当前位置:文档之家› 平行四边形的性质基础习题解析

平行四边形的性质基础习题解析

平行四边形的性质基础习题解析
平行四边形的性质基础习题解析

平行四边形的性质基础习题解析

日期:2014-5-19姓名:

1、如图在□ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于 70°

2、如图,在□ABCD中,∠1=∠B=50°,则∠2= 80°

3、如图,在平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是____8____.

4、如图,在□ABCD中,DE平分∠ADC交BC于E,AF平分∠BAD交BC于F,AB=5,AD=7,则EF=____3____.

5、如图所示,在□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处,若△FDE的周长为8,△FCB的周长为22,则FC的长为____7____.

解:根据题意得△FBE≌△ABE,

∴EF=AE,BF=AB.

∵平行四边形ABCD,

∴AD=BC,AB=DC.

∵△FDE的周长为10,即DF+DE+EF=10,

∴DF+DE+AE=10,即DF+AD=10.

∵△FCB的周长为22,即FC+BC+BF=22,

∴FC+AD+DC=22,即2FC+AD+DF=22.

∴2FC+8=22,FC=7.

6、在□ABCD中,若∠A︰∠B=5︰4,则∠C=__100°.

7、在□ABCD中,∠B=3∠A,则∠A=___45°_,∠B=___135°_.

8、在□ABCD中,若∠A=50°,则∠B=__130°;若∠B-∠A=40°,则∠D=__110°

9、如图,在□ABCD中,AB=2BC,M为AB的中点,∠DMC=____90°_.

10、平行四边形的周长为24cm,相邻两边的比为1︰2,则较短的边长为___4_____.

11、如图,在□ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为___3___.

12、如图,□ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是________.

解:∵四边形ABCD是平行四边形,

∴AB∥DC,AB=CD,

∵AE∥BD,

∴四边形ABDE是平行四边形,

∴AB=DE=CD,

即D为CE中点,

∵EF⊥BC,

∴∠EFC=90°,

∵AB∥CD,

∴∠DCF=∠ABC=60°,

∴∠CEF=30°,

∴CE=2,

∴AB=1.

13、如图所示,□ABCD的周长为30cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多5cm,则AB=___10__cm,BC=___5__cm.

14、如图,□ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD、BC于E、F两点,连接CE,则△CDE的周长为___10__cm.

15、如图,□ABCD的对角线交于点O,若S□ABCD=8,则S△AOB的值为_2_.

16、如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为___12__.

17、(2012?包头)如图,过□ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的□AEMG 的面积S1与□HCFM的面积S2的大小关系是_S1_= S2_.

18、已知□ABCD的周长为50,3AB=2BC,对角线AC的取值范围是__5

19、(2011·北京)如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是__1

20、如图,在□ABCD中,AD⊥BD,垂足为D,OA=4,OB=2.

求:(1)AD、AB的长及□ABCD的面积.(2)平行线AB、DC之间的距离.

22OD AO AD -=解:=-=222432 22BD AD AB +==+=224)32(72

BD AD S ABCD ?==?=43238 AB S h ABCD AB ===7

2387214 21、(2013年南充市)如图,在□ABCD 中,对角线AC 、BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F . 求证:OE =OF .

证明:∵四边形ABCD 是平行四边形,

∴OA=OC ,AB ∥CD ,

∴∠OAE=∠OCF ,

∵在△OAE 和△OCF 中,

∠AOE =∠COF

OA =OC ∠OAE =∠OCF

∴△OAE ≌△OCF (ASA ),

∴OE=OF .

22、如图,△ABC 中,AB =AC ,点P 是BC 边上任一点,PE ∥AC ,PF ∥AB ,分别交AB 、AC 于点E 、点F ,试判断PE 、PF 与AB 的数量关系,并说明理由.

明:∵PE ∥AC ,PF ∥AB ,

∴四边形PEAF 是平行四边形,

∴PF=AE ,

∵AB=AC ,

∴∠B=∠C ,

∵PE ∥AC ,

∴∠EPB=∠C ,

∴∠B=∠EPB ,

∴PE=BE ,

∵AE+BE=AB ,

∴PE+PF=AB

23、如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .

求证:(1)∠DFA =∠FAB ;(2)△ABE ≌△FCE .

证明:(1)∵四边形ABCD 是平行四边形

∴DF ∥AB

∴∠DFA =∠FAB

(2)在△ABE 和△FCE 中

??

???=∠=∠∠=∠EB EC AEB FEC FAB DFA

∴△ABE ≌△FCE(AAS)

24、(2013?菏泽)如图,□ABCD 的对角线AC 、BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在的直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,求DB′的长度.

又∵BE=DE ,B ′E ⊥BD ,

25、(2012?沈阳)已知,如图,在?ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE=CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN .

(1)求证:△AEM ≌△CFN ;

(2)求证:四边形BMDN 是平行四边形.

证明:(1)四边形ABCD 是平行四边形,

∴∠DAB=∠BCD ,

∴∠EAM=∠FCN ,

又∵AD ∥BC ,

∴∠E=∠F .

∵在△AEM 与△CFN 中,

∠EAM =∠FCN

AE =CF ∠E =∠F

∴△AEM ≌△CFN (ASA );

(2)∵四边形ABCD 是平行四边形,

∴AB ∥CD ,AB=CD

又由(1)得AM=CN ,

∴BM ∥DN,BM=DN

∴四边形BMDN 是平行四边形.

26、(2006?巴中)已知:如图,在梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=30cm ,点P 自点

A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向

B 以2cm/s 的速度运动,到B

点即停止,直线PQ 截梯形为两个四边形.问当P ,Q 同时出发,几秒后其中一个四边形

为平行四边形?

解:设P ,Q 同时出发t 秒后四边形PDCQ 或四边形APQB 是平行四边形,根据已知得到

AP=t ,PD=24﹣t ,CQ=2t ,BQ=30﹣2t .

(1) 若四边形PDCQ 是平行四边形,则PD=CQ ,

∴24﹣t=2t

∴t=8

∴8秒后四边形PDCQ 是平行四边形;

(2) 若四边形APQB 是平行四边形,则AP=BQ ,

∴t=30﹣2t

∴t=10

∴10秒后四边形APQB 是平行四边形

27、如图,在直角梯形ABCD 中,AB ∥CD ,∠BCD=90°,

AB=AD=10cm ,BC=8cm .点P 从点A 出发,以每秒3cm 的速度沿折线ABCD 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C

运动.已知动点P 、Q 同时发,当点Q 运动到点C 时,P 、Q 运动停止,设运动时间为t . (1)求CD 的长;

(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;

(3)在点P 、点Q 的运动过程中,是否存在某一时刻,使得△BPQ 的面积为20cm 2?若存在,请求出

所有满足条件的t 的值;若不存在,请说明理由.

解:(1)过点A 作AM ⊥CD 于M ,

根据勾股定理,AD=10,AM=BC=8,

∴DM==-=22810 6

∴CD=16;

(2)当四边形PBQD 为平行四边形时,

点P 在AB 上,点Q 在DC 上,如图, 由题知:BP=10-3t ,DQ=2t

∴10-3t=2t ,解得t=2

此时,BP=DQ=4,CQ=12

∴BQ ==+=22128134 ∴四边形PBQD 的周长=2(BP+BQ )=8+138;

(3)①当点P 在线段AB 上时,即0≤t ≤3

10时,如图 S △B P Q =

21BP ?BC =21(10?3t )×8=20 ∴t =3

5.

②当点P 在线段BC 上时,即

3

10<t ≤6时,如图 BP=3t-10,CQ=16-2t

∴S △B P Q =21BP ?CQ =2

1 (3t ?10)×(16?2t )=20 化简得:3t 2-34t+100=0,△=-44<0,所以方程无实数解.

③当点P 在线段CD 上时,

若点P 在Q 的右侧,即6≤t ≤

5

34, 则有PQ=34-5t S △B P Q =

21(34-5t)×8=20, t =5

29<6,舍去 若点P 在Q 的左侧,即

5

34<t ≤8, 则有PQ=5t-34,S △B P Q =21(34-5t)×8=20, t=7.8.

综合得,满足条件的t 存在,其值分别为t 1=3

5,t 2=7.8.

平行四边形的性质(一)

第六章平行四边形 1. 平行四边形的性质(一) 杨家湾二中顾怀林 一、学生起点分析 学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。 学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。 二、学习任务分析 四边形和三角形一样,也是基本的平面图形,在三角形有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。 教学目标: 1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯; 2.探索并掌握平行四边形的性质,并能简单应用; 3.在探索活动过程中发展学生的探究意识。 教学重点:平行四边形性质的探索。 教学难点:平行四边形性质的理解。 教学方法:探索归纳法 三、教学过程设计 本节课分5个环节: 第一环节:实践探索,直观感知 第二环节:探索归纳,交流合作 第三环节:推理论证,感悟升华 第四环节:应用巩固,深化提高 第五环节:评价反思,概括总结

第一环节:实践探索,直观感知 1.小组活动一 内容: 问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。 (1)你拼出了怎样的四边形?与同桌交流一下; (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。 目的: 通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形; 平行四边形的相邻的两个顶点连成的一段叫做它的对角线。 教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。 2.小组活动二 内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗? 目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。 效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。 第二环节探索归纳、合作交流 小组活动三: 内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢? 活动目的: 这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

平行四边形性质及判定练习题

A B E C F D O B D C E D C O F B A 平行四边形性质及判定练习题 一、耐心填一填! 1、ABCD 中,∠B -∠A =40°,则∠D =__。 2、ABCD 的周长是44cm ,AB 比AD 大2cm ,则AB =__cm ,AD =__cm 。 3、平行四边形的两个相邻内角的平分线相交所成的角的度数是__。 4、平行四边形的两条邻边的比为2∶1,周长为60cm ,则这个四边形较短的边长为__。 5、如图所示,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F , ∠BAD =120°,BE =2,FD =3,则∠EAF =___,ABCD 的周长为__。 6.若平行四边形的两邻边的长分别为16和20,两长边间的距离为8, 则两短边间的距离为_____________. 7、ABCD ,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______, ∠D=__________,∠A=_________,∠C=__________. 8、平行四边形周长为50cm ,两邻边之差为5cm,各边长为 。 9.如图,平行四边形ABCD 的周长为30cm,它的对角线AC 和BD 相交于O,且△ AOB 的周长比△BOC 的周长大5cm,AB= 、BC= 。 10.平行四边形ABCD 的对角线AC 和BD 相交于O,则其中全等的三角形有___ 对。 二、精心选一选! 11、下面各条件中,能判定四边形是平行四边形的是 ( ) A 、对角线互相垂直 B 、对角线互相平分 C 、一组对角相等 D 、一组对边相等 12、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。其中能判定平行四边形的命题的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 13、平行四边形的两条对角线及一边的长可依次取 ( ) A 、6、6、6 B 、6、4、3 C 、6、4、6 D 、3、4、5 14、以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是 ( ) A 、2个 B 、3个 C 、4个 D 、5个 15、四边形ABCD 的四个角∠A ∶∠B ∶∠C ∶∠D 满足下列哪一条件时,四边形ABCD 是平行四边形?( ) A 、1∶2∶2∶1 B 、2∶1∶1∶1 C 、1∶2∶3∶4 D 、2∶1∶2∶1 16、如图所示,在ABCD 中,EF 过对角线的交点,若AB =4,BC =7,OE =3,则四边形EFDC 的周长是( ) A 、14 B 、11 C 、10 D 、17 17、四边形ABCD 中,AD ∥BC ,要判定四边形ABCD 是平行四边形, 还应满足( ) A 、∠A +∠C =180° B 、∠B +∠D =180° C 、∠A +∠B =180° D 、∠A +∠D =180° 18、根据下列条件,得不到平行四边形的是( ) A 、 AB =CD ,AD =BC B 、AB ∥CD ,AB =CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC 19、若ABCD 的周长为40cm ,ΔABC 的周长为27cm ,则AC 的长是( ) A 、13cm B 、3cm C 、7cm D 、11.5cm

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

综合滚动练习:平行四边形的性质与判定 时间:45分钟分数:100分得分:________ 一、选择题(每小题4分,共32分) 1.在?ABCD中,若∠A+∠C=120°,则∠A的度数是() A.100°B.120°C.80°D.60° 2.如图,在?ABCD中,点O是对角线AC,BD的交点,下列结论错误的是() A.AB∥CD B.AB=CD C.AC=BD D.OA=OC 第2题图第5题图 3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是() A.4∶3∶3∶4 B.7∶5∶5∶7 C.4∶3∶2∶1 D.7∶5∶7∶5 4.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是() A.(-2,1) B.(-2,-1) C.(-1,-2) D.(-1,2) 5.如图,?ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为() A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2 6.如图,在?ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E.若AB=6,EF=2,则BC的长为() A.8 B.10 C.12 D.14 第6题图第7题图7.如图,在?ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于() A.40°B.50°C.60°D.80° 8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是() A.22 B.20 C.22或20 D.18 二、填空题(每小题4分,共24分) 9.已知AB∥CD,添加一个条件____________,使得四边形ABCD为平行四边形.10.如图,在?ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.

18.1-18.2平行四边形的性质与判定练习题

E D C O F B A 18.1~18.2平行四边形的性质与判定 一、选择题 1、下面各条件中,能判定四边形是平行四边形的是 ( ) A 、对角线互相垂直 B 、对角线互相平分 C 、一组对角相等 D 、一组对边相等 2、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。其中能判定平行四边形的命题的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 3、下列说法中错误的是( ) A .平行四边形的对角线互相平分 B .有两对邻角互补的四边形为平行四边形 C .对角线互相平分的四边形是平行四边形 D .一组对边平行,一组对角相等的四边形是平行四边形 4、平行四边形的两条对角线及一边的长可依次取 ( ) A 、6、6、6 B 、6、4、3 C 、6、4、6 D 、3、4、5 5、以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是 ( ) A 、2个 B 、3个 C 、4个 D 、5个 6、 四边形ABCD 的四个角∠A ∶∠B ∶∠C ∶∠D 满足下列哪一条件时,四边形ABCD 是平行四边形?( ) A 、1∶2∶2∶1 B 、2∶1∶1∶1 C 、1∶2∶3∶4 D 、2∶1∶2∶1 7、四边形ABCD 中,AD ∥BC ,要判定四边形ABCD 是平行四边形,还应满足( ) A 、∠A +∠C =180° B 、∠B +∠D =180° C 、∠A +∠B =180° D 、∠A +∠D =180° 8、根据下列条件,得不到平行四边形的是( ) A 、A B =CD ,AD =B C B 、AB ∥C D ,AB =CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC 9、如图,在□ABCD 中,EF 过对角线的交点,若AB =4,BC =7,OE =3,则四边形EFDC 的周长是( ) A 、14 B 、11 C 、10 D 、17 9题图 10题图 11题图 12题图 10、如图,线段a 、b 、c 的端点分别在直线l 1、l 2上,则下列说法中正确的是( ) A .若l 1∥l 2,则a=b B .若l 1∥l 2,则a=c C .若a∥b,则a=b D .若l 1∥l 2,且a∥b,则a=b 11、如图,△ABC 中,AB=AC=15,D 在BC 边上,DE∥BA,DF∥CA,那么四边形AFDE 的周长是( ) A .30 B . 25 C . 20 D . 15 12、如图,AB=CD ,BF=ED ,AE=CF ,由这些条件能得出图中互相平行的线段共有( ) A . 1组 B . 2组 C . 3组 D . 4组 13、若□ABCD 的周长为40cm ,ΔABC 的周长为27cm ,则AC 的长是( ) A 、13cm B 、3cm C 、7cm D 、11.5cm 14、平行四边形的对角线长分别是x 和y ,一边长为12,则下列各组数据可能是x 与y 的值的是( ) A 、8与14 B 、10与14 C 、18与20 D 、10与36 15、□ABCD 中,∠A:∠B=13:5,则∠A 和∠B 的度数分别为( ) A .80° ,100° B .130°,50° C .160°,20° D .60°,120° 16、一个平行四边形的两条对角线把它分成的全等三角形的对数是( ) A.2 B.4 C.6 D.8 17、E 、F 分别是□ABCD 的边AB 、DC 中点,DE 、BF 交AC 于M 、N ,则( ) A.AM=ME B.AM=DF C.AM=NC D.AM ⊥MD 18、在□ABCD 中若∠A >∠B ,则∠A 的补角与∠B 的余角之和( ) A.小于90° B.等于90° C.大于90° D.不能确定 19、从等腰三角形底边上任意一点分别作两腰的平行线与两腰所围成的平行四边形的周长等于三角形( ) A.周长 B.周长的一半 C.腰长 D.两腰长的和 20、已知平行四边形两条邻边的长分别是6厘米和4厘米,它们的夹角是60°,则它的面积是( )

八年级数学平行四边形的性质练习题

10月15日平行四边形的性质1 预习评估 1. __________________________________的四边形叫做平行四边形。 __________________________叫做平行四边形的对角线 平行四边形的对角线把它分成的两个三角形______________. 2. 平行四边形对边___________,对角____________ 3. 如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则 AD=________,CD=______,∠D=__________,∠ A=_________,∠C=__________. 4. 如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,边AB 可以看成由_____________ 平移得来的,△ABC 可以看成由__________绕点O 旋转______________得来。 例题与练习 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。 变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。 例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。 变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。 例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。 变题5.如图,平行四边形ABCD 的周长为50,其中AB=15, ∠ABC=60°,求平行四边形面积。 A B C D A B C D O A B C D E A B C D F E A B C D A B C D

《平行四边形》的性质与判定 专题练习题 含答案

人教版数学八年级下册第十八章平行四边形平行四边形的性质与判定专题练习题1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各 点中不能作为平行四边形顶点坐标的是() A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1) 2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有?ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 3.如图,E是?ABCD内任意一点,若平行四边形的面积是6,则阴影部分的面积为____. 4.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______. 5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 6.如图,在?ABCD中,E是BC的中点,AE=9,BD=12,AD=10. (1)求证:AE⊥BD; (2)求?ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求?ABCD的面积 8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形. 9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________. 10. 如图,已知点E,C在线段BF上,BE=CE=CF,AB∥DE,∠ACB=∠F. (1)求证:△ABC≌△DEF;

平行四边形的性质与判定 专题练习题

平行四边形的性质与判定专题练习题 1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是() A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1) 2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以 AC为对角线的所有?ADCE中,DE最小的值是() A.2 B.3 C.4 D.5 3.如图,E是?ABCD内任意一点,若平行四边形的面积是6,则阴 影部分的面积为____. 4.如图,?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°, 则∠DAE的度数为_______. 5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 6.如图,在?ABCD中,E是BC的中点,AE=9,BD=12,AD=10. (1)求证:AE⊥BD; (2)求?ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交 CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求?ABCD的面积 8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形. 9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________.

平行四边形及其性质

平行四边形及其性质

课题: 4 . 1 平行四边形及其性质 教材:北师大版义务教育课程标准实验教科书八年级上册 一、教材分析 1.教材的地位与作用 平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用. 本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用. 2.教学目标: 知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力. 数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性. 情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐. 3.教学重点、难点: 重点:理解并掌握平行四边形的概念及其性质. 难点:运用平移、旋转的图形变换思想探究平行四边形的性质. 4.教材处理: 基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合. 首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性. 然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的

(完整版)平行四边形的性质和判定练习题.doc

初 2017 级寒假培训(八) A 层----平行四边形的性质与判定 班级: 姓名: 1.定 :两 互相平行的四 形叫做平行四 形,平行四 形 ABCD 作: □ ABCD 几何 言: AB // CD , AD // BC , 四边形 ABCD 是平行四边形 A D 2.性 :平行四 形的 平行且相等, 角相等, 角互 , 角 互相平分; 几何 言:∵ 四 形 ABCD 是平行四 形 O ∴ AD ∥ BC, _________ ( 平行); AD=BC ,__________( 相等); B C BAC BCD , _________( 角相等); BAC ABC 180 ?( 角互 ) ; OA OC , ( 角 互相平分) 。 平行四边形的判定: 判定 1.两 分 平行的四 形是平行四 形 判定 2.两 分 相等的四 形是平行四 形 判定 3.两 角分 相等的四 形是平行四 形 判定 4. 角 互相平分的四 形是平行四 形 判定 5. 一 平行且相等的四 形是平行四 形; 几何 言 判定 1. AB // CD , AD // BC , 四边形 ABCD 是平行四边形 判定 2. AB DC , AD BC , 四边形 ABCD 是平行四边形 判定 3. ABCADC , BADBCD , 四边形 ABCD 是平行四边形 判定 4. AO CO, BO DO , 四边形 ABCD 是平行四边形 判定 5. AB // CD , AB CD , 四边形 ABCD 是平行四边形 夯 基 : 1. 如 ,将 □ ABCD 的一 BC 延 至 E ,若∠ A =110°, ∠ 1=________. A D A B A D B E 1 D C B C C E 2 4 2. 如 ,在 □ ABCD 中, A 120 , D = °. 3. 在平行四 形 ABCD 中, AB 6cm , BC 8cm , 平行四 形 ABCD 的周 cm . 4. 如 ,在 □ ABCD 中,已知 AD 8CM , AB 6CM , ,DE 平分 ADC 交 BC 于点 E ,

平行四边形性质专题

C F B E D A 一、平行四边形基本定义: 1、平行四边形 定义:有两组对边分别平行的四边形是平行四边形。 表示:平行四边形用符号“□ ”来表示。 2、平行四边形性质: 3、扩展性质: 二.平行四边形的面积: 平行四边形的面积: 等于底和高的积,即S □ABCD =ah ,其中a 可以是平行四边形的任何一边,h 必须是a 边到其对边的距离,即对应的高。 平行四边形中的等积法使用: DF BC DE AB ?=? 三、总结: (1)平行四边形的性质和扩展性质要能够理解并灵活运用。 (2)平行四边形中对角线是常用辅助线。 平行四边 形性质 平行四边形对边相等; 平行四边形对角相等; 平行四边形对角线互相平分。 平行四边形对角线分平行四边形成面积相等的四个小三角形。 平行四边形对角线分平行四边形成四个小三角形中,相邻两个小三角形周长差等于边长差 平行四边形对角线的一半和大于任意一边长 过平行四边形对角线交点的任意一条直线分平行四边形成面积相等两部分

例题1如图,在?ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4 B .3 C . 2 5 D .2 例题2如图,平行四边形ABCD 中,A E 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点 F .下列结论中:①△ABC ≌△AED ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CDE ;⑤S △ABE =S △CEF .其中正确的是( )A .①②③B .①②④C .①②⑤D .① ③④ 平行四边形的面积问题 实例:如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB=AC . (1)求证:△BAD ≌△AEC ; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积. 平行四边形中的折叠 实例:如图,在?ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G. 求证:(1)∠1=∠2; (2)DG=B′G. DE=B′F,∴△DEG ≌△B′FG,∴DG=B′G.

18.1.1 平行四边形的性质(教学设计)

第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 第一课时 【岩帅中学李光兴】 一、教学目标: 1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3.培养学生发现问题、解决问题的能力及逻辑推理能力. 二、重点、难点 【重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 【难点】运用平行四边形的性质进行有关的论证和计算. 三、课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象? 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗? (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“”来表示. 如图,在四边形ABCD中,AB∥DC,AD∥BC, 那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定); ②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质). 平行四边形性质一:平行四边形的两组对边分别平行;

注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下. 猜想平行四边形的对边相等、对角相等. 下面证明这个结论的正确性. 已知:如图ABCD, 求证:AB=CD,CB=AD,∠B=∠D, ∠BAD=∠BCD. 分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论. (作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.) 证明:连接AC, ∵AB∥CD,AD∥BC, ∴∠1=∠3,∠2=∠4. 又AC=CA, ∴△ABC≌△CDA (ASA). ∴AB=CD,CB=AD,∠B=∠D. 又∠1+∠4=∠2+∠3, ∴∠BAD=∠BCD. 由此得到: 平行四边形性质二:平行四边形的对边相等. 平行四边形性质三:平行四边形的对角相等.

平行四边形的性质典型例题

《平行四边形的性质》典型例题 例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度 例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ?的周长比BOC ?的周长多8cm ,求这个平行四边形各边的长. 例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由. 例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F .求证:.DC AF = 例5 O 是ABCD 对角线的交点,OBC ?的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ?与OAB ?的周长之差为15,则=AB ______,ABCD 的周长=______. D C A B O

例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积. 例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F , 若?=∠60EAF ,cm BE 2=,cm FD 3=. 求:AB 、BC 的长和ABCD 的面积.

参考答案 例 1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数. 解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x ∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ?的周长比BOC ?的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长. 解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB === 60=+++BC AD CD AB Θ,∴.30=+BC AB 8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB ∴.11,19====AD BC CD AB 答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm. 说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ?????????,,,从而可说明.OF OE = 证明 在ABCD 中,BD AC 、Θ交于O ,∴.OC AO = CD AB //Θ,∴CFO AEO FCO EAO ∠=∠∠=∠,, ∴)(AAS CFO AEO ???,∴.OF OE = 例4 分析 观察图形,AFD ?与DCE ?都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。在这个图形中,若连结AE ,则ABE ?与AFE ?全等,因此可以确定图中许多有用的相等关系。 证明 ∵四边形ABCD 是矩形,∴?=∠90,//C BC AD ,∴.DEC ADE ∠=∠ DE AF ⊥Θ,∴?=∠=∠90C AFD ,

平行四边形性质专题

一、平行四边形基本定义: 1、平行四边形 定义:有两组对边分别平行得四边形就是平行四边形。 表示:平行四边形用符号“□”来表示、 2、平行四边形性质: 3、扩展性质: 平行四边形得面积: 等于底与高得积,即S□ABCD=ah,其中a可以就是平行四边形得任何一边,h必须就是a边到其对边得距离,即对应得高。 平行四边形中得等积法使用: 三、总结: (1)平行四边形得性质与扩展性质要能够理解并灵活运用。 (2)平行四边形中对角线就是常用辅助线。 例题1如图,在?ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB得长为()A.4 B.3 C. D.2 例题2如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE得延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE就是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确得就是()A.①②③B。①②④C.①②⑤D。①③④ 平行四边形得面积问题 实例:如图,已知四边形ABDE就是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.?(1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE得面积。 平行四边形中得折叠 实例:如图,在?ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.

求证:(1)∠1=∠2; (2)DG=B′G. DE=B′F,∴△DEG≌△B′FG,∴DG=B′G。 一、选择题 1、如图,平行四边形ABCD得对角线交于点O,且AB=5,△OCD得周长为23,则平行四边形ABCD得两条对角线得与就是()A、18 B.28 C.36 D、 46 A、246 B.216 C、-216D。274 2如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线得所有?ADCE中,DE最小得值就是( )A.2B、3 C.4 D、5 *3如图,在平行四边形ABCD中,AB〉CD,按以下步骤作图:以A为圆心,小于AD得长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF得长半径画弧,两弧交于点G;作射线AG交CD于点H、则下列结论:①AG平分∠DAB,②CH=DH,③△ADH就是等腰三角形,④S△ADH=S四边形ABCH、其中正确得有()A。①②③B.①③④C、②④D、①③. **4如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F就是BC得中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( ) A、3:4 B:2C:2 D。2: **5、如图,四边形ABCD就是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G、若使EF=AD,那么平行四边形ABCD应满足得条件就是()A.∠ABC=60°B.AB:BC=1:4C.AB:BC=5:2 D.AB:BC=5:8 **6如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确得就是( )①△CD F≌△EBC;②∠CDF=∠EAF;③△ECF就是等边△;④CG⊥AE。A.只有①②B、只有①②③C.只有③④D、①②③④ 二、填空题: *7如图,过?ABCD得对角线BD上一点M分别作平行四边形两边得平行线EF与GH,那么图中得?AEMG得面积S1与?HCFM得面积S2得大小关系就是 **8 在?ABCD中,∠DAB得平分线分对边BC为3cm与5cm两部分,则?ABCD 得周长为 **9、如图,?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在得同一平面内,若点B得落点记为B′,则DB′得长为、 三、解答题: *10如图,在?ABCD中,点E就是AB边得中点,DE与CB得延长线交于点F、?(1)求证:△ADE≌△BFE; (2)若DF平分∠ADC,连接CE、试判断CE与DF得位置关系,并说明理由. **11如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE与△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF. (1)求证:△ABE≌△FDA;?(2)当AE⊥AF时,求∠EBG得度数. **12(2007?黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F、若点P在BC边上(如图

平行四边形的概念和性质

平行四边形的概念和性质(1) 冒合中学杜碧玲 [教学目标] 1﹑了解平行四边形的概念,掌握平行四边形的性质,并能熟练用其来解决实际问题。 2﹑通过探索、发现、论证培养学生类比、转化的数学思想方法锻炼学生的自学能力和缜密的逻辑思维能力 3、让学生在观察、合作、讨论、交流中感受数学的实际应用价值,培养学生善于发现、积极思考、合作学习、勇于创新的学习态度 [教学重点、难点] (1)重点:掌握平行四边形的性质(2)难点:利用平行四边形的性质解决相关问题 [教学过程] 一、板书课题: 引入:在小学里,我们初步认识平行四边形,会计算平行四边形的周长和面积,这节课开始我们进一步来学习平行四边形的概念,研究它的性质—平行四边形的概念、和性质。 二、出示目标 出示事先写在小黑板上的教学目标: 1﹑了解平行四边形的概念,掌握平行四边形的性质,并能熟练用其来解决实际问题。 2﹑通过探索、发现、论证培养学生类比、转化的数学思想方法锻炼学生的自学能力和缜密的逻辑思维能力 3、让学生在观察、合作、讨论、交流中感受数学的实际应用价值,培养学生善于发现、积极思考、合作学习、勇于创新的学习态度 三、自学指导 (一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学。(二)出示自学指导 认真看课本(P83-84)练习前面的内容。 1.理解平行四边形的概念和记法; 2.掌握平行四边形的对边相等对角相等的性质,注意兰色书签的内容; 3.利用三角形全等证明上述性质。

四、先学 (一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难。 (二)检测 1、过渡语:同学们,看完的请举手。懂了的请举手。好下面就比一比,看谁能正确做出检测题。 2、检测题P84:1、2、3 3、学生练习,请三名同学到黑板上进行板演,教师巡视。(改集错误解进行二次备课) 五、后教 (一)更正:请同学们仔细看一看这三名同学的板演,发现错解的请举手(指名更正) (二)讨论: 教师根据学生发言的情况进行评平行四边形的概念,研究它的性质价,(教师要强调解题格式) (三)归纳:我们已经学习了平行四边形的概念和性质,你能说一说今天的收获吗?(指名说) 六、当堂训练 (一)讲述:让同学口答新知识,能运用新知识做对作业吗?好,要注意解题格式,书写工整。 (二)出示作业题: P90-91第1题2题第3题 (三)学生练习,教师巡视。

完整版平行四边形的性质练习题及答案

平行四边形的性质 、课中强化(10分钟训练) 1?如图3,在平行四边形 ABCD 中,下列各式不一定正确的是 ( ) A. / 1 + Z 2=180 ° B. / 2+ / 3=180 ° C. / 3+Z 4=180 的周长为( ) 3. 如图5,」ABCD 中,EF 过对角线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ . 4. 如图6,已知在平行四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E , 5. 如图7,在平行四边形 ABCD 中,点E 、F 在对角线 6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长. D. / 2+ / 4=180 O , OE 丄AC 交AD 于丘,则厶DCE A.4 cm B.6 cm C.8 cm D.10 cm 交CD 的延长线于点 F ,贝U DF= _____________ cm. BD 上,且 BE=DF ,求证:AE=CF. 图3 2?如图4,二ABCD 的周长为 图5 图6 图7 图8

三、课后巩固(30分钟训练) 1?二ABCD中 ,/A比/ B大20。,则/ C的度数为() A.60 ° B.80 ° C.100 ° D.120 2?以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形 ,一共可以作( A.0个或3个 B.2个 C.3个 D.4个 3?如图9 所示,在—ABCD 中,对角线AC、BD交于点0,下列式子中一定成立的是() A.AC 丄BD B.OA=OC C.AC=BD D.AO=OD 4?如图10,平行四边形ABCD中,对角线AC、BD相交于点O ,将厶AOD平移至△ BEC的位置,则图中与OA相等的其他线段有() A.1条 B.2条 C.3条 D.4条 5?如图11,在平行四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平行四边形的个数共有() 6?如图12,平行四边形ABCD中,AE丄BD , CF丄BD,垂足分别为E、F,求证:/ BAE= / DCF. 7、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF. 求证:△ ABE CDF. A.7个 B.8个 C.9个 D.11 个 图12 图13

北师大版八年级下册第六章:平行四边形专题一【平行四边形的性质】知识点+经典例题+变式训练(无答案)

第六章平行四边形 一.大脑扫描 1.平行四边形的有关概念 (1)平行四边形:_______________________________________________________________ (2)对角线:___________________________________________________________________ 2.平行四边形的性质 (1)边:<1>____________________________________________________________________ <2>____________________________________________________________________ (2)角:_______________________________________________________________________ (3)对角线:___________________________________________________________________ (4)对称性:___________________________________________________________________ 3.平行四边形的判定 (1)边:<1>__________________________________________________________________ <2>__________________________________________________________________ <3>__________________________________________________________________ 角:____________________________________________________________________ 对角线:________________________________________________________________ 补充:一组对边平行,一组对角相等的四边形是平行四边形。 4.平行线之间的距离 概念:__________________________________________________________________________ _______________________________________________________________________________ 5.平行四边形的面积 (1)如图①,.

相关主题
文本预览
相关文档 最新文档