当前位置:文档之家› 钢结构的连接

钢结构的连接

钢结构的连接
钢结构的连接

第7章 钢结构的连接和节点构造

7.1钢结构对连接的要求及连接方法

钢结构是由钢板、型钢通过必要的连接组成构件,各构件再通过一定的安装连接而形成整体结构。连接部位应有足够的强度、刚度及延性。接连接构件问应保持正确的相互位置,以满足传力和使用要求。连接的加工和安装比较复杂、费工,因此选定合适的连接方案和节点构造是钢结构设计中重要的环节。连接设计不合理会影响结构的造价、安全和寿命。

设计时应根据连接节点的位置及其所要求的强度和刚度,合理地确定连接方式及节点的细部构造和计算方法,并应注意以下几点;

(1)连接的设计应与结构内力分析时的假定相一致;(2)结构的荷载,内力组合应能提供连接的最不利受力工况;(3)连接的构造应传力直接,各零件受力明确,并尽可能避免严重的应力集中;(4)连接的计算模型应能考虑刚度不同的零件间的变形协调;(5)构件相互连接的节点应尽可能避免偏心,不能完全避免时应考虑偏心的影响;(6)避免在结构内产生过大的残余应力,尤其是约束造成的残余应力,避免焊缝过度密集;(7)厚钢板沿厚度方向受力容易出现层间撕裂,节点设计时应予以充分注意;(8)连接的构造应便于制作、安装,综合造价低。 钢结构的连接方法可分为焊接、铆接、普通螺栓连接和高强度螺栓连接(如图7-1)

焊接连接是钢结构最主要的连接方法,其优点是构造简单、不削弱构件截面、节约钢材、加工方便、易于采用自动化操作、连接的密封性好、刚度大。缺点是焊接残余应力和残余变形对结构有不利影响,焊接结构的低温冷脆问题也比较突出。

目前除少数直接承受动载结构的某些连接,如重级工作制吊车粱和柱及制动

梁的相互连接、标架式桥梁的节点连接,从目前使用情况看不宜采用焊接外,焊接可广泛用于工业与民用建筑钢结构和桥梁钢结构。

铆钉连接的优点是塑性和韧性较好,传力可靠,质量易于检查,适用于直接承受动载结构的连接。缺点是构造复杂,用钢量多,日前已很少采用。

普通螺栓连接的优点是施工简单、拆装方便。缺点是用钢量多。适用于安装 连接和需要经常拆装的结构。普通螺栓又分为C 级螺栓和A 级、B 级螺栓。C 级 螺栓一般用Q235钢(用于螺栓时也称为4.6级)制成。 A、B 级螺栓一般用45号钢和35号钢(用于螺栓时也称8.8级)制成。A、B 两级的区别只是尺寸不同,其中A 级包括d ≤24,且mm L 150≤的螺栓,B 级包括24>d 或mm L 150>的螺栓, d 为螺杆直径,L 为螺杆长度。C 级螺栓加工租糙,尺寸不够准确,只要求II 类孔,成本低,栓径和孔径之差,设计规范未作规定,通常多取0.2~5.1mm。由于螺栓杆与螺孔之间存在着较大的间隙,传递剪力时,连接较早产生滑移(7-2),但传递拉力的性能仍较好,所以C 级螺栓广泛用于承受拉力的安装连接,不重要的连接或用作安装时的临时固定。A、B 级螺校需要机械加工,尺寸准确,要求I 类孔,栓径和孔径的公称尺寸相同,容许偏差为mm 25.0~18.0间隙。这种螺拴连接传递剪力的性能较好,变形很小,但制造和安装比较复杂,价格昂贵,目前在钢结构中较少采用。

I 类孔的精度要求为连接板组装时,孔口精确对准,孔壁平滑,孔轴线与板面垂直。质量达不到I 类孔要求的都为II 类孔。

高强度螺栓连接和普通螺栓连接的主要区别是:普通螺栓扭紧螺帽时螺栓产 生的预拉力很小,由板面挤压力产生的摩擦力可以忽略不计。普通螺栓连接抗剪 时是依靠孔壁承压和栓杆抗剪来传力。高强度螺栓除了其材料强度高之外,施工 时还给螺栓杆施加很大的预拉力,使被连接构件的接触面之间产生挤压力,因此板面之间垂直于螺栓杆方向受剪时有很大的摩擦力。依靠接触面间的摩擦力来阻止其相互滑移,以达到传递外力的目的,因而变形较小(图7-2中3)。高强度螺栓抗剪连接分为摩擦型连接和承压型连接。前者以滑移作为承载能力的极限状态,后者的极限状态和普通螺栓连接相同。

高强度螺栓摩擦型连接只利用摩擦传力这一工作阶段,具有连接紧密、受力良好、耐疲劳、可拆换、安装简单以及动力荷载作用下不易松动等优点,目前在

桥梁、工业与民用建筑结构中得到广泛应用。尤其在栓焊衍架桥、重级工作制厂房的吊车梁系统和重要建筑物的支撑连接中已被证明据有明显的优越性。高强度

螺栓承压型连接,起初由摩擦传力,后

期则依靠栓杆抗剪和承压传力,它的承

载能力比摩擦型的高,可以节约钢材,

也具有连接紧密,可拆换,安装简单等

优点。但这种连接在摩擦力被克服后的

剪切变形较大,规范规定高强度螺栓承

压型连接不得用于直接承受动力荷载的

结构。

7.2焊接连接的特性

7.2.1 常用焊接方法

钢结构中一般采用的焊接方法有电弧焊、电渣焊、气体保护焊和电阻焊等。 电弧焊的质量比较可靠,是钢结构最常用的焊接方法。电弧焊可分为手工电 弧焊、自动或半自动埋弧焊。手工电弧焊(7-3)是通电后在涂有焊药的焊条与焊件间产生电弧,由电弧提供热源,使焊条熔化,滴落在焊件上被电弧所收成的小 凹槽熔池中,并与焊件熔化部分结成焊缝。由焊条药皮形成的熔渣和气体覆盖熔

池,防止空气中的氧、氮等有害气体与熔化的液体金属接触而形成脆性易裂的化合物。焊缝质量随焊工的技术水平而变化。手工电弧焊焊条应与焊件金属强度相适应,对Q235钢焊件用43系列型焊条,Q345钠焊件用E50系列型焊条,Q390钢悍件用E55系列型焊条。对不同钢种的钢材连接时,宜用与低强度钢材相适应的焊条。

自动或半自动埋孤焊是将光焊丝埋在焊剂层下,通电后,由电弧的作用使焊丝和焊剂熔化。熔化后的焊剂浮在熔化金属表面保护熔化金属,使之不与外界空气接触,有时焊剂还可供给焊缝必要的合金元素,以改善焊缝质量。自动焊的电流大、热量集中而熔深大,并且焊缝质量均匀,塑性好,冲击韧性高。半自动焊除由人上操作进行外,其余过程与自动焊相同,焊缝质量介于自动焊与手上焊之间。自动或半自动埋弧焊所采用的焊丝和焊剂要保证其熔敷金属的抗拉强度不低于相应手工焊焊条的数值,对Q235钢焊件,可采用H08、H08A等焊丝;对Q345钢焊件可采用H08A、H08MnA和H10Mn2焊丝。对Q390钢焊件可采用H08MnA、H10Mn2和H08MnMoA焊丝。

电渣焊是利用电流通过熔渣所产生的电阻来熔化金属,焊丝作为电极伸人并 穿过渣池,使渣他产生电阻热将焊件金属及焊丝熔化,沉积于熔池中,形成焊缝。电渣焊一般在立焊位置进行,目前多用熔嘴电渣焊,以管状焊条作为熔嘴,焊丝从管内递进。

气体保护焊是用焊枪中喷出的惰性气体代替焊剂,焊丝可自动送入,如CO

2

作为保护气体,使被熔化的金属不与空气接触,电弧加热集气体保护焊是以CO

2

中,熔化深度大,焊接连度快,焊缝强度高,塑性好。气体保护焊既可用手工操作,也可进行自动焊接。气体保护焊在操作时

应采取避风措施,否则容易出现焊坑、气孔等

缺陷。

电阻焊(图7-5)是利用电流通过焊件接触

点表面的电阻所产生的热量来熔化金属,再通

过压力使其焊合。在一般钢结构中电阻焊只适

用于板叠厚度不大于12mm的焊接。对冷弯薄壁

型钢构件,电阻焊可用来缀合壁厚不超过3.5mm

的构件,如将两个冷弯槽钢或C形钢组合为I形截面构件。

7.2.2 焊缝连接的优缺点

焊缝连接与螺栓连接、铆钉连接比较有下列优点:

(1)不需要在钢材上打孔钻眼,既省工,又不减损钢材截面,使材料可以充分利用;

(2)任何形状的构件都可以直接相连,不需要辅助零件,构造简单;

(3) 焊缝连接的密封性好,结构刚度大。

但是焊缝连接也存在下列问题:

(1)由于施焊时的高温作用,形成焊缝附近的热影响区,使钢材的金属组织和机械性能发生变化,材质变脆;

(2)焊接的残余应力使焊接结构发生脆性破坏的可能性增大,残余变形使其尺寸和形状发生变化,矫正费工;

(3)焊接结构对整体性不利的一面是,局部裂缝一经发生便容易扩展到整体。焊接结构低温冷脆问题比较突出

7.2.3 悍缝缺陷

焊缝中可能存在裂纹、气孔、烧穿和未焊透等缺陷。

裂纹(图7-6中a、b)是焊缝连接中最危险的缺陷。按产生的时间不同.可分为热裂纹和冷裂纹,前者是在焊接时产生的.后考是在焊缝冷却过程中产生的。产生裂纹的原因很多,如钢材的化学成分不当,未采用合适的电流、弧长、施焊速度、焊条和施焊次序等。如果采用合理的施焊次序,可以减少焊接应力,避免出现裂纹;进行预热,缓慢冷却或焊后热处理,可以减少裂纹形成。

气孔(图7-6c)是由空气侵入或受潮的药皮熔化时产生气体而形成的,也可能是焊件金属上的油、锈、垢物等引起的。气孔在焊缝内或均匀分布,或存在于焊缝某一部位,如焊趾或焊跟处。

焊缝的其他缺陷有烧穿(图7-6d),夹渣(图7-6e),未焊透(图7-6f、g、h),咬边(图7-6i),焊瘤(图7-6j)等。

焊缝的缺陷将削弱焊缝的受力面积,而且在缺陷处形成应力集中,裂缝往住无从那里开始,并扩展开裂,成为连接破坏的根源,对结构很为不利。因此,焊缝质量检查极为重要;《钢结构工程施工质量验收规范》规定,焊缝质量检查标准分为三级,其中第三级只要求通过外观检查,即检查焊缝实际尺寸是否符合设计要求和有无看得见的裂纹、咬边等缺陷。对于重要结构或要求焊缝金属强度等于被焊金属强度的对接焊缝,必须进行一级或二级质量检验,即在外观检查的基础上再做无损检验。

焊缝质量与施焊条件有关,对于施焊条件较差的高空安装焊缝应乘以折减系数0.9。

7.2.4 焊缝连接型式及焊缝型式

连接型式:焊缝连接型式按被连接构件间的相对位置分为平接、搭接、T形

连接和角接四种。这些连接所采用的焊缝型式主要有对接焊缝和角捍缝。

图7-7(a)所示为用对接焊缝的平接连接,它的特点是用料经济,传力均匀平缓,没有明显的应力集中,承受动力荷载的性能较好。但是焊件边缘需要加工,对接连接两板的间隙和坡口尺寸有严格的要求。

图7-7(b)所示为用拼接板和角焊缝的平接连接,这种连接传力不均匀、费料,但施工简便,所接两板的间隙大小无需严格控制。

图7-7(c)所示为用顶板和角焊缝的平接连接,施工简便,用于受压构件较好。受拉构件为了避免层间撕裂,不宣采用。

图7-7(d)所示为用角焊缝的搭接连接,这种连接传力不均匀,材料较费、但构造简单,施工方便,目前还广泛应用。

图7-7(e)所示为用角焊缝的T形连接,构造简单,受力性能较差,应用也颇广泛。

图7-7(f)所示为焊透的T形连接,其性能与对接焊缝相同。在重要的结构中用它代替图7-7(e)的连接。长期实践证明:这种要求焊透的T形连接焊缝.即 使有未焊透现象,但因腹板边缘经过加工、焊缝收缩后使翼缘和腹板顶得十分紧 密,焊缝受力情况大为改善,一般能保证使用要求。

图7-7(g)、(h)所示为用角焊缝和对接焊缝的角接连接。

焊缝型式:

对接焊缝按所受力的方向可分为对接正焊缝和对接斜焊缝(图7-8a、b)。角焊缝长度方向垂直于力作用方向的称为正面角焊缝,平行于力作用方向的称为侧面角焊缝,如图7-8(c)所示。

焊缝按沿长度方向的分布情况来分,有连缝角焊缝和断缝角焊缝两种型式(图7-9)。连缝角焊缝受力性能较好,为主要的角焊缝形式。断缝角焊缝容易引起应力集中,重要结构中应避免采用,它只用于一些次要构件的连接或次要焊缝中,断缝焊缝的间断距离L不宜太长,以免因距离过大使连接不易紧密,潮气易侵入而引起锈蚀。间断距离L一般在受压构件中不应大于15t,在受拉构件中不应大于30t,t为较薄构件的厚度。

焊缝按施焊位置分,有俯焊(平焊)、立焊、横焊、仰焊几种(图7-10)。俯焊的施焊工作方便.质量最易保证。立焊、横焊的质量及生产效率比俯焊的差一些。仰焊的操作条件最差,焊缝质量不易保证,因此府尽量避免采用仰焊焊缝

7.2.5 焊 缝 代 号

在钢结构施工图上要用焊缝代号标明焊缝型式、尺寸和辅助要求。《焊缝符号表示方法》GB324—88规定:焊缝符导由指引线和表示焊缝截面形状的基本符号组成,必要时可加上辅助符号、补充符号和焊缝尺寸符号。

指引线一般由箭头线和基准线(一条为实线,另一条为虚线)所组成。基准线一般应与图纸的底边相平行,特殊情况也可与底边相垂直,当引出线的箭头指向焊缝所在的一面时,应将焊缝符号标注在基准线的实线上:当箭头指向对应焊缝所在的另一面时,应将焊缝符号标注在基准线的虚线上,见图7-11。

基本符号用以表示焊缝截面形状,符号的线条宜粗于指引线,常用的某些基本符号如表7-1所示。辅助符号用以表示焊缝表面形状特征,如对接焊缝表面余高部分需加工使之与焊件表面齐平,则需在基本符号上加一短划,此短划即为辅助符号,见表7-2。

7.3 对接焊缝的构造和计算

7.3.1 对接焊缝的构造要求

对接焊缝按坡口形式分为I形缝、V形缝、带钝边单边V形缝,带钝边V形 缝(也叫Y形缝)、带钝边U形缝、带钝边双单边V形缝和双Y形缝等,后二者 过去分别称为K形缝和X形缝(图7-13)。

当焊件厚度t很小(t不大于10mm),可采用不切坡口的I形缝。对于一板厚度(t=10~20mm)的焊件,可采用有斜坡口的带钝边单边V形缝或Y形缝。以便 斜坡口和焊缝跟部共同形成一个焊条能够运转的施焊空间,使焊缝易于焊透。对于较厚的焊件(t>20mm),应采用带钝边U形缝或带钝边双单边V形缝.或双Y形缝。关于坡口的形式与尺寸可参看行业标准《建筑钢结构焊接技术规程》。

在钢板宽度或厚度有变化的连接中,为了减少应力集中,应从板的一侧或两 侧做成坡度不大于1:2.5的斜坡(图7-14),形成平缓过渡。如板厚相差不大于4mm时,可不做斜坡〔图7-14d〕。焊缝的计算厚度取较薄板的厚度。

对接焊缝的起弧和落弧点,常因不能熔透而出现焊口,形成类裂纹和应力集中。为消除焊口影响。焊接时可将焊缝的起点和终点延伸至引弧板(图7-15)上,焊后将引弧板切除,并用砂轮将表面磨平。

对于焊透的T形连接焊缝,其构造要求如图7-16所示。 钢板的拼接采用对接焊缝时,纵横两方向的对接焊缝,可采用十字形交叉或T形交叉。当为T形交叉时,交叉点间的距离不得小于20mm,且拼接料的长度和宽度均不得小于

300mm(图7-17)。

在直接承受动载的结构中,为提

高疲劳强度,应将对接焊缝的表面磨

平,打磨方向应与应力方向平行。垂

直于受力方向的焊缝应采用焊透的对

接焊缝,不宜采用部分焊透的对接焊

缝。

7.3.2 对接焊缝的计算

对接焊缝的应力分布情况,基本上与焊件原来的情况相同,可用计算焊件的力法进行计算。对于重要的构件,按一、二级标准检验焊缝质量,焊缝和构件等强,不必另行计算。

(1)轴心受力的对接焊缝(图7-18)应按(7-1)式计算

7.3.3 部分焊透的对接焊缝

在钢结构设计中,有时遇到板件较厚,而板件间连接受力较小时,可以采用 部分焊透的对接焊缝(图7-21),例如当用四块较厚的钢板焊成的箱形截面轴心受压柱时,由于焊缝主要起联系作用,就可以用部分焊透的坡口焊缝(图7-21f)。 当垂直于焊缝长度方向受力时,因部分焊透处的应力集中带来不利的影响,对于直接承受动力荷裁的连接不宜采用;但当平行于焊缝长度方向受力时,其影

响较小可以采用。

其中,:s为坡口根部至焊缝表面(不考虑余高)的最短距离,a为V形坡口的夹角。当熔合线处截面边长等于或接近于最短距离s时(图7-2l中b、e),其抗剪强度设计值应按角焊缝的强度设计值乘以0.9采用。

7.4 角焊缝的构造和计算

侧面角焊缝主要承受剪力作用。在弹性阶段,应力沿焊缝长度方向分布不均 匀,两端大而中间小(图7-24a)。图7-24(b)表示焊缝越长剪应力分布越不均匀。但由于侧面角焊缝的塑性较好,两端出现塑性变形,产生应力重分布,在规范规定长度范围内,应力分布可趋于均匀。不难理解,在图7-24(a)所示连接范围内,板的应力分布也是不均匀的。

正面角焊缝的应力状态比侧面角焊缝复杂,其

破坏强度比侧面角焊缝的要高,但塑性变形要差一

些(图7-25)。在外力作用下,由于力线弯折,产生

较大的应力集中,焊缝跟部应力集中最为严重(图7-

26b),故破坏总是首先在跟部出现裂缝,然后扩展

至整个截面。正面角焊缝焊脚截面AB和BC上都有

正应力和剪应力(图7-26b),且分布不均匀,但沿

焊缝长度的应力分布则比较均匀、两端的应力略比

中间的为低(图7-26a)。

α角(直

等边角焊缝的最小截面和两边焊脚成2

角角焊缝为450)称为有效截面(图7-31中BDEF)或计

算截面,不计入余高和熔深。实验证明,多数角焊缝破坏都发生在这一截面。计算时假定有效截面上应力均匀分布,并且不分抗拉、抗压或抗剪都采用同一强度设计值w

f。

f

2.角焊缝的尺寸限制

在直接承受动力荷载的结构中,为了减缓应力集中,角焊缝表面应做成直线形或凹形(图7-23d,c)。焊缝直角边的比例:对正面角焊缝宜为1:1.5,见图7-23(b)(长边顺内力方向),侧面角焊缝可为1:1(图7-23a)。

角焊缝的焊脚尺寸h

f

不应过小(图7-27),以保证焊缝的最小承载能力,并防止焊缝因冷却过快而产生裂纹。焊缝缝的冷却速度和好件的厚度有关,焊件越厚则焊缝冷却越快,在焊件刚度较大的情况下,焊缝也容易产生裂纹。因此,规

范规定:角焊缝的焊脚尺寸h

f 不得小于t

5.1,t为较厚焊件厚度(单位取mm);

对自动焊,最小焊脚尺寸可减小1mm;对T形连接的单面角焊缝,应增加1mm; 当焊件厚度小于4mm时,则取与焊件厚度相同。

角焊缝的焊脚尺寸h

f

如果太大,则焊缝收缩时将产生较大的焊接变形,且热影响区扩大,容易产生脆裂,较薄焊件容易烧穿。因此,规范规定;角焊缝的焊

脚尺寸不宜大于较薄焊件厚度的1.2倍(图7-28a)(钢管结构除外)。但板件(厚度为t)的边缘焊缝最大h f ,尚应符合下列要求:

(a)当mm t 6≤时,t h f ≤ (图7-28c);

(b)当t>6mm 时,h f =t- (1~2)mm(图7-28b)。

当两焊件厚度相差悬殊,用等焊脚尺寸无法满足最大、最小焊缝厚度要求时,可用不等焊脚尺寸.按满足图7-27(b)所示要求采用。

角焊缝长度l w 也有最大和最小的限制:焊缝的厚度大而长度过小时,会

使焊件局部加热严重,且起落弧坑相距太近,加上一些可能产生的缺陷,使焊缝不够可靠。因此,侧面角焊缝或正面角焊缝的计算长度不得小于8h f 和40mm。另

外,已如图7-24所示:侧面角焊缝的应力沿其长度分布并不均匀,两端大,中间小;它的长度与厚度之比越大,其差别也就越大;当此比值过大时,焊缝端部应力就会达到极值而破坏,而中部焊缝还未充分发挥其承载能力。这种现象对承受动力荷载的构件尤为不利。因此,侧面角焊缝的计算长度不宜大于60h f 。但内力

若沿侧面角焊缝全长分布,其计算长度不受此限。

3.角焊缝的其他构造要求

杆件与节点板的连接焊缝(图7-29),一般采用两面侧焊,也可采用三面围焊,对角钢杆件也可用L 形围焊(图7-35c),所有围焊的转角处必须连续施焊。当角焊缝的端部在构件转角处时,可连续地作长度为2 h f 的绕角焊(图7-29c),

以免起落弧缺陷发生在应力集中较大的转角处,从而改善连接的工作。

当板件仅用两条侧焊缝连接时,为了避免应力传递的过分弯折而使板什应力 过分不均,宜使b l w ≥ (图7-29a),同时为了避免因焊缝横向收缩时引起板件拱曲太大(图7-29a),宜使t b 16≤ (t>12mm 时)或200mm(mm t 12≤时),t 为较簿焊件厚度。当b 不满足此规定时,应加正面角焊缝,或加槽焊(图7-29b)或塞焊

(图7-29c)。

搭接连接不能只用一条正面角悍缝传力(图7-30a),并且搭接长度不得小于焊件较小厚度的五倍,同时不得小于25mm。

7.4.2 角焊缝计算的基本公式

钢结构连接计算书

钢结构连接计算书 计算依据: 1、《钢结构设计规范》GB50017-2017 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: N v b = n vπd2f v b/4 式中d──螺栓杆直径,取 d = 8 mm; n v──受剪面数目,取 n v = 1; f v b──螺栓的抗剪强度设计值,取 f v b =125 N/mm2; 计算得:N v b = 1×3.1415×82×125/4=6283.185 N; 承压承载力设计值应按下式计算: N c b= d∑tf c b 式中d──螺栓杆直径,取 d = 8 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取 ∑t=8 mm; f c b──普通螺栓的抗压强度设计值,取 f c b =250 N/mm2; 计算得:N c b = 8×8×250=16000 N; 故: 普通螺栓的承载力设计值取 6283.185 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算: N t b= πd e2f t b/4 式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 8 mm;

f t b──普通螺栓的抗拉强度设计值,取 f t b =215 N/mm2; 计算得:N t b = 3.1415×82×215 / 4 = 10807.079 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: ((N v/N v b)2 + (N t/N t b)2)1/2≤ 1 N v≤ N c b 式中N v──普通螺栓所承受的剪力,取 N v= 3 kN =3×103 N; N t──普通螺栓所承受的拉力,取 N t= 1 kN =1×103 N; [(N v/N v b)2+(N t/N t b )2]1/2=[(3×103/6283.185)2+(1×103/10807.079)2]1/2= 0.486 ≤ 1; N v= 3000 N ≤ N c b = 16000 N; 所以,普通螺栓承载力验算满足要求!

钢结构的连接方式

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 §3-1钢结构的连接 钢结构的构件是由型钢、钢板等通过连接(connections)构成的,各构件再通过安装连接架构成整个结构。因此,连接在钢结构中处于重要的枢纽地位。在进行连接的设计时,必须遵循安全可靠、传力明确、构造简单、制造方便和节约钢材的原则。 钢结构的连接方法可分为焊接连接、铆钉连接、螺栓连接和轻型钢结构用的紧固件连接等(图3.1.1)。 3.1.1 焊缝连接 一、焊缝连接的特点 焊接连接(welded connection)是现代钢结构最主要的连接方法。其优点是:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。其缺点是:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低; 焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。 二、钢结构常用的焊接方法 1、手工电弧焊 这是最常用的一种焊接方法(3.1.2)。通电后,在涂有药皮的焊条和焊件间产生电弧。电弧提供热源,使焊条中的焊丝熔化,滴落在焊件上被电弧所吹成的小凹槽熔池中。由电焊条药皮形成的熔渣和气体覆盖着熔池,防止空气中的氧、氮等气体与熔化的液体金属接触,避免形成脆性易裂的化合物。焊缝金属冷却后把被连接件连成一体。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

钢结构的构件连接方式

d e f 钢结构的构件连接方式 钢结构的连接方法大体来看,有以下几种: 焊接——是使用最普遍的方法,该方法对几何形体适应性强,构造简单,省材省工,易于自动化,工效高;但是焊接属于热加工过程,对材质要求高,对于工人的技术水平要求也高,焊接程序严格,质量检验工作量大。 铆接——该方法传力可靠,韧性和塑性好,质量易于检查,抗动力荷载好;但是由于铆接时必须进行钢板的搭接,相对来讲费钢、费工。 普通螺栓连接——这种方式装卸便利,设备简单,工人易于操作;但是对于该方法,螺栓精度低时不宜受剪,螺栓精度高时加工和安装难度较大。 高强螺栓连接——此法加工方便,对结构削弱少,可拆换,能承受动力荷载,耐疲劳,塑性、韧性好摩擦面处理,安装工艺略为复杂,造价略高 射钉、自攻螺栓连接——较为灵活,安装方便,构件无须预先处理,适用于轻钢、薄板结构不能受较大集中力。 焊接连接 焊接是钢结构较为常见的连接方式,也是比较方便的连接方式,在众多的钢结构中,焊接是最为常见的一种。 根据焊接的形式,焊缝可以分为对接(平接)焊 缝、角焊缝、和顶接焊缝三大类。 对接焊缝 对接焊缝按受力与焊缝方向分直缝——作用力方 向与焊缝方向正交;斜缝——作用力方向与焊缝方向 斜交两类。从直观来看,直缝受拉,斜缝受拉与剪的同时作用。 对接焊缝在焊接上有以下处理形式: a )直边缝:适合板厚t 10mm b )单边V 形:适合板厚t =10~20mm c )双边V 形:适合板厚t =10~20mm d )U 形:适合板厚t > 20mm e )K 形:适合板厚t > 20mm f )X 形:适合板厚t > 20mm 对接焊缝的优点是用料经济、传力均匀、无明 显的应力集中1[1],利于承受动力荷载;但也有缺点,需剖口,焊件长度要精确。 对接焊缝需要做以下构造处理:首先,在施焊过程中,起落弧处易有焊接缺陷,所以用引弧板;但采用引弧板施工复杂,除承受动力荷载外,一般不用,计算时将焊缝长度两端各减去5mm 。其次, 变厚度板对接,在板的一面或两面切成坡度不大于1:4的斜面,避 免应力集中。 另外,变宽度板对接,在板的一侧或两侧切成坡度不大于1:4 的斜边,避免应力集中。对于对接焊缝的强度,有引弧板的对接焊 缝在受压时与母材等强,但焊缝的抗拉强度与焊缝质量等级有关。 对接焊缝的应力分布认为与焊件原来的应力分布基本相同。计 算时,焊缝中最大应力(或折算应力)不能超过焊缝的强度设计值。 对接焊缝的计算包括:轴心受力的对接焊缝、斜向受力的对接焊缝、 钢梁的对接焊缝、牛腿与翼缘的对接焊缝。 a b c 斜缝 直缝

钢结构连接的种类和特点

钢结构连接的种类和特点 连接的作用是通过一定方式将板材或型钢组合成构件,或将若干构件组合成整体结构,以保证其共同工作。 钢结构的连接方法可分为焊接连接、螺栓连接(铆钉连接)两种。焊缝连接 优点: 不削弱构件截面,节约钢材; 可焊接成任何形状的构件,焊接间可直接焊接,一般不需要其他的连接件,构件简单,制造省工; 连接的密封性好,刚度大; 易于采用自动化,生产效率高。 缺点: 位于焊缝附近热影响区的材质有些变脆; 在焊件中产生焊接残余应力和残余变形,对结构工作有不利的影响; 焊接结构对裂纹很敏感,一旦局部发生裂纹便有可能迅速扩展到整个截面,尤其在低温下易发生脆断。 常用的电弧焊的基本原理和设备 包括手工电弧焊、自动埋弧电弧焊和半自动埋弧电弧焊。

手工电弧焊 (1)原理:利用电弧产生热量熔化焊条和母材形成焊缝。 (2)优点:设备简单,操作灵活方便,适于任意空间位置的焊接,特别适于焊接短焊缝。 (3)缺点:生产效率低,劳动强度大,焊接质量取决于焊工的精神状态与技术水平,质量波动大。 埋弧焊(自动或半自动) (1)原理:埋弧焊是电弧在焊剂层下燃烧的一种电弧焊方法。

(2)优点:自动化程度高,焊接速度快,劳动强度低;电弧热量集中,熔深大,热影响区小;工艺条件稳定,焊缝的化学成分均匀,焊缝质量好,焊件变形小。 (3)缺点:装配精度要求高,设备投资大,施工位置受限等。(4)焊丝的选择:埋弧焊的焊条应与焊件钢材相匹配,如:Q235-H08、H08A、H08MnA;Q345、Q390-H08A、H08E、H08Mn等。焊条的表示方法:E后面加4个数字 E—表示焊条(Electrode) 前两位数字为熔敷金属(焊缝金属)的最小抗拉强度(N/mm2) 第三位数字表示适用于哪些焊接位置,0与1表示焊条适用于全位置焊接(平、立、仰、横),2表示焊条适用于平焊及平角焊,4表示焊条适用于向下立焊;

常见的钢结构计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具

有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

钢结构的连接方法

钢结构的连接方法 一、钢结构的连接方法 1、焊接连接 2、螺栓连接 3、铆钉连接 二、以钢材制作为主的结构,是主要的建筑结构类型之一。 钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。其缺点是耐火性和耐腐性较差。主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。钢结构又分轻钢和重钢。判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。 三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。 钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。其缺点是耐火性和耐腐性较差。主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。钢结构又分轻钢和重钢。判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。 四、钢结构特点 钢结构的厂房主要是指主要的承重构件是由钢材组成的。包括钢柱子,钢梁,钢结构基础,钢屋架(当然厂房的跨度比较大,基本现在都是钢结构屋架了),钢屋盖,注意钢结构的墙也可以采用砖墙维护。由于我国的钢产量增大,很多都开始采用钢结构厂房了,具体还可以分轻型和重型钢结构厂房。 和其他材料的结构相比,钢结构具有如下特点: 1.钢材的强度高,结构的重量轻 钢材的密度虽然比其他建筑材料大,但它的强度很高,同样受力情况下,钢结构自重小,可以做成跨度较大的结构。 2.钢材的塑性韧性好

钢结构简答题

简答题 1. 简述钢结构有哪些主要特点。(8分) 答:(1)材料的强度高,塑性和韧性好; (2)材质均匀,和力学计算的假定比较符合; (3)制作简便,施工周期短; (4)质量轻; (5)钢材耐腐蚀性差; (6)钢材耐热,但不耐火; 2. 碳素结构钢按质量分为几级?并是怎样划分的?Q235B·b代表的意义是什么?(10分) 答:碳素结构钢按质量分为A、B、C、D四级。 其中A级钢材不作冲击韧性要求,冷弯性能在需方有要求时才进行;B、C、D各级钢材均要求冲击韧性值A kv≥27J,且冷弯试验均要求合格,所不同的是三者的试验温度有所不同,B级要求常温(20±5℃)冲击值,C和D级则分别要求0℃和-20℃冲击值。 Q235B·b代表屈服强度为235N/mm2,B级,半镇静钢。 3. 钢结构中,选用钢材时要考虑哪些主要因素?(8分) 答:结构或构件的重要性; 荷载的性质(静载或动载); 连接方法(焊接、铆接或螺栓连接); 工作条件(温度及腐蚀介质)。 4. 轴心受力构件的截面形式有哪几种?并且对轴心受力构件截面形式的共同要求是什么? 答:轴心受力构件的截面形式有热轧型钢、冷弯薄壁型钢、实腹式组合截面以及格构式组合截面。 对轴心受力构件截面形式的共同要求是: (1)能提供强度所需要的截面积; (2)制作比较简便; (3)便于和相邻的构件连接; (4)截面开展而壁厚较薄,以满足刚度要求。 5. 计算压弯(拉弯)构件的强度时,根据不同情况,采用几种强度计算准则?并简述各准则的内容。我国钢结构规范对于一般构件采用哪一准则作为强度极限?(10分) 答:计算压弯(拉弯)构件的强度时,根据不同情况,采用三种强度计算准则。 其中(1)截面边缘纤维屈服准则:当构件受力最大截面边缘处的最大应力达到屈服时,即认为构件达到了强度极限。(2)全截面屈服准则:这一准则以构件最大受力截面形成塑性铰为强度极限。(3)部分发展塑性准则:这一准则以构件最大受力截面的部分受压区和受拉区进入塑性为强度极限。 我国钢结构规范对于一般构件采用部分发展塑性准则作为强度极限。 6. 简述梁的整体失稳现象,影响梁临界弯距的主要因素有哪些。(8分) 答:梁的截面一般窄而高,弯矩作用在其最大刚度平面内,当荷载较小时,梁的弯曲平衡状态是稳定的。当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向的弯曲和扭转变形,并丧失继续承载的能力,这种现象称为梁的整体失稳现象。 梁的临界弯矩M cr主要和梁的侧向抗弯刚度、抗扭刚度、翘曲刚度、梁的截面形状、荷载类型、荷载作用位置以及梁的跨度等有关。 7. 钢结构框架钢柱的计算长度系数与哪些因素有关。(6分) 答:钢结构框架钢柱的计算长度系数与框架类型、相交于柱上端节点的横梁线刚度之和与柱线刚度之和的比值K1、相交于柱下端节点的横梁线刚度之和与柱线刚度之和的比值K2、柱与基础的连接方式、横梁远端连接方式、横梁轴力大小以及柱的形式等因素有关。 8. 简述焊接残余应力对结构性能的影响。(8分)

常见的钢结构计算公式

2-5 钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

钢结构的连接方式

§3-1钢结构的连接 钢结构的构件是由型钢、钢板等通过连接(connections)构成的,各构件再通过安装连接架构成整个结构。因此,连接在钢结构中处于重要的枢纽地位。在进行连接的设计时,必须遵循安全可靠、传力明确、构造简单、制造方便和节约钢材的原则。 钢结构的连接方法可分为焊接连接、铆钉连接、螺栓连接和轻型钢结构用的紧固件连接等(图3.1.1)。 3.1.1 焊缝连接 一、焊缝连接的特点 焊接连接(welded connection)是现代钢结构最主要的连接方法。其优点是:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。其缺点是:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。 二、钢结构常用的焊接方法 1、手工电弧焊 这是最常用的一种焊接方法(3.1.2)。通电后,在涂有药皮的焊条和焊件间产生电弧。电弧提供热源,使焊条中的焊丝熔化,滴落在焊件上被电弧所吹成的小凹槽熔池中。由电焊条药皮形成的熔渣和气体覆盖着熔池,防止空气中的氧、氮等气体与熔化的液体金属接触,避免形成脆性易裂的化合物。焊缝金属冷却后把被连接件连成一体。 手工电弧焊设备简单,操作灵活方便,适于任意空间位置的焊接,特别适于焊接短焊缝。但生产效率低,劳动强度

大,焊接质量与焊工的技术水平和精神状态有很大的关系。 手工电弧焊所用焊条应与焊件钢材(或称主体金属)相适应,例如:对Q235钢采用E43型焊条(E4300~E4328);对Q345钢采用E50型焊条(E5000~E5048);对390钢和Q420钢采用E55型焊条(E5500~E5518)。焊条型号中字母E表示焊条 类型等。不同钢种的钢材相焊接时,宜采用低组配方案,即宜采用与低强度钢相适应的焊条。 2、埋弧焊(自动或半自动) 埋弧焊是电弧在焊剂层下燃烧的一种电弧焊方法。焊丝送进和焊接方向的移动有专门机构控制的称埋弧自动电弧焊(图3.1.3);焊丝送进有专门机构控制,而焊接方向的移动靠工人操作的称为埋弧半自动电弧焊。电弧焊的焊丝不涂药皮,但施焊端靠由焊剂漏头自动流下的颗粒状焊剂所覆盖,电弧完全被埋在焊剂之内,电弧热量集中,熔深大,适于厚板的焊接,具有很高的生产率。由于采用了自动或半自动化操作,焊接时的工艺条件稳定,焊缝的化学成分均匀,故焊成的焊缝的质量好,焊件变形小。同时,高的焊速成也减小了热影响区的范围。但埋弧焊对焊件边缘的装配精度(如间隙)要求比手工焊高。 埋弧焊所用焊丝和焊剂应与主体金属的力学性能相适应,并应符合现行国家标准的规定。 3、气体保护焊 气体保护焊是利用二氧化碳气体或其他惰性气体作为保护介质的一种电弧熔焊方法。它直接依靠保护气体在电弧周围造成局部的保护层,以防止有害气体的侵入并保证了焊接过程的稳定性。 气体保护焊的焊缝熔化区没有熔渣,焊工能够清楚地看到焊缝成型的过程;由于保护气体是喷射的,有助于熔滴的过渡;又由于热量集中,焊接速度快,焊件熔深大,故所形成的焊缝强度比手工电弧焊高,塑性和抗腐蚀性好,适用于全位置的焊接。但不适用于在风较大的地方施焊。

钢结构连接方式的选择

钢结构连接形式介绍与选择 在设计钢结构工程时,构件与构件之间需要进行有效的连接,以形成一个整体,对于构件之间连接的形式,则有很多的方式可以选择。如何在各种连接节点中选择合理的连接方式,这通常是一个容易模糊的设计盲点,因此在此作一些介绍,以强化钢结构设计概念。 一、连接形式 钢结构中连接节点可分为刚性节点、半刚性节点和铰接节点三种形式,设计时应根据节点的位置及其所要求的强度和刚度,合理确定节点的形式、连接方式、细部构造及其计算方法。 连接形式 刚性节点半刚性节点铰接节点 设计中不考虑此 种节点 在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度,刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。通常定义,连接对于转动约束达到理想刚接的90%以上的连接,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想较接的假定,意味着梁与柱之间没有弯矩的传递,用较连在一起的梁和柱将互相独立的转动。

这里用柱脚来具体解释下刚接与铰接的区别。 能抵抗弯矩作用的柱脚称为刚性柱脚,相反不能抵抗弯矩作用的柱脚称为铰接柱脚,刚接与铰接的区别在于是否能传递弯矩,从实际看,如果锚栓在翼缘外侧,就是刚接,如果在翼缘内侧,就是铰接。这两种柱脚的区别就是对侧移的控制,也就是有吊车荷载的单层工业厂房,因为吊车对侧移比较敏感,而且侧移过大会造成吊车卡轨的现象,且门式刚架轻型房屋钢结构技术规程(CECS 102:2002)中3.4.2条规定,刚架柱顶位移设计值的限值,无吊车且采用轻型钢墙板时是h/60,有吊车且吊车仅由地面操作时是h/180,所以把柱脚设计成刚性柱脚,抵抗其侧位移。 在设计中为简化计算,一般均按完全刚接或理想铰接来考虑,因此,半刚性节点在此不做赘述。 二、连接方式 连接根据使用材质不同可分为铆接、螺栓连接和焊接三种方式。

钢结构连接材料

钢结构连接材料种类 连接材料包括:焊接材料、连接用紧固标准件、焊接球、螺栓球、封板、锥头和套筒、金属压型板等。1)焊接材料的品种、规格、性能等应符合现行国家产品标准和设计要求 2)钢结构连接用高强度大六角头螺栓连接副、扭剪型高强度螺栓连接副、钢网架用高强度螺栓、普通螺栓、铆钉、自攻钉、拉铆钉、射钉、锚栓(机械型和化学试剂型)、地脚锚栓等紧固标准件及螺母、垫圈等标准配件,其品种、规格、性能等应符合现行国家产品标准和设计要求。高强度大六角头螺栓连接副和扭剪型高强度螺栓连接副出厂时应分别随箱带有扭矩系数和紧固轴力(预拉力)的检验报告。高强度螺栓连接副,应按包装箱配套供货,包装箱上应标明批号、规格、数量及生产日期。螺栓、螺母、垫圈外观表面应涂油保护,不应出现生锈和沾染赃物,螺纹不应损伤。 对建筑结构安全等级为一级,跨度40m及以上的螺栓球节点钢网架结构,其连接高强度螺栓应进行表面硬度试验,对8.8级的高强度螺栓其硬度应为HRC21—29;10.9级高强度螺栓其硬度应为 HRC32—36,且不得有裂纹或损伤。 3)焊接球及制造焊接球所采用的原材料,其品种、规格、性能等应符合现行国家产品标准和设计要求。焊接球焊缝应进行无损检验,其质量应符合设计要求,当设计无要求时应符合GB50205-2001标准中规定的二级质量标准。焊接球直径、圆度、壁厚减薄量等尺寸及允许偏差应符合GB50205-2001标准的规定。 焊接球表面应无明显波纹及局部凹凸不平不大于1.5mm. 说明:本节是指将焊接空心球作为产品看待,在进场时所进行验收项目。焊接球焊颖检验应按照国家现行标准《焊接球节点钢网架焊缝超声波探伤方法及质量分级法》BJ/T3034.1执行 4)螺栓球及制造螺栓球节点所采用的原材料,其品种、规格、性能等应符合现行国家产品标志和设计要求。 螺栓球不得不过烧、裂纹及褶皱。

建筑工程项目钢结构构件的受力特点及其连接类型

建筑工程项目钢结构构件的受力特点及其连接类型 1.钢结构的连接 (1)焊缝连接:焊缝连接是目前钢结构的主要连接方法。 其优点是构造简单,节约钢材,加工方便,易于采用自动化 操作,不宜采用于直接承受动力荷载的结构,其他情况均可 采用焊缝连接。 (2)铆钉连接:铆接由于构造复杂,用钢量大,现已很少 采用。因为铆钉连接的塑性和韧性较好,传力可靠,易于检 查,在一些重型和直接承受动力荷载的结构中,有时仍然采 用。 (3)螺栓连接:螺栓连接又分为普通螺栓和高强度螺栓两 种。普通螺栓施工简单,拆、装方便。普通螺栓一般由 Q235 制成。高强度螺栓用合金钢制成,高强度螺栓制作工艺精准,操作工序多,要求高。目前,在我国桥梁及大跨度结构房屋 及工业厂房中已广泛采用。

2.钢结构构件制作、焊接、运输、安装、防火与防锈 (1)制作:钢结构制作包括放样、号料、切割、校正等诸多环节。高强度螺栓处理后的摩擦面、抗滑移系数应符合设计要求。制作质量检验合格后进行除锈和涂装。一般安装焊缝处留出 30 ~50mm 暂不涂装。 (2)焊接:焊工必须经考试合格并取得合格证书且必须在其考试合格项目及其认可范围内施焊。焊缝施焊后须在工艺规定的焊缝及部位打上焊工钢印。焊接材料与母材应匹配,全焊透的一、二级焊缝应采用超声波探伤进行内部缺陷检验,超声波探伤不能对缺陷作出判断时,采用射线探伤。施工单位首次采用的钢材、焊接材料、焊接方法等,应进行焊接工艺评定。 (3)运输:运输钢构件时,要根据钢构件的长度和重量选用车辆。钢构件在车辆上的支点、两端伸出的长度及绑扎方 法均应保证构件不产生变形,不损伤涂层。

(4)安装:钢结构安装要按施工组织设计进行,安装程序 须保证结构的稳定性和不导致变形。安装柱时,每节柱的定 位轴线须从地面控制轴线直接引上。钢结构的柱、梁、屋架 等主要构件安装就位后,须立即进行校正、固定。由工厂处 理的构件摩擦面,安装前须复验抗滑移系数,合格后方可安 装。 (5)防火与防锈。 1)钢结构防火性能较差。当温度达到 550 ℃时,钢材的屈服强度大约降至正常温度时屈服强度的 0.7 ,结构即达到它的 强度设计值而可能发生破坏。设计时应根据有关防火规范的规定,使建筑结构能满足相应防火标准的要求。在防火标准要求 的时间内使钢结构的温度不超过临界温度,以保证结构正常承 载能力。 2)外露的钢结构可能会受到大气,特别是被污染的大气 严重腐蚀,最常见的是生锈。这就必须对构件的表面进行防

常见钢结构构件连接方法详解!

钢结构构件的连接 钢结构的连接方法有焊接、普通螺栓连接、高强度螺栓连接和铆接,具体如下: (一)焊接 1、建筑工程中钢结构常用的焊接方法:按焊接的自动化程度一般分为手工焊接、半自动焊接和自动化焊接三种。 2、根据焊接接头的连接部位,可以将熔化焊接头分为:对接接头、角接接头、T形及十字接头、搭接接头和塞焊接头等。 3、在焊接时应合理选择焊接方法、条件、顺序和预热等工艺措施,尽可能把焊接应力和焊接变形控制到最小。必要时,应取合理措施消除焊接残余应力和变形。 4、焊缝缺陷通常分为:裂纹、孔穴、固体夹杂、未熔合、未焊透、形状缺陷和上述以外的其他缺陷。其主要产生原因和处理方法为: (1)裂纹:通常有热裂纹和冷裂纹之分。产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等;产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等。处理办法是在裂纹两端钻止裂孔或铲除裂纹处的焊缝金属,进行补焊。 (2)孔穴:通常分为气孔和弧坑缩孔两种。产生气孔的主要原因是焊条药皮损坏严重、焊条和焊剂未烘烤、母材有油污或锈和氧化物、焊接电流过小、弧长过长、焊接速度太快等,其处理方法是铲去气孔处的焊缝金属,然后补焊。产生弧坑缩孔的主要原因是焊接电流太大且焊接速度太快、熄弧太快,未反复向熄弧处补充填充金属等,其处理方法是在弧坑处补焊。 (3)固体夹杂:有夹渣和夹钨两种缺陷。产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清除干净等,其处理方法是铲除夹渣处的焊缝金属,然后焊补。产生夹钨的主要原因是氩弧缝金属,重新焊补。 (4)未熔合、未焊透:产生的主要原因是焊接电流太小、焊接速度太快、坡口角度间隙太小、操作技术不佳等。对于未熔合的处理方法是铲除未熔合处的焊缝金属后补焊。对于未焊透的处理方法是对开敞性好的结构的单面未焊透,可在焊缝背面直接补焊。对于不能直接焊补的重要焊件,应铲去未焊透的焊缝金属,重新焊接。 (5)形状缺陷:包括咬边、焊瘤、下塌、根部收缩、错边、角度偏差、焊缝超高、表面不规则等。 (6)其他缺陷:主要有电弧擦伤、飞溅、表面撕裂等。 5、焊接材料的种类及选用原则 钢结构中焊接材料的选用,需适应焊接场地(工厂焊接或工地焊接)、焊接方法、焊接方式(连续焊缝、断续焊缝或局部焊缝),特别是要与焊件钢材的强度和材质要求相适应。①.手工焊接用焊条 ●对Q235 钢制作的重级工作制吊车梁或类似结构,宜采用E4315、E4316型焊条;对其他结构,则宜采用E4300~E4313型焊条; ●对16Mn 钢制作的重级工作制吊车梁或类似结构,宜采用E5015、E5016型焊条;对其他结构,则宜采用E5001~E5014 型焊条。 ②.自动及半自动埋弧焊用的焊丝及焊剂 ■对Q235 钢,采用H08、H08A、H08E焊丝配合中锰型、高锰型焊剂,或采用H08M n、H08MnA配合无锰型、低锰型焊剂; ■对16Mn钢及16Mnq钢,采用H08A、H08E配合高锰型焊剂,或采用H08Mn、H08 MnA配合中锰型或高锰型焊剂,或采用H10Mn2配合无锰型或低锰型焊剂。 ③.焊接材料的进场验收

轻钢结构紧固件连接的构造和计算

轻钢结构紧固件连接的构造和计算 3.8.1紧固件连接的构造要求 用于薄壁型钢结构中的紧固件应满足下述构造要求: (1)抽芯铆钉(拉铆钉)和自攻螺钉的钉头部分应靠在较薄的板件一侧。连接件的中距和端距不得小于连接件直径的3倍,边距不得小于连接件直径的1.5倍。受力连接中的连接件不宜少于2个。 (2)抽芯铆钉的适用直径为2.6~6.4mm,在受力蒙皮结构中宜选用直径不小于4mm的抽芯铆钉;自攻螺钉的适用直径为3.0~8.0mm,在受力蒙皮结构中宜选用直径不小于5mm的自攻螺钉。 (3)自攻螺钉连接的板件上的预制孔径d0应符合下式要求: (4)射钉只用于薄板与支承构件(即基材如檩条)的连接。射钉的间距不得小于射钉直径的4.5倍,且其中距不得小于20mm,到基材的端部和边缘的距离不得小于15mm,射钉的适用直径为3.7~6.0mm。 射钉的穿透深度(指射钉尖端到基材表面的深度,如图3.8.1所示)应不小于10mm。 (5)在抗拉连接中,自攻螺钉和射钉的钉头或垫圈直径不得小于14mm;且应通过试验保证连接件由基材中的拔出强度不小于连接件的抗拉承载力设计值。 上述规定大部分引自国外的相关规范,项次(3)是根据我国自己的试验结果归纳出的经验公式。 3.8.2紧固件的强度计算 1、紧固件受拉 根据大量的试验结果,得到了静荷载和反复荷载作用下,自攻螺钉和射钉连接抗拉强度的计算公式。风是反复荷载的根本起因,在风吸力作用下,压型钢板上下波动,使紧固件承受反复荷载作用,常引起钉头部位的疲劳破坏。因此含风组合时承载力降低。 GB50018规范规定,在压型钢板与冷弯型钢等支承构件之间的连接件杆轴方向受拉的连接中,每个自攻螺钉或射钉所受的拉力应不大于按下列公式计算的抗拉承载力设计值。 当连接件位于压型钢板波谷的一个四分点时(如图3.8.2.b所示),其抗拉承载力设计值应乘以折减系数0.9;当两个四分点均设置连接件时(如图3.8.2c 所示)则应乘以折减系数0.7。

钢结构基本原理大学考试题目

第一章绪论 1.选择题 (1)在结构设计中,失效概率P f与可靠指标β的关系为。 A. P f越大,β越大,结构可靠性越差 B. P f越大,β越小,结构可靠性越差 C. P f越大,β越小,结构越可靠 D. P f越大,β越大,结构越可靠 (2)按承载力极限状态设计钢结构时,应考虑。 A. 荷载效应的基本组合 B. 荷载效应的标准组合 C. 荷载效应的基本组合,必要时尚应考虑荷载效应的偶然组合 D. 荷载效应的频遇组合 2.填空题 (1)某构件当其可靠指标 减小时,相应失效概率将随之。 (2)承载能力极限状态为结构或构件达到或达到不适于继续承载的变形时的极限状态。 (3)在对结构或构件进行极限状态验算时,应采用永久荷载和可变荷载的标准值。 3.简答题 (1)钢结构和其他建筑材料结构相比的特点。 (2)钢结构的设计方法。 第二章钢结构的材料 1.选择题 (1)钢材的设计强度是根据确定的。 A. 比例极限 B. 弹性极限 C. 屈服点 D. 极限强度(2)钢结构设计中钢材的设计强度为。 A. 强度标准值 B. 钢材屈服点

C. 强度极限值 D. 钢材的强度标准值除以抗力分项系数 (3)钢材是理想的体。 A. 弹性 B. 塑性 C. 弹塑性 D. 非弹性(4)钢结构中使用钢材的塑性指标,目前最主要用表示。 A. 流幅 B. 冲击韧性 C. 可焊性 D. 伸长率(5)钢材的伸长率 用来反映材料的。 A. 承载能力 B. 弹性变形能力 C. 塑性变形能力 D. 抗冲击荷载能力 (6)建筑钢材的伸长率与标准拉伸试件标距间长度的伸长值有关。 A. 达到屈服应力时 B. 达到极限应力时 C. 试件塑性变形后 D. 试件断裂后 (7)钢材的三项主要力学性能为。 A. 抗拉强度、屈服强度、伸长率 B. 抗拉强度、屈服强度、冷弯性能 C. 抗拉强度、冷弯性能、伸长率 D. 冷弯性能、屈服强度、伸长率 (8)钢材的剪切模量数值钢材的弹性模量数值。 A. 高于 B. 低于 C. 相等于 D. 近似于 (9)在构件发生断裂破坏前,有明显先兆的情况是的典型特征。 A. 脆性破坏 B. 塑性破坏 C. 强度破坏 D. 失稳破坏 (10)钢中硫和氧的含量超过限量时,会使钢材。 A. 变软 B. 热脆 C. 冷脆 D. 变硬(11)以下关于应力集中的说法中正确的是。 A.应力集中降低了钢材的屈服强度 B.应力集中产生同号应力场,使塑性变形受到限制 C.应力集中产生异号应力场,使钢材变脆

钢结构连接计算书

钢结构连接计算书 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; n v──受剪面数目,取 n v = 2.000; f v b──螺栓的抗剪强度设计值,取 f v b=125.000 N/mm2; 计算得:N v b = 2.000×3.1415×22.0002×125.000/4=95033.178 N; 承压承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取∑t=12.000 mm; f c b──普通螺栓的抗压强度设计值,取 f c b=250.000 N/mm2; 计算得:N c b = 22.000×12.000×250.000=66000.000 N; 故: 普通螺栓的承载力设计值取 66000.000 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算:

式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 21.000 mm; f t b──普通螺栓的抗拉强度设计值,取 f t b=215.000 N/mm2; 计算得:N t b = 3.1415×21.0002×215.000 / 4 = 74467.527 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: 式中 N v──普通螺栓所承受的剪力,取 N v= 23.000 kN =23.000×103 N; N t──普通螺栓所承受的拉力,取 N t= 35.000 kN =35.000×103 N; [(N v/N v b)2+(Nt/Nt b)2]1/2=[(23.000×103/95033.178)2+(35.000×103/74467.527)2]1/2= 0.529 ≤ 1; N v = 23000.000 N ≤ N c b = 66000.000 N; 所以,普通螺栓承载力验算满足要求!

钢结构图集分类全集

【国家标准】 1、GB-50017-2003、《钢结构设计规范》 2、GB50018-2002、《冷弯薄壁型钢结构技术规范》 3、GB-50205-2001、《钢结构结构施工质量验收规范》 4、GB50191-93、《构筑物抗震设计规范》 5、GBJ135-90、《高耸结构设计规范》 6、GB500046、《工业建筑防腐蚀设计规范》 7、GB8923-88、《涂装前钢材表面锈蚀等级和涂装等级》 8、GB14907-2002、《钢结构防火涂料通用技术条件》 9、GB-50009-2001、《建筑结构荷载规范》 10、GBT-50105-2001、《建筑结构制图标准》 11、GB-50045-95、《高层民用建筑设计防火规范》(2001年修订版) 12、GB-50187-93、《工业企业总平面设计规范》 【行业标准】 1、JGJ138-2001/J130-2001、型钢混凝土组合结构技术规程 2、JGJ7-1991、网架结构设计与施工规程 3、JGJ61-2003/J258-2003、网壳结构技术规程 4、JGJ99-1998、高层民用建筑钢结构技术规程(正修订) 5、JGJ82-91、钢结构高强度螺栓连接的设计、施工及验收规程 6、JGJ81-2002/J218-2002、建筑钢结构焊接技术规程 7、DL/T5085-1999、钢-混凝土组合结构设计规程 8、JCJ01-89、钢管混凝土结构设计与施工规程 9、YB9238-92、钢-混凝土组合楼盖结构设计与施工规程 10、YB9082-1997、钢骨混凝土结构技术规程 11、YBJ216-88、压型金属钢板设计施工规程(正修订) 12、YB/T9256-96、钢结构、管道涂装技术规程 13、YB9081-97、冶金建筑抗震设计规范 14、CECS102:2002、门式刚架轻型房屋钢结构技术规程 15、CECS77:96、钢结构加固技术规范 16、YB9257-96、钢结构检测评定及加固技术规范 17、CECS28:90、钢管混凝土结构设计与施工规程 18、YB9254-1995、钢结构制作安装施工规程 19、CECS159:2004、矩形钢管混凝土结构技术规程 20、CECS24:90、钢结构防火涂料应用技术规范 21、CECS158:2004、索膜结构技术规程 22、CECS23:90、钢货架结构设计规范 23、CECS78:96、塔桅钢结构施工及验收规程 24、CECS167:2004、拱形波纹钢屋盖结构技术规程 25、JGJ85-92、预应力筋用锚具、夹具和连接器应用技术规程 26、CECS、多、高层建筑钢-混凝土混合结构设计规程 27、CECS、热轧H型钢构件技术规程 28、CECS、钢结构住宅建筑设计技术规程 29、CECS、建筑拱形钢结构技术规程

钢结构的连接练习题讲解学习

第三章 钢结构的连接 1.选择题 (1)焊缝连接按构造分为两类,它们是 C 。 A. 手工焊缝和自动焊缝 B. 仰焊缝和 俯焊缝 C. 对接焊缝和角焊缝 D. 连续焊缝 和断续焊缝 (2)在下图的连接中,角钢肢尖上的角焊缝的焊脚尺寸f h 应满足 B 。 A. 102.1105.1max min ?=≤≤=??f f f h h h B. )2~1(10125.1max min -=≤≤=??f f f h h h C. 122.1105.1max min ?=≤≤=??f f f h h h D. 102.1125.1max min ?=≤≤=??f f f h h h (3)在弹性阶段,侧面角焊缝应力沿长度方向的分布为 C 。P 204 A. 均分分布 B. 一端大、一端小 C. 两端大、中间小 D. 两端小、中间大 ( 4)产生焊接残余应力的主要因素之一是 C 。

A. 钢材的塑性太低 B. 钢材的弹性模量太高 C. 焊接时热量分布不均 D. 焊缝的厚度太小(5)承受静力荷载的构件,当所用钢材具有良好的塑性时,焊接残余应力并不影响构件的 A 。 A. 静力强度 B. 刚度 C. 稳定承载力 D. 疲劳强度 (6)采用螺栓连接时,构件发生剪切破坏是因为D 。 A. 螺栓较细 B. 钢板较薄 C. 截面削弱过多 D. 端距或栓间距太小(7)一个普通抗剪螺栓的设计承载力是 D 。 A. 螺栓杆的抗剪承载力 B. 螺栓的承压承载力 C. A、B中的较大值 D. A、B中的较小值(8)摩擦型高强螺栓受拉时,螺栓的抗剪承载力B 。 A. 提高 B. 降低 C. 按普通螺栓计算 D. 按高强度螺栓承压型连接计算 (9)摩擦型高强螺栓在杆轴方向受拉时,承载力C 。P244 A. 与摩擦面的处理方法有关 B. 与摩擦面的数量有 关 C. 与螺栓直径有关 D. 与螺栓的性能等级无关

相关主题
文本预览
相关文档 最新文档