当前位置:文档之家› 韩旭里__概率论习题答案(1)

韩旭里__概率论习题答案(1)

韩旭里__概率论习题答案(1)
韩旭里__概率论习题答案(1)

概率论与数理统计习题及答案

习题一

1. 略.见教材习题参考答案.

2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:

(1)A发生,B,C都不发生;

(2)A与B发生,C不发生;

(3)A,B,C都发生;

(4)A,B,C至少有一个发生;

(5)A,B,C都不发生;

(6)A,B,C不都发生;

(7)A,B,C至多有2个发生;

(8)A,B,C至少有2个发生.

【解】(1)A B C(2)AB C(3)ABC

(4)A∪B∪C=AB C∪A B C∪A B C∪A BC∪A B C∪AB C∪ABC=AB C

(5) ABC=A B C

(6)

(7) A BC∪A B C∪AB C∪A B C∪A BC∪A B C∪ABC=ABC

3. 略.见教材习题参考答案

4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).

【解】-[P(A)-P(A-B)]

=1-[0.7-0.3]=0.6

5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:

(1)在什么条件下P(AB)取到最大值?

(2)在什么条件下P(AB)取到最小值?

【解】(1)当AB=A时,P(AB)取到最大值为0.6.

(2)当A∪B=Ω时,P(AB)取到最小值为0.3.(理解不了,画个文氏图,交集)6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,

P(AC)=1/12,求A,B,C至少有一事件发生的概率.

【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)(晕,还没理解)

=

14

+

14

+

13

-

112

=

34

7. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率

是多少?

【解】 p =533213

1313131352C C C C /C

8. 对一个五人学习小组考虑生日问题:

(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.

【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=

5

17

=(

17

)5 (亦可用独立性求解,下同)

(2) 设A 2={五个人生日都不在星期日},有利事件数为65

,故

P (A 2)=

55

67

=(

67

)5

(3) 设A 3={五个人的生日不都在星期日}

P (A 3)=1-P (A 1)=1-(

17

)5

9. 略.见教材习题参考答案.

10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.

【解】(1) P (A )=C C /C m n m n

M N M N --

(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n

N 种,n 次抽取中有m

次为正品的组合数为C m

n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m

M 种,从N -M 件次品中取n -m 件的排列数为P n m

N M --种,故

P (A )=

C P P P

m

m

n m

n M N M

n

N --

由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成

P (A )=

C C C m

n m

M N M

n N

--

可以看出,用第二种方法简便得多.

(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n

次抽取中有m 次为正品的组合数为C m

n 种,对于固定的一种正、次品的抽取次序,

m 次取得正品,都有M 种取法,共有M m

种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )

n -m

种取法,故

()C ()

/m

m

n m

n

n P A M

N M N -=-

此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为m 件正品的概率为

11. 略.见教材习题参考答案.

12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆

钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱

.求发生一个

部件强度太弱的概率是多少?

【解】设A ={发生一个部件强度太弱}

13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,

计算至少有两个是白球的概率. 【解】 设A i ={恰有i

与A 互斥.

故 232

322()()()35

P A A P A P A =+=

14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:

(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.

【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)

(1) 1212()()()0.70.80.56P A A P A P A ==?= (2) 12()0.70.80.70.80.94P A A =+-?= (3) 2112()0.80.30.20.70.38P A A A A =?+?=

15. 掷一枚均匀硬币直到出现3次正面才停止.

(1) 问正好在第6次停止的概率;

(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 223151115()()22232p C == (2) 13421

11C ()()

22245/325

p =

= 16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球

数相等的概率.

【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则

3

331212

3330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+??+ 22223

33C (0.7)0.3C (0.6)0.4+(0.7)(0.6)?

=0.32076

17. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】 4

1

1

1

15222

2

4

10

C C C C C 131C

21

p =-

=

18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:

(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.

(1) ()0.1()0.2()

0.5

P AB p B A P A =

==

(2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=

19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).

【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故

()6/86()()

7/8

7

P AB P B A P A =

==

或在缩减样本空间中求,此时样本点总数为7.

6()7

P B A =

20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是

男人的概率(假设男人和女人各占人数的一半).

【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式

()()

()()()

()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+

0.50.0520

0.50.05

0.5

0.0025

21

?

=

=?

+? 21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.

题21图题22图

【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.

如图阴影部分所示.

2

2

301

604

P==

22. 从(0,1)中随机地取两个数,求:

(1)两个数之和小于

6

5

的概率;

(2)两个数之积小于

1

4

的概率.

【解】设两数为x,y,则0

(1)x+y<

6

5

.

1

144

17

255

10.68

125

p=-==

(2) xy=<

1

4

.

11

11

2

44

11

1d d ln2

42

x

p x y

??

=-=+

?

??

??

23. 设P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)

【解】

()()()

()

()()()()

P A B P A P A B

P B A B

P A B P A P B P A B

-

==

+-

0.70.5

10.70.6

0.5

4

-=

=+

-

24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比

赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新

球}

由全概率公式,有

3

()()()i i i P B P B

A P A ==

3

3

12

3

21

3

3

3

6996896796333

3

3

3

3

3

1

515

1515

151

5

15

15

C C C C C C C C C C C C

C

C

C

C

C C

=?

+

?

+

?

+

?

0.089

= 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学

生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人?

(2)考试不及格的学生有多大可能是努力学习的人?

【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P

(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()

()()()

()()()()P A P B A P AB P A B P B P A P B A P A P B A =

=

+

0.20.1

1

0.027020.80.9

0.20.137

?=

==?

+? 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()

()()()

()()()()

P A P B A P A B P A B P B P A P B A P A P B A =

=

+

0.80.14

0.30770.80.1

0.2

0.913

?=

==?

+? 即考试不及格的学生中努力学习的学生占30.77%.

26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而

B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是

A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是

B }

C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得

()()

()()()()()

P A P C A P A C P A P C A P A P C A =

+

2/30.980.9949

22/30.98

1/3

0.01

?=

=?

+? 27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱

子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=

13

,i =0,1,2.又设B ={抽

出一球为白球}.由贝叶斯公式知

11112

()()

()()()

()()

i i i P B A P A P A B P A B P B P B

A P A ==

=

2/31/3

11/31/32/31/311/3

3

?=

=?+?+?

28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率

为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}

由贝叶斯公式得

()()

()()()

()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+

0.96

0.980.998

0.96

0.98

0.04

0.05

?=

=?+? 29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上

述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人

占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?

【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},

C ={该客户是“冒失的”},

D ={该客户在一年内出了事故}

则由贝叶斯公式得 ()()(|)

(|)()

()(|)()(|)()(|)

P AD P A P D A P A D P D P A P D A P B P D B P C P D C =

=

++

0.20.05

0.057

0.20.05

0.50.15

0.30.3

?

=

=?

+?+? 30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.

【解】设A i ={第i 道工序出次品}(i =1,2,3,4).

4

12341

()1()i i P A P A A A A ==-

1234

1()()()()P A P A P A P A =-

10.98

0.970.950.97=-???= 31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概

率不小于0.9?

【解】设必须进行n 次独立射击.

1(0.8)0.9n

-≥

即为 (0.8)0.

n

≤ 故 n ≥11 至少必须进行11次独立射击.

32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.

【证】 (|)(|)

P A B P A B =

即()()()

()

P A B P A B P B P B =

亦即 ()()()()

P A B P B P A B P B = ()[1()][()()]()P AB P B P A P AB P B -=-

因此 ()()()

P A B P A P B = 故A 与B 相互独立.

33. 三人独立地破译一个密码,他们能破译的概率分别为

15

13

14

,求将此密码破译出

的概率.

【解】 设A i ={第i 人能破译}(i =1,2,3),则

3

1231231

()1()1()()()i i P A P A A A P A P A P A ==-=-

42310.65

3

4

=-

?

?

=

34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3

由全概率公式,得

3

()(|)()i

i

i P A P A B P B ==

=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7

=0.458

35. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,

且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.

(2) 新药完全无效,但通过试验被认为有效的概率.

【解】(1) 3

10110

C

(0.35)(0.65)

0.5138k k k

k p -==

=∑

(2) 10

10210

4

C

(0.25)(0.75)

0.2241k

k k

k p -==

=∑

36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:

(1) A =“某指定的一层有两位乘客离开”;

(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.

【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106

种.

(1) 2

4

66C 9()10

P A =

,也可由6重贝努里模型:

2

2

4

619()C (

)(

)10

10

P A =

(2) 6个人在十层中任意六层离开,故

6

106P ()10

P B =

(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有1

10C 种可能结果,再从

六人中选二人在该层离开,有2

6C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有1

3

1

948C C C 种可能结果;②4人同时离开,有1

9C 种可能结果;③4个人都不在同一层离开,有4

9P 种可能结果,故

1

2

1

3

1

1

4

6

10694899()C C (C C C C P )/10P C =++

(4) D=B .故

6

106P ()1()110

P D P B =-=-

37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;

(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111

p n =

-

(2) 23!(3)!,3(1)!

n p n n -=>-

(3) 12(1)!13!(2)!

;,3!

!

n n p p n n n

n --''=

=

=

38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由

0

()()x y a x y x a x y y y a x y x

+>--??

+-->??+-->? 构成的图形,即

02022

a x a y a

x y a ?

<

?<

p =

.

39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).

证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关. 【证】 1

1P 1,1,2,,

P k n k n

p k n n

--=

=

= 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出

一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).

【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.

在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的

小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂

色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为

01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.0081000

1000

P A P A =

==

=.

41.对任意的随机事件A ,B ,C ,试证

P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()]

(P A P A B

C P A B

A C

≥= ()()()P A B P A C P A B

C =+-

()()()

P A B P A C P B C ≥+- 42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.

将3个球随机放入4个杯子中,全部可能放法有43

种,杯中球的最大个数为1时,

每个杯中最多放一球,故

3

413C 3!3()4

8

P A =

=

而杯中球的最大个数为3,即三个球全放入一个杯中,故

1

433C 1()4

16

P A =

=

因此 21

331

9()1()()18

1616

P A P A P A =--=--= 或 1

2

1433

23

C C C 9()4

16

P A =

=

43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},

C ={正面次数等于反面次数},A ,B ,C 两两互斥.

可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以

1()

()2

P C P A -=

由2n 重贝努里试验中正面出现n 次的概率为

211()()()22n

n n n P C C =

故 2211()[1C ]22

n

n n P A =-

44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.

【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知

P (A )=P (B )

(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5

(2) 当n 为偶数时,由上题知

2

1

1()[1C ()]22

n

n n P A =

- 45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.

【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.

乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有

>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)

=(甲反≥1+乙反)=(甲反>乙反)

由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=

12

46. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )

≥P (B ).

【证】由P (A |C )≥P (B |C ),得

()(),()

()

P AC P BC P C P C ≥

即有 ()()P A C P B C ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()()

,P A C P B C ≥ 故 ()()()()

()()P A P A C P A C P B C P B C

P B =+

≥+=

47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少

有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则

121(1)1()(1)

2()(1)

1()(1)

n k

k

i k

k

i j k

i i i n P A n

n

P A A n n P A A A n

--=

=-=--=-

其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.

显然n 节车厢全空的概率是零,于是

211211

11

2

211

1111

1231

11()(1)C (1)

2()C (1)

1()C (1)

()(1)

n n n

k k

i n i k

i j n i j n

n k

n i i i n i i i n

n n

n i n

i S P A n n

n

S P A A n n S P A A A n

S P A S S S S --=≤<≤--≤<<≤+===-

=-

==-

-==-

==-+-+-∑

12

1

121C (1)C (1)(1)C

(1)

k

k

n n k

n n

n n n

n

n

--=---++

-- 故所求概率为

1

2

1

121()1C (1)C (1)n k i i n n i P A n

n

=-=--

+-

-+ 1

1

1(1)

C (1)n n k

n n n

+----

48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独

立地重复做此试验,则A 迟早会出现的概率为1. 【证】

在前n 次试验中,A 至少出现一次的概率为

1(1)1()n

n ε--→→∞

49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}

B ={这只硬币为正品}

由题知 (),()m n P B P B m n

m n

=

=++

1(|),(|)12

r

P A B P A B ==

则由贝叶斯公式知

()()(|)

(|)()

()(|)()(|)

P AB P B P A B P B A P A P B P A B P B P A B =

=

+

121212r

r

r m

m m n m n m n

m n m n

+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用

火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又

有多少?

【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2

P B P B ==

.(1)发现一盒已空,

另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。把取2n -r 次火柴视作2n -r 重贝努里试验,则所求

概率为

12211112C ()()C 2222

n n n r n

n r n r r r p ----==

式中2反映B 1与B 2盒的对称性(即也可以是B 2盒先取空).

(2) 前2n -r -1次取火柴,有n -1次取自B 1盒,n -r 次取自B 2盒,第2n -r 次取自B 1

盒,故概率为

111

212212111112C ()()C ()2222

n n n r n n r n r n r p ----------==

51. 求n 重贝努里试验中A 出现奇数次的概率.

【解】 设在一次试验中A 出现的概率为p .则由

1

1

222

()C C C C 1n

n

n n n n n n n n q p p q pq p q

p q --+=++++=

1

1

2

2

2

n

()C C C (1)C n

n

n n n

n

n n n n q p p q pq

p q

p q ---=++-+-

以上两式相减得所求概率为

1

1

333

1C C n n n n p pq

p q

--=++

1[1()]2n

q p =-- 1[1(12)]2

n

p =

--

若要求在n 重贝努里试验中A 出现偶数次的概率,则只要将两式相加,即得

21[1(12)]2

n

p p =

+-.

52.设A ,B 是任意两个随机事件,求P {(A +B )(A +B )(A +B )(A +B )}的值. 【解】因为(A ∪B )∩(A ∪B )=A B ∪A B

(A ∪B )∩(A ∪B )=AB ∪AB

所求 ()()()()

A B A B A B A B ++++ [()()]

A B A B A B

A B =+ =?

故所求值为0.

53.设两两相互独立的三事件,A ,B 和C 满足条件:

ABC =Φ,P (A )=P (B )=P (C )< 1/2,且P (A ∪B ∪C )=9/16,求P (A ).

【解】由()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+

2

9

3()

3[(

)]16

P A P A =-= 故1()4

P A =

34

,按题设P (A )<12

,故P (A )=14

.

54.设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A

不发生的概率相等,求P (A ).

【解】 1

()()1()9

P A B P A

B P A

B =

=

-

= ① ()()P A B P AB = ②

故 ()()()(P A P A B P B P A

B -=- 故 ()()P A P B = ③

由A ,B 的独立性,及①、③式有

11()()()()9

P A P B P A P B =--+

2

12()[()]

P A P A =-+ 2[1()]

P A =- 故 11()3

P A -=±

故 2()3

P A =或4()3

P A =(舍去)

即P (A )=

23

.

55.随机地向半圆0

2

2x ax - (a 为正常数)内掷一点,

点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于π/4的概率为多少? 【解】利用几何概率来求,图中半圆面积为

12

πa 2.阴影部分面积为

2

2

π14

2a a +

故所求概率为

2

2

2

π1114

2

1

2

π

π2

a a

p a

+==

+

56. 设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格

品,求另一件也是不合格品的概率.

【解】 设A ={两件中至少有一件是不合格品},B ={另一件也是不合格品}

2

4

21026

210

C C ()1(|)C ()

5

1C P AB P B A P A =

=

=

-

57.设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3

份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生表的概率p ;

(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 【解】设A i ={报名表是取自第i 区的考生},i =1,2,3.

B j ={第j 次取出的是女生表},j =1,2.

则 1(),1,2,33i

P A i ==

111213375(|),(|),(|)10

15

25

P B A P B A P B A =

=

=

(1) 3

111

1

3

7529()(|)(

)310

15

25

90

i i p P B P B A ===

=

+

+

=

(2) 21212()(|)()

P B B q P B B P B ==

而 3

22

1

()(|)()i i i P B P B

A P A ==

∑ 1

7

8

2061

(

)310

15

2590

=

+

+

=

3

2121

1

()(|)()i i i P B B P B

B A P A ==

∑ 1

3

7

785202(

)310

9151425

249

=

?

+

?

+

?

= 故 2122

()

20961()6190

P B B q P B =

==

58. 设A ,B 为随机事件,且P (B )>0,P (A |B )=1,试比较P (A ∪B )与P (A )的大小. (2006研考)

解:因为 ()()()()P A B P A P B P AB =+-

()()()()P AB P B P A B P B =?=

所以 ()()()()(P A B P A P B P B P A

=+-= .

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率论与数理统计试题

07试题 一、填空题(本大题共6小题,每小题3分,总计18分) 1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则() () P AB P AB += 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 3.设随机变量X 在区间[0,2]上服从均匀分布,则2Y X =的概率密度函数为 4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()2 4E X ??+=? ? 5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得 {} 22P X -≥≤ . 6. 设1234,,,X X X X 是来自正态总体X ~()0,4N 的样本,则当a = 时, ()()22 123422Y a X X a X X =++-~()22χ. 二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题 共6个小题,每小题3分,总计18分) 1.设,A B 为对立事件, ()01P B <<, 则下列概率值为1的是( ) ~ (A) ()|P A B ; (B) ()|P B A ; (C) () |P A B ; (D) ()P AB 2. 设随机变量X ~()1,1N ,概率密度为()f x ,分布函数()F x ,则下列正确的是( ) (A) {0}{0}P X P X ≤=≥; (B) {1}{1}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈ 3. 设()f x 是随机变量X 的概率密度,则一定成立的是( ) (A) ()f x 定义域为[0,1]; (B) ()f x 非负; (C) ()f x 的值域为[0,1]; (D) ()f x 连续 4. 设4{1,1}9P X Y ≤≤= ,5 {1}{1}9 P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( ) (A) 23; (B) 2081; (C) 49; (D) 13 5. 设随机变量(),X Y 的方差()4D X =,()1D Y =,相关系数0.6XY ρ=,则方差 ()32D X Y -= ( ) - (A) 40; (B) 34; (C) ; (D) 6. 设12,,,n X X X 是正态总体X ~() 2,N μσ的样本,其中σ已知,μ未知,则下列不是 统计量的是( ) (A) 1max k k n X ≤≤; (B) 1min k k n X ≤≤; (C) X μ-; (D) 1 n k k X σ =∑ 三、计算题(本大题共6小题,每小题10分,共计60分) 1.甲乙丙三个同学同时独立参加考试,不及格的概率分别为: ,,, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率.

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计试卷答案

一、填空题 1.已知()0.8,()0.5,P A P A B ==且事件A 与B 相互独立,则()P B = 0.375 . 2.若二维随机变量),(Y X 的联合概率分布为 18 .012.012.008.01 11 1 b a X Y --,且X 与Y 相互 独立,则=a 0.2 ;=b 0.3 . 3.已知随机变量~(0,2)X U ,则2()[()] D X E X = 13 . 4.已知正常男性成人血液中,每毫升白细胞平均数是7300,均方差是700。设X 表示每毫升白细胞数,利用切比雪夫不等式估计{52009400}P X <<89 ≥ . 5.设123,,X X X 是总体X 的样本,11231?()4X aX X μ =++,21231?()6 bX X X μ=++是总体均值的两个无偏估计,则a = 2 ,b = 4 . 二、单项选择题 1.甲、乙、丙三人独立地译一密码,他们每人译出密码的概率分别是0.5,0.6,0.7,则密码被译出的概率为 ( A ) A. 0.94 B. 0.92 C. 0.95 D. 0.90 2.某人打靶的命中率为0.8,现独立射击5次,则5次中有2次命中的概率为( D ) A. 20.8 B. 230.80.2? C. 22 0.85 ? D. 22350.80.2C ?? 3.设随机变量Y X 和独立同分布,则),,(~2σμN X ( B ) A. )2,2(~22σμN X B. )5,(~22σμN Y X - C. )3,3(~22σμN Y X + D. )5,3(~22σμN Y X - 4.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =?,则( B ). A. ()()()D XY D X D Y =? B.()()()D X Y D X D Y +=+ C.X 和Y 独立 D.X 和Y 不独立 5.设 ()2~,X N μσ,其中μ已知,2σ未知,123 ,,X X X 为其样本, 下列各项不是 统计量的是( A ).

概率统计试卷A及答案

2010―2011―2概率统计试题及答案 一、选择题(每题3分,共30分) 1.已知4 1)()()(= ==C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率______. 31) (A 83)(B 157)(C 5 2 )(D 2.设A 、B 、C 为3个事件.运算关系C B A 表示事件______. (A ) A 、B 、C 至少有一个发生 (B ) A 、B 、C 中不多于—个发生 (C ) A ,B ,C 不多于两个发生 (D ) A ,月,C 中至少有两个发生 3.设X 的分布律为),2,1(2}{ ===k k X P k λ,则=λ__________. 0)(>λA 的任意实数 3)(=λB 3 1 )(= λC 1)(=λD 4.设X 为一个连续型随机变量,其概率密度函数为)(x f ,则)(x f 必满足______. (A ) 1)(0≤≤x f (B ) 单调不减 (C ) 1)(=? ∞+∞ -dx x f (D ) 1)(lim =+∞ →x f x 5.对正态总体的数学期望μ进行假设检验,如果在显著性水平α=0.05下接受 00:μμ=H ,那么在显著性水平 α=0.01下,下列结论正确的是______. (A ) 必接受0H (B )可能接受也可能拒绝0H (C ) 必拒绝0H (D )不接受,也不拒绝0H 6.设随机变量X 和Y 服从相同的正态分布)1,0(N ,以下结论成立的是______. (A ) 对任意正整数k ,有)()(k k Y E X E = (B ) Y X +服从正态分布)2,0(N (C ) 随机变量),(Y X 服从二维正态分布

概率论与数理统计期中试卷(1-4章)附答案及详解

X,

23π+=X Y 5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2, 0(~22N X ,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D 6. 设二维正态分布的随机变量)0,3,4,2 ,1( ),(2 2-N ~Y X ,且知8413.0)1(=Φ,则 -<+)4(Y X P 7. 已知随机变量X 的概率密度2 01()0 a bx x f x ?+<<=??其他, 且41)(=X E ,则a b ) (X D 8. 设4. 0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率; (2)任取一个零件经检验是废品,试求它是由乙机床生产的概率. 解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A 再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得 .02.0)(,03.0)(;3 1 )(,32)(====A B P A B P A P A P …… 3’ (1)由全概率公式知 027.075 2 02.03103.032)()()()()(≈=?+?= +=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73 ()1()0.973.75 P B P B =-= ≈ …… 1’ (2)由贝叶斯公式知 .4 102.03 103.03202.031 )()()()()()()(=?+??=+=A B P A P A B P A P A B P A P B A P …… 3’

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对 值大于1的概率. X 解:由于 X ~ N(12,4),故 X 一 ~ N(0,1) /V n 1 ( 2 0.8686 1) 0.2628 10 7.3 设总体X ?N(0,0.09),从中抽取n 10的简单随机样本,求P X : 1.44 i 1 X i 0 X i 0 X i ~N(0,°.09),故亠-X0r~N(0,1) X 所以 ~ N(0,1),故U n P{ X 1} 1 P{ X 1} 解: 由于X ~ N (0,0.09),所以 10 所以 X i 2 2 是)?(10) 所以 10 10 X : 1.44 P i 1 i 1 X i 2 (倉 1.44 P 0.09 2 16 0.1 7.4 设总体 X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本 2 ,X 为样本均值,S 为样 本方差,问U n X 2 服从什么分布? 解: (X_)2 2 ( n )2 X __ /V n ,由于 X ~ N( , 2), 2 ~ 2(1)。 1 —n

7.6 设总体X ~ N( , 2), Y?N( , 2)且相互独立,从X,Y中分别抽取 m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S ; 0)。 解: S2 P(S24S2 0) P(S24S;) P 12 4 由于X ~ N( , 2), Y~ N( , 2)且相互独立S2 所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率论与数理统计期末试卷及答案(最新1)

概率论与数理统计期末试卷 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B) 取到1只白球 (C) 没有取到白球(D) 至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A) 随机事件(B) 必然事件 (C) 不可能事件(D) 样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B) 与不互斥 (C) (D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D)

6. 设相互独立,则()。 (A) (B) (C) (D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。 (A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤1 (C) P (A) + P (B) –P (C) ≥1 (D) P (A) + P (B) ≤P (C) 三、计算与应用题(每小题8分,共64分) 1. 袋中装有5个白球,3个黑球。从中一次任取两个。 求取到的两个球颜色不同的概率。 2. 10把钥匙有3把能把门锁打开。今任取两把。 求能打开门的概率。 3. 一间宿舍住有6位同学, 求他们中有4个人的生日在同一个月份概率。 4. 50个产品中有46个合格品与4个次品,从中一次抽取3个, 求至少取到一个次品的概率。

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N {1}1{1}1P X P X P μμ?->=--≤=-≤ 112(11(20.86861)0.262822P ??=-≤=-Φ-=-?-=?????? 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 ( )~(10)0.3 i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 2 2 X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)N ,故2 2 ~(1)X U χ??=。

7.6 设总体2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立 所以2 122 ~(101,151)S F S --,又由于0.01(9,14) 4.03F = 即()40.01P F >=

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

应用概率统计试卷

062应用数学 一、 填空题(每小题2分,共2?6=12分) 1、设服从0—1分布的一维离散型随机 变量X 的分布律是:011X P p p -, 若X 的方差是1 4,则P =________。 2、设一维连续型随机变量X 服从正态分布()2,0.2N ,则随机变量21Y X =+ 的概率密度函数为______________。 3、设二维离散型随机变量X 、Y 的联合分布律为:则a , b 满足条件:___________________。 X Y 11 2 3 1115 6 9

4、设总体X 服从正态分布()2 ,N μσ , 12,,...,n X X X 是它的一个样本,则样本均 值X 的方差是________。 5、假设正态总体的方差未知,对总体均值 μ 作区间估计。现抽取了一个容量 为n 的样本,以X 表示样本均值,S 表示样本均方差,则μ 的置信度为1-α 的置信区间为:_______________________。 6、求随机变量Y 与X 的线性回归方程 Y a b X =+ ,在计算公式 xy xx a y b x L b L ?=-? ?=?? 中,() 2 1 n xx i i L x x == -∑,xy L = 。

二、单项选择题(每小题2分,共2?6=12分) 1、设A ,B 是两个随机事件,则必有( ) ()()()()()()()()A P A B P A P B B P A B P A P A B -=--=- ()()()() ()()()()()C P A B P A P B D P A B P A P A P B -=-=- 2、设A ,B 是两个随机事件, ()()() 524,,556 P A P B P B A === ,( ) () ()()1 1()()()232 12 ()()3 25 A P A B B P AB C P AB D P AB === = 3、设X ,Y 为相互独立的两个随机变量,则下列不正确的结论是( )

概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5)1(=≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。 (按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

2015春《应用概率统计》试卷A

浙江农林大学 2014 - 2015 学年第 二 学期考试卷(A 卷) 课程名称 概率论与数理统计(A )课程类别:必修 考试方式:闭卷 注意事项:1、本试卷满分100分.2、考试时间 120分钟. 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

一、选择题(每小题3分,共24分) 1.随机事件A 或B 发生时,C 一定发生,则C B A ,,的关系是( ) . A. C B A ?? B.C B A ?? C.C AB ? D.C AB ? 2.()()4, 1, 0.5XY D X D Y ρ===,则(329999)D X Y -+=( ). A .28 B .34 C .25.6 D .16 3.对于任意两个随机变量X 和Y ,若()()()D X Y D X D Y -=+,则有( ). A .()()()D XY D X D Y = B .()()()E XY E X E Y = C .X 和Y 独立 D .X 和Y 不独立 4. 设随机变量X 的概率密度为()2 21 x x p x -+-= ,则()D X =( ). A B . 2 C . 1 2 D .2 5. 设)(),(21x f x f 都是密度函数,为使)()(21x bf x af +也是密度函数,则常数b a ,满足( ). A. 1=+b a B. 0,0,1≥≥=+b a b a C. 0,0>>b a D. b a ,为任意实数 6.在假设检验中,当样本容量确定时,若减小了犯第二类错误的概率,则犯第一类错误的概率会( ). A. 不变. B. 不确定. C. 变小. D. 变大. 7. 设321,,X X X 4X 来自总体),(2 σμN 的样本,则μ的最有效估计量是 ( ) A . )(31 321X X X ++ B . )(4 1 4321X X X X +++ C . )(2143X X + D .)(5 1 4321X X X X +++

浙大概率统计试卷(含答案)

2010–2011学年 秋冬 学期 《 概率论与数理统计》试卷 注: ~(0,1),(){}:(1)0.84,(1.645)0.95,(1.96)0.975,(2)0.98 X N x P X x Φ=≤Φ=Φ=Φ=Φ=212(),(),(,)t n n F n n αααχ分别表示服从具有相应自由度的t 分布,2χ分布和F 分布的上α分位点: 2 2 2 2 0.9750.950.050.025(9) 2.70,(9) 3.32,(9)16.92,(9)19.02χχχχ====, ==0.050.025(9) 1.83,(9) 2.26t t ,0.050.05(2,9) 4.26,(9,2)19.4F F ==。 一、填空题 (每小格3分,共42分,每个分布均要写出参数) 1.设,A B 为两随机事件,已知()0.6,()0.5,()0.3P A P B P AB === ,则()P A B ?= _(1)__,()P A A B ?=_(2)_。 2.一批产品的寿命X (小时)具有概率密度2,800()0,800 a x f x x x ?≥?=??是未知参数,110,,X X 为来自X 的简单随机样本,记2X S 与为样本均值和样本方差,则22X μ是的无偏估计吗?答:__(10)__;若22{}0.95P S b σ≤=,则b =_(11)__; 22{}P S σ==_(12)__;μ的置信度为95%的单侧置信下限为_(13)__;对于假设2201:1,:1H H σσ≥<的显著性水平为5%的拒绝域为_(14)__。 二.(12分)某路段在长度为t (以分计)的时间段内,在天气好时发生交通事故数1~()480t X π(泊松分布),天气不好时事故数2~()120 t X π。设在不重叠时间段发生交通事故的次数相互独立。(1)若6:00-10:00天气是好的,求这一时段该路段没有发生交通事故的概率;(2)设明天6:00-10:00天气好的概率为 70%,求这一时段该路段至少发生一次交通事故的概率;(3)若6:00-10:00天气是好的,求该路段在6:00-10:00至少发生一次交通事故的条件下,6:00-8:00没有发生交通事故的概率。 三.(12分)设二维随机变量(,)X Y 的联合概率密度 ,01,03(,)0,x x y x f x y <<<

概率统计考试试卷及答案

概率统计考试试卷及答案 一、 填空题(每小题4分,共20分) 1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P . 2. 设随机变量X 的分布函数 ) (,)(+∞<<-∞+= -x e A x F x 1,则 ___=A 3. 已知,)|(,)|(,)(21 3141===B A P A B P A P 则_____)(=?B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数 ___)(=y f Y 5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则 ____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分) 1. 设随机变量X 的概率密度为?? ???≤>=-000 x x e x f x ,,)( 已知Y=2X,求E(Y), D(Y). 2. 两封信随机地投入标号为I,II,III,IV 的四个邮筒, 求第二个邮筒恰好投入1封信的概率。 3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服 从均匀分布,Y 的概率密度为?? ???≤>=-000 212y y e y f y Y ,,)( 求含有a 的 二次方程022=++Y Xa a 有实根的概率。 4. 假设91X X ,, 是来自总体),(~220N X 的简单随机样本,求系数

a,b,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2 χ分布,并求其自由度。 5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态 分布。从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15.1, 14.9, 14.8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值 μ的置信区间 (9610502.,./==ααz ) 三、(14分)设X,Y 相互独立,其概率密度函数分别为 ???≤≤=其他 ,,)(0101x x f X ,?? ???≤>=-000 y y e y f y Y ,,)( 求X+Y 的概率密度 四、(14 分)设 ?? ???≤<-=其它,),()(~0063θ θθx x x x f X ,且n X X ,, 1是总体 X 的简单随机样本,求 (1)θ的矩估计量θ ,(2) )(θ D 五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。(7881080.).(=Φ)

相关主题
文本预览
相关文档 最新文档