电路模型。 电阻的阻抗为: 电容的阻抗为: 电感线圈的阻抗为: 电阻器、电容器、电感线圈的参数可用交流电桥等仪器测出,若手头没有这些设备,可搭建一个简单的交流电路,通过测阻抗算出元件参数值。 1.三表法 利用交流电流表、交流电压表、相位表(或功率表)测量元件参数称为三表法。这种方法最直接,计算简便。元件阻抗为 对于电阻 对于电容 对于电感,, 由已知的电源角频率ω,可进一步确定元件参数。 2.二表法 若手头上没有相位表或功率表,也可只用电流表和电压表测元件参数,这种方法称为二表法。由于电阻器和电容器可看作理想元件,已知其阻抗角为0或90度,故用二表法测其参数不会有什么困难。 二表法测电感线圈参数的电路如图2所示。图中的电阻R是一个辅助测量元件。由 图2可见,根据基尔霍夫电压定律有,而,其中和为假想电压,分别代表线圈中等效电阻r和电感L的端电压。各电压相量关系如图3所示,由于电压U、U1、U2可由电路中测得,故图中小三角形Δaob的各边长已知,再利用三角 形的有关公式求出bc边和ac边的长度,即电压U r和U L可求。最后,由式、 及已知的电源角频率ω可求得线圈的参数。 3.一表法 只用一个交流电压表测量元件参数的方法称为一表法,其原理与二表法相同,不同 的是辅助测量电阻R的阻值应预先已知,这样电路中电流可求,可省去一个电流表。此法有更强的实用性。

交流电路参数的测定实验报告

交流电路参数的测定实验报告 一、实验目的: 1.了解实际电路器件在低频电路中的主要电磁特性,理解理想电路与实际电路的差异。明确在低频条件下,测量实际器件哪些主要参数。 2.掌握用电压表、电流表和功率表测定低频元件参数的方法。 3.掌握调压变压器的正确使用。 二、实验原理: 交流电路中常用的实际无源元件有电阻器、电感器和电容器。 在低频情况下,电阻器周围的磁场和电场可以忽略不计,不考虑其电感和分布电容,将其看作纯电阻。可用电阻参数来表征电阻器消耗电能这一主要的电磁特征。 电容器在低频时,可以忽略引线电感,忽略其介质损耗和漏导,可以用电容参数来表征其储存和释放电能的特征。 电感器的物理原型是导线绕制成的线圈,导线电阻不可忽略,在低频情况下,线匝间的分布电容可以忽略。用电阻和电感两个参数来表征。 交流电流元件的等值参数R、L、C可以用专用仪器直接测量。也可以用交流电流表、交流电压表以及功率表同时测量出U、I、P,通过计算获得,简称三表法。 本实验采用三表法,由电路理论可知,一端口网络电压电流及 将测量数据分别记入表一、表二、表三。每个原件各测三次,求其平均值。 三、仪器设备

1.调压变压器 2.交流电压表 3.功率表 4.交流电流表 5.电感电容电阻。 四、注意事项: 1.测量电路的电流限制在1A以内。 2.单相调压器使用时,先把电压调节手轮调在零位,接通电源后再从零位开始升压。每做完一项实验随手把调压器调回零再断开电源。 六、报告要求: 根据测试结果,计算各元件的等效参数,并与实际设备参数进行比较。 五、思考题 若调压变压器的输出端与输入端接反,会产生什么后果,

交流电路参数的测定三表法的实验原理

交流电路参数的测定三表法的实验原理 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系 可得其等值参数为 同理,如被测元件是一个电容器,可得其等值参数为 2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。 (1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C'时,若小电容C'=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C'为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B'为并联小电容C'的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ①设B+B'=B",若B'增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。 ②设B+B'=B",若B'增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。 由以上分析可见,当B为容性时,对并联小电容的值C'无特殊要求;而当B为感性时,B'<|2B|才有判定为感性的意义。B'>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此, B'<|2B|是判断电路性质的可靠条件。由此可得定条件为

实验十二--用三表法测量交流电路等效参数

实验报告 一、实验目的 1. 学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法 2. 学会功率表的接法和使用 二、原理说明 1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U,流过该元件的电流I和它所消耗的功率P,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz交流电路参数的基本方法。 计算的基本公式为 阻抗的模 │Z│= U I 电路的功率因数 cosφ= P UI 等效电阻 R=P I 等效电抗X=│Z│sinφ 如果被测元件是一个电感线圈,则有: X= XL=│Z│sinφ= 2πf L 如果被测元件是一个电容器,则有: X= X C=│Z│sinφ= 1 2πfc 2. 阻抗性质的判别方法: 在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 (a) (b) 图12-1 并联电容测量法 图12-1(a)中,Z为待测定的元件,C’为试验电容器。(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ①设B+B’=B",若B’增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ②设B+B’=B",若B’增大,而B"先减小而后再增大,电流I 也是先减小后上升, 如图5-2所示,则可判断B为感性元件。 I I2

I g B 2B B ’ 图5-2 I -B'关系曲线 由上分析可见,当B 为容性元件时,对并联电容C ’值无特殊要求;而当B 为感性元件时,B ’<│2B │才有判定为感性的意义。B ’>│2B │时, 电流单调上升,与B 为容性时相同,并不能说明电路是感性的。因此B ’<│2B │是判断电路性质的可靠条件,由此得判定条件为 C ’= 2B ω (2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为 1ωC ’ <│2X │ 式中X 为被测阻抗的电抗值,C ’为串联试验电容值,此关系式可自行证明。 判断待测元件的性质,除上述借助于试验电容C'测定法外还可以利用该元件电流、电压间的相位关系,若i 超前于u ,为容性;i 滞后于u ,则为感性。 序号 名称 型号与规格 数量 备注 1 交流电流表 1 D37-1 2 交流电压表 1 D38-1 3 单相功率表 1 D34- 2 4 自耦调压器 1 DG01 5 电容负载 4.7μF 450V 1 DG09 6 电感线圈 40W 日光灯配用 1 DG09 7 白炽灯 25W/220V 3 DG08 四、实验内容 测试线路如图12-3所示 1. 按图12-3接线,并经指导教师检查后,方可接通市电电源。 2. 分别测量15W 白炽灯(R),40W 日光灯镇流器(L) 和4.7μf 电容器( C)的等效参数。要求R 和C 两端所加的电压为220V ,L 中流过电流小于0.4A 。 3. 测量L 、C 串联与并联后的等效参数。 4. 用并接试验电容的方法来判别LC 串联和并联后阻抗的性质。 计算所需的电容大小:

交流电路元件参数的测定

深圳大学实验报告 课程名称:电路与电子学 实验项目名称:交流电路元件参数的测定 学院:信息工程学院 专业:无 指导教师:吴迪 报告人:王文杰学号:2013130073 班级:信工02 实验时间:2014/5/22 实验报告提交时间:2014/5/26 教务部制

一、实验目的与要求: 1.正确掌握交流数字仪表(电压表、电流表、功率表)和自耦调压器的用法。 2.加深对交流电路元件特性的了解。 3.掌握交流电路元件参数的实验测定方法。 二、方法、步骤: 电阻器、电容器和电感线圈是工程上经常使用的基本援建。在工作频率不高的条件下,电阻器、电容器可视为理想电阻和理想电容。一般电感线圈存在较大电阻,不可忽略,故可用一理想电感和理想电阻的串联作为电路模型。 电阻的阻抗为:Z=R 电容的阻抗为:Z=jX C=-j(1/ωC) 电感线圈的阻抗为:Z=r+ jX L=r+jωL=|Z|∠ 电阻器、电容器、电感线圈的参数可用交流电桥等一起测出,若手头没有这些设备,可大减一个简单的交流电路,通过测阻抗算出元件参数值。 1.三表法 利用交流电流表、交流电压表、相位表(或功率表)测量元件参数称为三表法、这种方法最直接,计算简便。实验电路如图1所示。元件阻抗为: 对于电阻 对于电容 对于电感 由已知的电源角频率ω,可进一步确定元件参数。

2.二表法 若手头上没有相位表或功率表,也可只用电流表和电压表测元件参数,这种方法称为二表法。由于电阻器和电容器可看作理想元件,已知其阻抗为0或者90度,故用二表法测其参数不会有什么困难。 二表法测电感线圈参数如图2所示。途中的电阻R是一个辅助测量元件。由图2课 件,根据基尔霍夫电压定律有,而,其中和为假想电压,分别代表线圈中等效电阻r和电感L的端电压。各电压相量关系如图3所示,忧郁U、U1、U2可由电路中测的,故途中小三角△aob的各边长已知,再利用三角形的有关公式(或准确地画出图3,由图3直接量的)求出bc边和ac边的长度,即电压U r 和U L可求。最后,由式及已知的电源角频率ω可求得线圈的参数。 3.一表法 只用一个交流电压表测量元件参数的方法称为一表法,其原理与二表法相同,不同

实验4指导书 交流参数的测定(电工)

交流参数的测定 一、实验目的 1.研究电阻、感抗、容抗与频率的关系,测定其随频率变化的特性曲线。 2.掌握交流数字仪表(电压表、电流表、功率表)和交流自耦调压器的使用方法。 3.掌握使用交流电压表、电流表、功率表(即三表法)测量交流电路中的阻抗及元件参数的方法。 4.学习电抗容性、感性性质的判定方法。 二、实验预习 打印实验指导书,预习实验内容,了解本实验的目的、原理和方法。 三、实验设备与仪器 NEEL-II 型电工电子实验装置。 四、实验原理 1.单个元件阻抗与频率的关系。 对于电阻元件,根据?∠=0R R R I U ,其中R I U =R R ,电阻R 与频率无关; 对于电感元件,根据L L L j X I U = ,其中fL X I U π2L L L ==,感抗X L 与频率成正比; 对于电容元件,根据 C C C j X I U -= ,其中fC X I U π21C C C = =,容抗X C 与频率成反比。 图1 阻抗频率特性测量电路

测量元件阻抗频率特性的电路如图1所示,图中的r 是提供测量回路电流用的标准电阻,流过被测元件的电流(R I 、L I 、C I )则可由r 两端的电压r U 除以r 阻值所得,又根据上述三个公式,用被测元件的电流除对应的元件电压,便可得到R 、L X 和C X 的数值。 2.交流电路的参数测量方法。 正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电路I 和其所消耗的功率P ,然后通过计算得到元件的各参数值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。计算的基本公式为: 电阻元件的电阻:R R I U R = 或2I P R = 电感元件的感抗:L L L I U X = ,电感f X L L π2= 电容元件的容抗:C C C I U X = ,电容C fX C π21 = 串联电路复阻抗的模I U Z =,阻抗角R X arctg =? 其中,等效电阻2 I P R =,等效电抗22 R Z X -= 功率因数UI P = ?cos 在RLC 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的向量和,而不能用它们的有效值直接相加。 电路功率用功率表测量,本实验使用数字式功率表,其电流测量端子与负载串联,电压测量端子与负载并联,电流测量端子和电压测量端子的同名端(标有*号)必须连接在一起,测量电路如图2所示,连接方法如图3所示。 图2 交流电路参数测量电路

实验十用三表法测量交流电路等效参数1

实验十:用三表法测量交流电路等效参数 一、实验目的: 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明: 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z =, 电路的功率因数 cos φ= UI P 等效电阻 R = 2 I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:可用在被测元件两端并联电容或将被测元件与电容串联的方法来判别。其原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 图10-1 并联电容测量法 图10-1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。 U . U . .. . (a ) (b ) .

实验四 单相变压器的参数测定 (4)

实验四 单相变压器的参数测定 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 二、实验项目 1. 空载实验 测取空载特性U 0=f(I 0),P 0=f(U 0) , cosφ0=f(U 0)。 2. 短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφK =f(I K )。 三、实验方法 1. 实验设备 D33、D32、D34-3、DJ11 图1 空载实验接线图 2. 空载实验 1)在三相调压交流电源断电的条件下,按图1接线。I 0选用0.3A 档,U 0选用100V 档。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量 P N =77W ,U 1N /U 2N =220/55V ,I 1N /I 2N =0.35/1.4A 。变压器的低压线圈a 、x 接电源,高压线圈A 、X 开路。 2)选好所有电表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。 A X

3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U 0=1.2U N ,然后逐次降低电源电压,在1.2~0.2U N 的范围内,测取变压器的U 0、I 0、P 0。 4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表1中。 5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表1中。 3. 短路实验 1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。I k 选用1A 档,U k 选用100V 档。

用三表法测量电路等效参数

用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数 cos φ=UI P 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 图16-1 并联电容测量法 图16-1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。 由上分析可见,当B 为容性元件时, 对并联电容C'值无特殊要求;而当B 为感 性元件时,B'<│2B │才有判定为感性的意 I I Z B B B 2,U .U ....(a)(b).

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

交流电路参数的测定三表法的实验原理(精)

交流电路参数的测定三表法的实验原理 交流电路参数的测定三表法的实验原理 类别:电子综合 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系可得其等值参数为同理,如被测元件是一个电容器,可得其等值参数为2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。(1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C时,若小电容C=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B为并联小电容C的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B=B",若B增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。②设B+B=B",若B增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。由以上分析可见,当B为容性时,对并联小电容的值C无特殊要求;而当B为感性时,B<|2B|才有判定为感性的意义。B>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此,B<|2B|是判断电路性质的可靠条件。由此可得定条件为 图1 阻抗与导纳变换示意图图2 负载并联电容后电流变化示意图(2)在被测无源网络的入口串联一个适当容量的电容C。若被测网络的端电压下降,则判为容性电路;反之,若端电压上升,则判为感性电路。判定条件为,式中X为被测网络的电抗,C为串联电容的值。(3)用“三压法”测Φ,进行判断。在原一端口网络入口处串联一个电阻r,如图3(a)所示,向量如图3(b)所示,由图可得r,Z串联后的阻抗角Φ为测得U,Ur,Uz,即可求得Φ

RLC正弦交流电路参数测量实验报告(001)

RLC正弦交流电路参数测量实验报告

【RLC正弦交流电路参数测量】实验报告 【实验目的】 1.熟悉正弦交流电的三要素,熟悉交流电路中的矢量关系; 2.学习用示波器观察李萨尔图形的方法; 3.掌握R,L,C元件不同组合时的交流电路参数的基本测量方法。 【实验摘要(关键信息)】 1.在面包板上搭接R、L、C的并联电路; 2、将R、L并联,测量电压和电流的波形和相位差,计算电路的功率因素。 3、将R、C并联,测量电压和电流的波形和相位差,计算电路的功率因素。 4、将R、L、C并联,测量电压和电流的波形和相位差,由相位差分析负载性质。计算功率因素。 【实验原理】 1.正弦交流电的三要素 初相角:决定正弦量起始位置; 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小。 2.电路参数 在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可以由他们相互组合(以串联为例)。电路里元件的阻抗特性为 当采用交流电压表、电流表和有功功率表对电路 测量时(三表法),可用下列计算公式来表述Z与 P、U、I相互之间的关系: 负载阻抗的模︱Z︱;负载回路的等效电阻 ; 负载回路的等效电抗; 功率因数cosφ;电压与电流的相位差φ 当φ>0时,电压超前电流;当φ<0时,电压滞后电流。 3.矢量关系:基尔霍夫定律在电路电路里依然成立,有和,可列出回路方程与节点方程。 【电路图】

电路图1 电路图2

电路图3 【实验环境(仪器用品等)】 面包板,示波器,1KΩ电阻,47Ω电阻,导线,函数发生器,10mH电感,0.1μF 电容 【实验操作】 1.分别按照电路图1、2、3在面包板上连接电路; 2.调节函数发生器,使其通道1输出频率为1KHz,峰峰值为5V的正弦波; 3.示波器校准,通道1接入函数发生器输出的信号,通道2接入通过47Ω小 电阻的信号,两通道地线要接在一起; 4.调节示波器,使其为李萨尔图形,观察两波形相位差,记录数据并分析。【实验数据与分析】 1.R、L并联

三表法测量电路等效参数

三表法测量电路等效参数 实验目的: 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 原理说明: 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表 分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得 到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数 cos φ=UI P 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:可用在被测元件两端并联电容或将被测元件与电容串联的方法 来判别。其原理如下: (1)在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大, 则被测阻抗为容性,电流减小则为感性。 图1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为 待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。 图1 在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为 容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图 15-2所示,则可判断B 为感性元件。 由以上分析可见,当B 为容性元件时,对并联电容C'值无特殊要求;而当B 为感性元件 时,B'<│2B │才有判定为感性的意义。B'>│2B │时,电流单调上升,与B 为容性时相同,

RLC正弦交流电路参数测量实验报告

【RLC正弦交流电路参数测量】实验报告 【实验目的】 1.熟悉正弦交流电的三要素,熟悉交流电路中的矢量关系; 2.学习用示波器观察李萨尔图形的方法; 3.掌握R,L,C元件不同组合时的交流电路参数的基本测量方法。 【实验摘要(关键信息)】 1.在面包板上搭接R、L、C的并联电路; 2、将R、L并联,测量电压和电流的波形和相位差,计算电路的功率因素。 3、将R、C并联,测量电压和电流的波形和相位差,计算电路的功率因素。 4、将R、L、C并联,测量电压和电流的波形和相位差,由相位差分析负载性质。计算功率因素。 【实验原理】 1.正弦交流电的三要素 初相角:决定正弦量起始位置; 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小。 2.电路参数 在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可以由他们相互组合(以串联为例)。电路里元件的阻抗特性为 当采用交流电压表、电流表和有功功率表对电路 测量时(三表法),可用下列计算公式来表述Z与 P、U、I相互之间的关系: 负载阻抗的模︱Z︱;负载回路的等效电阻 ; 负载回路的等效电抗; 功率因数cosφ;电压与电流的相位差φ 当φ>0时,电压超前电流;当φ<0时,电压滞后电流。

3.矢量关系:基尔霍夫定律在电路电路里依然成立,有和,可列 出回路方程与节点方程。 【电路图】 电路图1 电路图2

电路图3 【实验环境(仪器用品等)】 面包板,示波器,1KΩ电阻,47Ω电阻,导线,函数发生器,10mH电感,0.1μF 电容 【实验操作】 1.分别按照电路图1、2、3在面包板上连接电路; 2.调节函数发生器,使其通道1输出频率为1KHz,峰峰值为5V的正弦波; 3.示波器校准,通道1接入函数发生器输出的信号,通道2接入通过47Ω小电 阻的信号,两通道地线要接在一起; 4.调节示波器,使其为李萨尔图形,观察两波形相位差,记录数据并分析。【实验数据与分析】 1.R、L并联

实验十二用三表法测量交流电路等效参数

实 验报告 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法 2. 学会功率表的接法和使用 二、原理说明 1. 正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为 阻抗的模 │Z │= U I 电路的功率因数 cos φ= P UI 等效电阻 R = P I 2 等效电抗 X=│Z │sin φ 如果被测元件是一个电感线圈,则有: X= XL=│Z │sin φ= 2πf L 如果被测元件是一个电容器,则有: X= X C =│Z │sin φ= 1 2πfc 2. 阻抗性质的判别方法: 在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 (a) (b) 图12-1 并联电容测量法

图12-1(a)中,Z为待测定的元件,C’为试验电容器。(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B'为并联电容C’的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ①设B+B’=B",若B’增大,B"也增大,则电路中电流I 将单调地 上升,故可判断B为容性元件。 ②设B+B’=B",若B’增大,而B"先减小而后再增大,电流I 也是 先减小后上升,如图5-2所示,则可判断B为感性元件。 2B B’ 图5-2 I-B'关系曲线 由上分析可见,当B为容性元件时,对并联电容C’值无特殊要求;而当B为感性元件时,B’<│2B│才有判定为感性的意义。B’>│2B│时,电流单调上升,与B 为容性时相同,并不能说明电路是感性的。因此B’<│2B│是判断电路性质的可靠条件,由此得判定条件为 C’=2B ω (2) 与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为 1 <│2X│ ωC’ 式中X为被测阻抗的电抗值,C’为串联试验电容值,此关系式可自行证明。

用三表法测量电路等效参数实验报告(含数据处理)

实验七 用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数UI P =?cos 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 2. 阻抗性质的判别方法 可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。其原理可通过电压、电流的相量图来表示: 图7-1 并联电容测量法 图7-2 相量图 3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。 三、实验设备 DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。 四、实验内容 测试线路如图7-3所示,根据以下步骤完成表格7-1。 1. 按图7-3接线,将调压器调到表1中的规定值。 2. 分别测量15W 白炽灯(R)、镇流器(L) 和4.7μF 电容器( C)的电流和功率以及功率因数。 3. 测量L 、C 串联与并联后的电流和功率以及功率因数。 4. 如图7-4,用并联电容法判断以上负载的性质。

图7-3 图7-4 五、实验数据的计算和分析 根据表格7-1的测量结果,分别计算每个负载的等效参数。 白炽灯:I U Z ==2386.6, UI P =?cos =1 镇流器L :I U Z ==551.7,UI P =?cos =0.172 电容器C :I U Z ==647.2,UI P =?cos =0,C Z f ωπω1 ||,2==,f=50Hz ,因此C=4.9μF L 和C 串联:I U Z ==180.9,UI P =?cos =0.35;并联1μF 电容后,电流增大,所以是容 性负载 L 和C 并联:I U Z ==2515.7,UI P =?cos =0.47;并联1μF 电容后,电流减小,所以是感性负载 由以上数据计算等效电阻 R =│Z│cosφ,等效电抗 X =│Z│sinφ,填入表7-1中。 六、实验小结 掌握了交流电路的基本实验方法,学会使用调压器,交流电压表、交流电流表,用功率表测量元件的功率。通过三表法可以通过实验方法测量并计算出负载元件的阻抗。实验中,线路接错会出现报警,也可能烧坏功率表的保险丝,需按照例图仔细检查线路。通过测量发现,被测负载有些不是线性元件。 Z

实验三 交流电路元件参数的测量

实验三交流电路元件参数的测量 一、实验目的 1、掌握阻抗和功率因数的意义。 2、掌握交流电路参数的测量方法,分析和计算。 二、实验原理 1、交流电路中的基本参数是电阻、电感及电容。一般说来这三者是“形影不离,不可分割“的。但在一定的条件下往往可以近似处理。 ①在频率不高的情况下往往忽略元件分布电容和分布电感的影响,而在频率较高的时候又往往忽略元件电阻的作用。 ②在某种情况下可以把分布参数的作用等效为一集中参数来加以考虑。本实验中将在50Hz工频交流的电源下测试一些电路元件的等效集中参数。 2、交流电路参数的测试方法很多,基本上可分两大类。 ①元件参数仪器测试法,如用万用表测电阻,阻抗电桥测电感,电容以及使用各种专用参数仪器进行测量。 ②元件参数“实际“测试法,即元件加上实际工作时的电压或电流通过计算得到等效参数,这种方法有实际意义,对线性元件和非线性元件都适用,例如测试变压器的等效参数必须在额定电压或额定电流情况下进行,测试铁心线圈参数也应该在实际工作电压或电流下进行,因为这些参数都与电压或电流大小有关。

RLC 电路理论计算公式: L j C j R jX jX R Z L C ωω+-=+-=1 2 L 2C 2X X R ++=Z Z R = ?cos ??arccos = 3、本实验中采用电压表、电流表法和用功率表法来实验测量含用电感、电阻及电容组成的电路的等值参数。 图8.1计算负载阻抗及负载元件的功率因数公式: 负载阻抗 I U Z S = 功率因素3 22 2 2 32 12cos U U U U U --=? 功率因素角??arccos = 4、采用功率表法来实验测量含用电感、电阻及电容组成的电路的等值参数。 负载阻抗 I U Z S = 功率因素 UI P = ?cos 功率因素角??arccos = 三、实验设备

!~实验四 交流电压表的测量及分析

实验四 交流电压表的测量及分析 一、实验目的和要求 1. 了解交流电压测量的基本原理。 2. 熟悉实验所用模拟电压表和数字电压表的性能参数,掌握电压表的基本测量方法。 3. 分析几种典型电压波形对不同检波特性电压表的响应,以及它们之间的换算关系。能对不同检波特性电压表的读 数进行解释和修正,并对测量结果做误差分析。 二、实验仪器设备 1.数字双踪示波器 TDS -1002B 2.DDS 函数信号发生器 DG1022 3.交流模拟毫伏表(平均值检波) WY2174A 4.交流数字毫伏表(有效值检波)TD1914C 5.超高频毫伏表(峰值检波)WY2282 6.数字万用表 VC88E 三、实验原理 一个交流电压的大小,可以用峰值,平均值 ,有效值U ,以及波形因数K F ,波峰因数K P 等表征, 全波平均值为 有效值为 波形因数为 波峰因数为 用来测量电压的指针式电压表中的检波器有多种形式,一般来说,具有不同检波特性的电压表都是以正弦电压的有效值来定度的,但是,除有效值电压表外,电压表的示值本身并不直接代表任意波形被测电压的有效值。可知,用具有有效值响应的电压表和平均值响应的电压表分别对各种波形的电压测量时,就算读数相同,要正确求出被测电压的均值、有效值U 和峰值,很多情况下还需进一步的换算。 四、实验内容及数据分析 1. 将WY2174A 交流毫伏表置于1V 档位,并将输入线短接,然后接通电源,让仪器预热,让指针稳定。 2.从DG1022函数信号发生器的CH1输出一个频率为100kHz ,幅值为2Vpp 的正弦波信号,接到WY2174A 交流毫伏表的输 入端。 3.调节函数信号发生器的幅值输出,使WY2174A 交流毫伏表的指针指示到0.7V 。 4.用数字示波器读出正弦波信号的峰值(最大值)和有效值(均方根值),填入表4-2。 U ? U ?=T dt t u T U 0 )(1?= T dt t u T U 0 2 )(1U U K F = U U K P ?= U U ?

相关主题
文本预览
相关文档 最新文档