当前位置:文档之家› 蓄电池放电时间粗略计算方法

蓄电池放电时间粗略计算方法

蓄电池放电时间粗略计算方法
蓄电池放电时间粗略计算方法

UPS蓄电池放电时间粗略计算方法

王庭胜

1、UPS的功率因素

UPS的功率大小,一般都以KV A(千伏安)表称,表示的是UPS的输入功率。UPS的输出功率要以该UPS的功率转换效率即功率因素进行计算。目前国内市场上的UPS功率因素大多数都是0.8,也就是说该UPS的输出功率是输入功率的0.8倍,UPS在内部转换过程中自身消耗了0.2倍。如一台20KV A的UPS,它的功率因素是0.8,那么它的输出功率等于20KVA*0.8=16000W(瓦)。其带的负载不能超过16000瓦。如一台6KVA的UPS,它的功率因素是0.9,那么它的输出功率等于6KV A*0.9=5400W(瓦)。其带的负载不能超过5400瓦。

为了保证UPS长时间安全、稳定的运行,一般在计算带载量时都以该UPS额定输出功率的四分之三(即75%)以内进行计算,余留25%用于电压和负载的波动范围。如以上所说的20KVA的UPS,其输出功率是16000W,其安全带载量应该是16000W*75%=12000W。

2、UPS带满载蓄电池放电时间计算

设UPS标称功率为P(单位为伏安),用直流(蓄电池)时其转换电压为ZV(单位为伏),转换电流为ZL(单位为安培),蓄电池容量为NAH(单位为安时),则蓄电池放电时间FAH(单位为小时)用下列公式计算:

P/ZV=ZL NAH/ZL*0.8=FAH

例:P=20千伏安NAH=100安时ZV=240伏,则ZL=P/ZV=83.3安培满载时蓄电池放电时间FAH=NAH/ZL*0.8=100/83.3*0.8=1.2*0.8=0.96H(小时)。

式中的0.8表示的是蓄电池放电时将化学能转换为电能的功率因素。

上式的计算中,说的是一组蓄电池的放电时间,如果要延长放电时间,只有再多并几组蓄电池,多并一组蓄电池,放电时间相应延长一倍。以上所说20KV A UPS配了四组240伏蓄电池,每组放电时间满载时为0.96小时,四组放电时间应该是4*0.96=3.84小时。

3、UPS带载不足满载功率时蓄电池放电时间计算

当UPS所带负载小于额定输出功率时,蓄电池放电时间肯定比满载时的放电时间延长,其放电时间的计算可用下列方法进行:

1)、将UPS所配蓄电池满载放电时间设为1.

2)用1除以UPS现有带载百分数再乘以满载时的放电时间得出现载的放电时间。

例:如上所说的20KV A 一台UPS配了四组蓄电池,其满载时的放电时间是3.84小时,现在带载只有22%,其放电时间应该是1/22%*3.84=17.45小时,约等于17小时。

4、注意事项

以上计算方法均以新蓄电池的性能和容量进行计算的。如果是旧蓄电池或者蓄电池长期处于充电状态而从不进行人为放电维护,那么,蓄电池的容量就大大下降,因而放电时间也大大缩短,甚至不能带载运行。因此,强烈建议UPS的用户对蓄电池进行定期放电维护。定期放电维护时间一般为一个季度一次。方法是在确认当天市电不停的情况下,断开UPS 输入市电,由蓄电池供电,根据理论计算放电时间,及时检测放电情况和蓄电池电压,当每单格蓄电池电压由12伏下降为11伏时即刻终止放电。如240伏一组蓄电池,它是由20个12伏的电池串联而成,当放电到220伏时就马上停止放电,此时每单格电池电压就到了终止电压11伏。96伏一组的蓄电池是由8个12伏蓄电池串联而成,当组电压下降到88伏时就到了终止电压,即刻停止放电。

2013年10月6日

山特UPS电池配置的计算方法及其使用和维护

山特UPS电池配置的计算方法及其使用和维护 长延时UPS电源电池配置的计算方法 对于使用者来说,怎样去配置长延时UPS电池容量是一个必须了解的问题,放电电流的大小与电池的实际容量关系颇大,蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。比如 12V24AH /20R Panasonic电池以0.4C放电时,可提供使用的效率(容量)为73.3%,可放电2小时,而以7C放电时,可提供使用的效率(容量)为4%,放电时间50秒。因此,要计算UPS电源的时间必须先计算出放电电流,再通过查验厂家提供的放电时间表计算出准确时间。 计算放电电流的公式是: 放电电流=UPS容量(VA) ×负载功率因数/(逆变器效率*UPS终止电压) 以山特10KVA为例: UPS容量:10KVA UPS输出功率因数:0.8 UPS终止电压:单只电池终了电压×UPS电池组电池个数 =10.5V×16只=168VDC 逆变器效率:0.85 注意:电池的能量并非都能直接提供给负载,它还包含了把电池能量转换为负载可使用的能量的转换效率,即逆变器效率。 放电电流=10000VA*0.8/(0.85*168)V=56A 查表 可查询不同AH的电池在同样放电电流下的使用时间,以求得自己所要求合适容量的电池,在这里提出一点,以上我们的计算都是认为UPS为满负载,对用户而言,重要的是了解在实际负载下UPS电源提供的实际使用时间,从经济和实用的角度而言,了解自己的负载数量,计算一个实际放电电流再查表方是正确做法。 蓄电池使用及维护 免维护电池所指的是电池的内环境无需维护,而不是说可以任意使用,因此,在以下几个方面应加以注意: 为了保证电池良好的工作状态,对于长期搁置不用的蓄电池必须每隔一定时间充电一次,以达到激活电池的目的,恢复电池原有的容量数。另外,特别应注意的是,对于运行于供电质量高、很少发生停电的UPS电源来说,也应每隔一定的周期(3个月)人为地中断交流电的输入,使电池放电至少在UPS电池组可提供时间的一半,再重新充电,这样会延长电池的使用寿命。 对于不同容量的电池,绝对不可以在同一组中串联混合使用,应特别注意的是,对于不同容量的电池,并联使用也是很不好的,这样会大大降低电池的使用寿命,很简单地说,不同容量的电池组并联使用时,由于放电电流的不同分配,放电速率则对于它们来说一定是不

ups电池使用时间的计算方法

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)

如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法 在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

{时间管理}电池使用时间的计算方法

(时间管理)电池使用时间 的计算方法

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,于停电后壹般能够继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,能够满足用户长时间停电时继续供电的需要,壹般长效型UPS满载配置时间可达数小时之上。 壹般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。壹般于电力环境较差、停电较为频繁的地区采用UPS和发电机配合供电的方式。当停电时,UPS先由电池供电壹段时间,如停电时间较长,能够起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。壹般计算机UPS电池供电时间,能够先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流能够按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率) 如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法 于UPS电源运行中,如果遇到市电供电中断时,蓄电池必须于用户所预期的壹段时间内向逆变器提供足够的直流能源,以便于带额定负

载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量和下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有于考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量和蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。 常见的微机、服务器及其配件的负载特性

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

电池放电时间计算

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(-7.0C)、超高倍率(>7.0C)如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。 25)放电率 电池在规定时间内放出额定容量时所需的电流值;或按一定输出电流放完额定容量时所需的时间。常用倍率(若干C)或时率表示。 26)活性物质 电池放电时,能进行氧化或还原反应而产生电能的电极材料。 27)充电 将外电路输入蓄电池的电能转化为化学能贮存起来的操作过程。 28)充电率 蓄电池在规定时间内充到额定容量所需的电流值;或在一定电流下充到额定容量所需的时间。一般用倍率(若干C)或时率表示。

时间管理电池使用时间的计算办法

最新卓越管理方案您可自由编辑

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法

在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

UPS具体放电时间计算公式

UPS具体放电时间可有计算公式? 因电池放电时间与放电电流、环境温度、负载类型、放电速率、电池容量等多因素相关,故实际放电时间无法直接用公式推导出。现提供电池最大放电电流公式:I=(Pcosφ)/(ηEi) ......其中P是UPS的标称输出功率; .......cosφ是负载功率因数,PC、服务器一般取0.6~0.7; ......η是逆变器的效率,一般也取0.8(10KVA取0.85); .......Ei是电池放电终了电压,一般指电池组的电压。 P=UI U是电压I是电流P是功率 对于直流电来说,功率等于电流乘以电压 功率(直流)=电流*电压 对于常用的交流电来说,还要再乘以功率因数 功率(单相交流)=电压*电流*功率因数 如果使用的是三相交流电,还要再乘以1.732 功率(三相交流)=电压*电流*功率因数*1.732 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In

5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方)U:电压,V; I:电流,A; P:有功功率,W; R:电阻 纯电感无功功率Q=I2*Xl(式中2为平方) Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方) Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接 I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A;

电池放电时间计算

电池放电时间计算集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

新电池估算方法: 估计算法:电池容量× 0.8 ÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用0.006,机房里选用0.008 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到1.8v,也就是只要有一只电池达到1.8v,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以1.8×24=43.2v,即可以放到43.2v算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到1.8v,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(0.5-3.5C)、高倍率(3.5-7.0C)、超高倍率(>7.0C)

UPS后备时间电池计算公式

U P S后备时间电池计算 公式 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

U P S电池放电时间计算方法(逆变效率按90%、12V电池放电终止电压10.5V) 1、计算蓄电池的最大放电电流值: I最大=Pcosф/(η*E临界) 注:P→UPS电源的标称输出功率 cosф→UPS电源的输出功率因数(UPS一般为0.8) η→UPS逆变器的效率,一般为0.88~0.94(实际计算中可以取0.9) E临界→蓄电池组的临界放电电压(12V电池约为10.5V,2V电池约为1.7V) 2、根据所选的蓄电池组的后备时间,查出所需的电池组的放电速率值C,然后根据: 电池组的标称容量=I最大/C 3、由于使用E临界——电池的最低临界放电电压值,所以会导致所要求的电池组的安时容量偏大的局面。按目前的使用经验,实际电池组的安时容量可按下面公式计算: 例如1.10KVAUPS延时60分钟 电池的最大放电电流26.4A=标称功率10000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=26.4A÷0.61C=43.3AH 10KVA延时60分钟,电池配置为32节1组12V44AH。选配时32节12V1组容量≥44AH 例如1.20KVA延时180分钟 电池的最大放电电流52.9A=标称功率20000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=52.9A÷0.28C=188.5AH 20KVA延时180分钟,电池配置为32节1组12V190AH。选配时32节12V1组容量≥190AH

动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

关于纯电动汽车续航里程的计算方法

关于纯电动汽车续航里程的计算方法最近因为工作原因开始研究纯电动汽车续航里程计算问题,后来在网上查找了一些这方面的资料,但是也没找到太准确的计算方法,根据最近一段时间的学习,对于续航里程计算我在这做一个自我认识的总结,希望对大家有用。 首先我需要提到一个《汽车理论》第四版,清华大学余志生主编的课本第67 页有一个关于电动车续航里程计算的公式,具体如下: 在这个公式中,蓄电池总能量就是我们提到的电池时的12V 100Ah这两个参数的乘积,但是这样得出来的结果单位是W.h,不需要公式里再乘以10的3次方了。另外电机及控制器效率是指电能在通过电机控制器到达电机时有能量损耗,电机自身产生机械能时也有损耗,两次传输效率乘积就是电机及控制器效率,这个参数依据不同的电机及电机控制器型号是不一样的,这个地方说取0.9只是个例子,不代表通用值。 电池平均放电效率是由电池厂家提供的一个电池放电曲线图得出的,如下图:

电池在不能的放电倍率(放电倍率是指100Ah容量的电池以100A的电流放电就称为以1CA的电流放电)下,能放出的总电能是不同的,放电速度越快,放出的总电能越少。这个地方我需要说明下,平时我们所提到的电池容量,如100Ah,是指电池的额定容量,在一定的放电条件下进行放电,这100Ah的电量是完全可以被放出来的,而且还可以超额放电,最多能放出120%的额定容量的电量。要说明的是,我这些都是针对铅酸电池而言,其他电池暂时不清楚。依据上图,该型号的电池在每一个放电倍率时,都能从图中读出它以该放电倍率放电所能持续的时间,放电倍率乘以放电时间就是放电效率。对放电曲线图里的所有倍率下的放电效率求平均值,就得出了平均放电效率。 这个参数大家应该都知道,这是传动效率。 但是在上述汽车理论公式中的0.7系数,我一直不知道是什么意思,后来我个人认为是作者认为在汽车形势中,电池的70%能量用在了汽车行驶上,其他30%用在了电器空调上。 另外一种求续航里程的方法: 首先大家应该明白电动车的能量流程图

电池放电时间计算

电池放电时间计算 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。

4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(- 7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。

动力电池测试项目和测试标准

测试项目 1.测试项目:循环特性(12℃*10Cycle): 测试方式:电池在12±2℃的环境下以0.2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC 0.5C-下限电压;②休止10min;③充电CC/CV0.5C-上限电压 0.05C截止④休止5min;⑤放电 CC 0.2C-下线 电压;⑥休止10min;⑦调整倍率至0.5C、1C、2C重复③~⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 0.5C满充电至上限电压,0.05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0.2C放 电至下限电压。 评价标准:放电容量,维持率 4.测试项目:60℃/7天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电, 记录储存前后放电容量,试验完成后进行尺寸外观检查。 评价标准:残存容量≥80%,外观无漏液。参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10% 5.测试项目:常温/30天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 6.测试项目:85℃*4H储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 7.测试项目:高温高湿测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃/95%RH的环境中储存7Day,最后在室温下放置进行0.2C残存 放电及0.2C回复放电,试验完成后进行尺寸外观检查。 评价标准:回复容量≥80%,外观无漏液、表面无损害。参考项[内阻增加比例≤40%]

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)

极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

新能源干货-在充放电设备上实现中国汽车工况(乘用车)下动力电池寿命里程的试验方法

新能源-在充放电设备上实现中国汽车工况下动力电池寿命里程的试验方法 在新能源汽车行业,一般都很想知道所使用的动力锂电池的寿命里程,从而实现动力电池寿命的预估。动力电池寿命的预估一般可以得到以下收益: 1、从电动汽车供应商的角度讲,可以知道动力电池何时能到寿命,从而确定厂家的保修期和需要更换的费用; 2、从用户角度讲,可以计算所用锂电池的预估寿命和需要花费的费用,从而为用户提供更换和维护计划。 要想知道寿命里程,一般可以有以下方法实现:1、实际跑车路试;2、测功机上实现。但此两种方法一般耗时耗力,有一定的难度。本文介绍一种在充放电设备上实现动力锂电池寿命里程的测试方法,比较快捷方便,具体方法如下: (一)数据转化: CLTC工况(China light-duty vehicle test cycle,中国汽车行驶工况)是目前国家极力推出的国家标准,已颁布实施,其标准号为:GB/T38146.1-2019和GB/T38146.2-2019 GB/T38146.1-2019为第一部分,即中国乘用车行驶工况(China light-duty vechicle test cycle-passenger car,即:CLTC-P;GB/T38146.2-2019为第二部分,即中国重型商用车行驶工况China light-duty vechicle test cycle-commercial car,即:CLTC-C。因为原来沿用的等速工况和NEDC工况已经不能实际地反映中国当今道路的实际情况,其测量和实施是不准确的。这里以CLTC-P工况为例说明一下在充放电设备上如何实现寿命里程测试。为了能够在充放电设备上实现寿命里程测试,需要将CLTC-P工况的时间-速度数据转换为充放电设备能够识别的时间-瞬时功率数据。CLTC-P工况时间速度数据如附录,共计1800s:其基本构成如下:

蓄电池放电公式

UPS具体放电时间计算公式 a. 基本公式: 负载的有功功率×支持时间 = 电池放出容量×电池电压×UPS逆变效率 其中:负载的有功功率 = 负载总功率×负载的功率因数 UPS逆变效率≈0.9 电池放出容量 = 电池标称容量×电池放电效率 电池放电效率与放电电流或放电时间有关,可参照下表确定: 放电电流 2C 1C 0.6C .4C .2C 0.1C 0.05C 放电时间 12min 30min 1h 2h 4h 9h 20h 放电效率 0.4 0.5 0.6 0.7 0.8 0.9 1 b. 计算公式: 负载的有功功率×支持时间 =电池放出容量×电池电压×UPS逆变效率 c. 计算举例: 例:负载总功率3000VA,负载功率因数0.7,UPS电池电压96V,要求支持时间1小时,求应选用的电池容量。计算: 3000(VA)×0.7×1(h) =电池放出容量×96×0.9 得出:电池放出容量= 24.3(Ah) 电池标称容量 = 24.3/0.6 = 40.5(Ah) 结果:可选用38Ah 的电池(12V/38Ah 电池8块) 因电池放电时间与放电电流、环境温度、负载类型、放电速率、电池容量等多因素相关,故实际放电时间无法直接用公式推导出。现提供电池最大放电电流公式:I=(Pcosφ)/(ηEi) ......其中P是UPS的标称输出功率; .......cosφ是负载功率因数,PC、服务器一般取0.6~0.7; ......η是逆变器的效率,一般也取0.8(山特10KVA取0.85); .......Ei是电池放电终了电压,一般指电池组的电压。 将具体数据代入上式,求出电池最大放电电流后,即可从电池的各温度下放电电流与放电时间的关系图上查出相应的放电时间。请注意这里求出的是电池总放电电流值。当外接多组电池时则需求出单组电池的放电电流值。

10招教你如何使用新买锂电池 先放电再充电

10招教你如何使用新买锂电池先放电再充电 很多人对于新买的锂电池难以捉摸,笔者看到有资深玩家总结了关于锂电池的使用方法,和大家分享下,希望能带来帮助。 1、新买的锂电池如何用?是先充电还是放电?怎么充放?先进行小电流的放电(一般设置为1-2A),然后再用1A的电流进行充放电循环2-3次,已激活电池 2、新电池刚开始使用,电压不平衡,充放几次后,又正常了,是什么问题?主要是因为电池组中的个体电芯虽然是配对好的,但是仍会存在自放电不同的个体差异,新电池从工厂到用户手中,一般会有3个月以上的时间,在这段时间里单体电芯会因为自放电的不同所表现出电压不一样,从而电池组中的电压差值变大(即不平衡);因为目前市场上的充电器都具备充电平衡功能,所以一般的不平衡会通过充电器充电时修复 3、锂电应该在怎么样的环境下存储?阴凉干燥环境下储存,室温15-35℃,环境湿度65% 4、锂电能用多久?一般正常的可以用多少个循环?寿命受到什么因素影响?航模锂电一般可以使用100次左右,影响寿命的主要因素:1.温度,电池不能在过热的环境下使用或存放(35℃);2.充放电,电池组充电及放电不能过度,须保证单颗电芯电压4.2-3.0V之间,大电流工作回升电压应保证在3.4V以上;3.选用功率合适的机型,避免电池组在超负荷的情况下勉强使用。 5、新锂电需要激活么?如果不激活会不会有所影响?需要激活,新电池从工厂到用户手中,一般会有3个月以上的时间,电池会处于一个休眠状态,不适宜立刻做高强度的放电,否则会应影响电池的使用效率及寿命。 6、新电池,充不进电是什么原因?电芯零电、电池大内阻、充电器模式不对。 7、锂电池的C数代表什么?“C”是电池容量的符号,跟电流的符号是“I”是同一个意思,“C数”代表我们常说的倍率,即电池可以在标称容量基础上工作的电流大小的简称,以2200mAh 20C 为例,20C标识该款电池可以正常工作的电流2200mA×20 =44000mA;20C放电即用44000mA的电流对电池进行放电。 8、锂电的最佳保存电压是多少?一般出厂的电池带电量为多少?单只电压在3.70-3.90V之间,一般出厂会带30-60%的电量 9、电池组单片电芯之间多少压差算正常?超过额定压差该怎么办?出厂日期在1个月内的新电池一般在 30mV即0.03V左右是正常的,放置长时间的电池组超过3个月以上,在100mV即0.1V是可以使用的,超过额定压差的电池组可以用具有平衡功能的智能充电器进行2-3次的小电流(1A)充放电循环,可以修复绝大多数压差异常的电池组。 10、电池充满电后能不能长期存放?满电存放时间不能超过7天;电池最好在单只3.70-3.90电压状态下存放,有利于延长电池寿命,如果长期不使用,确保每1-2个月充放电一次。

相关主题
文本预览
相关文档 最新文档