当前位置:文档之家› 数字信号处理-等波纹数字FIR低通滤波器

数字信号处理-等波纹数字FIR低通滤波器

数字信号处理-等波纹数字FIR低通滤波器
数字信号处理-等波纹数字FIR低通滤波器

《数字信号处理》课程设计

学院:电气工程学院

题目:等波纹FIR低通滤波器

起止时间:2015年10月10日至2015年12月20日

2015年10月10日

《数字信号处理》课程设计

任务书

学院:电气工程学院

题目:等波纹FIR低通滤波器

起止时间:2015年10月10日至2015年12月20日

2015年10月10日

摘要:数字滤波器的设计方法有窗函数法,频率采样法以及等波纹逼近法等,其中等波纹逼近法为最优化设计,在同样的技术指标下,用这种方法设计得到的滤波器要比窗函数法和频率采样法得到的滤波器的长度均要小,而且设计过程简单易行。在本课程设计中,借助MATLAB,设计出等波纹低通滤波器,仿真产生一个连续信号,包含低频,高频分量,对其进行频谱分析。并分析与巴特沃斯低通滤波器的优势及特点。

关键字:低通滤波器等波纹 MATLAB巴特沃斯

Abstract: The design of a digital filter with window function method, frequency sampling method and ripple approach method, which equiripple approximation method for the optimal design, in the same technical indicators, obtained by this method filters designed to than the length of the filter window function method and frequency sampling method have to get smaller, and the design process simple. In this course design, with MATLAB, design equiripple low-pass filter, simulation generates a continuous signal, a low frequency, high frequency components, its spectrum analysis. And analysis and Butterworth low-pass filter advantages and characteristics.

Keywords:Low-pass filter ripple MATLAB Butterworth

目录

1.绪论 (1)

2.数字滤波器的基本概念介绍 (1)

2.1滤波的涵义 (1)

2.2数字滤波器的概述 (1)

2.3数字滤波器的实现方法 (2)

2.4 .数字滤波器的可实现性 (2)

2.5数字滤波器的分类 (2)

2.6FIR滤波器简介及其优点 (2)

2.6.1FIR滤波器 (2)

2.6.2FIR滤波器具有以下主要优点: (2)

3.等波纹最佳逼近法的原理说明 (3)

3.1等波纹最佳逼近法概述 (3)

3.2.等波纹最佳逼近法基本思想 (3)

3.3等波纹滤波器的技术指标及其描述参数介绍 (4)

3.3.1滤波器的描述参数 (4)

3.3.2matlab中的firpm和firpmord函数介绍 (4)

4.手工计算完成等波纹FIR低通滤波器初始设计 (4)

4.1设计要求 (4)

4.2手工计算 (5)

4.3在Matlab中利用FIRPM函数计算 (6)

4.4基于Matlab的幅频响应曲线 (6)

5.使用FDA工具箱设计FIR低通滤波器 (7)

5.1简要介绍FDA工具箱 (7)

5.2用FDA工具箱实现要求的滤波功能: (8)

5.3手工计算和利用FIRPM函数计算结果比较 (9)

6. 滤波器的结构不同对性能指标的影响 (10)

6.1FIR滤波器的基本结构 (10)

6.1.1利用直接型结构构建数字滤波器 (11)

6.1.2利用级联型结构构建数字滤波器 (13)

6.1.3两种滤波器结构对性能指标影响的比较与总结 (15)

6.2参数字长对性能指标的影响 (15)

6.2.1参数字长取2位对性能指标的影响 (16)

6.2.2参数字长取8位对性能指标的影响 (17)

6.2.3参数字长取12位对性能指标的影响 (18)

6.2.4参数字长取14位对性能指标的影响 (19)

7结论 (20)

8. 参考文献 (21)

1.绪论

数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置,在通信、图像、语音、雷达等许多领域都有着十分广泛的应用。在数字信号处理中,数字滤波占有极其重要的地位。目前对数字滤波器的设计有多种方法。其中Matlab软件已成为设计数字滤波器的强有力工具。传统的数字滤波器设计过程复杂、计算工作量大、滤波特性调整困难,但利用Matlab信号处理工具箱可以快速有效地实现由软件组成的常规数字滤波器的设计、分析和仿真,极大地减轻了工作量,有利于滤波器设计的最优化。

2.数字滤波器的基本概念介绍

2.1滤波的涵义

a) 将输入信号的某些频率成分或某个频带进行压缩、放大;

b) 对信号进行检测;

c) 对参数估计;

2.2数字滤波器的概述

所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。

如图2.2.1给出了一个具有模拟输入信号和输出信号的实时数字滤波器的简化方框图。这个带限模拟信号被周期地抽样,且转化成一系列数字X(n)(n=0,1,…)。数字处理器依据滤波器的计算算法,执行滤波运算,把输入系列X(n)映射到输出系列Y(n)。DAC把数字滤波后的输出转化成模拟值,这些模拟值接着被模拟滤波器平滑,并且消去不想要的高频分量。

图2.2.1具有模拟输入和输出信号的实时数字滤波器的简化方框图数字滤波器在数字信号处理中具有非常重要的地位。在许多应用中(例如数据压缩,生物医学信号处理、语音处理、图象处理、数据传输、数字音频、电话回声对消,等等),数字滤波器和模拟滤波器比数字滤波器的有优势更加明显。

2.3数字滤波器的实现方法

a) 用软件在计算机上实现;

b) 用专用的数字信号处理芯片实现;

c) 用硬件实现。

2.4 .数字滤波器的可实现性

a) 要求系统因果稳定,即所设计的系统极点全部集中在单位圆内。

b) 要求系统的差分方程的系数或者系统函数的系数为实数,即系统的零极点必须共轭成对出现,或者是实数。

2.5数字滤波器的分类

数字滤波器可以分为经典滤波器和现代滤波器。经典滤波器按照滤波特性可以分为数字高通、数字低通、数字带通、数字带阻等类型。数字滤波器从实现的网络结构或者从单位脉冲响应长度分类可以分为无限长单位脉冲(IIR)和有限长单位脉冲(FIR)。

2.6FIR滤波器简介及其优点

2.6.1FIR滤波器

即有限长单位脉冲响应滤波器,是数字信号处理中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位冲击响应是有限的,没有输入到输出的反馈,是稳定的系统。因此,FIR滤波器在通信、图像、语音、雷达等许多领域都有着十分广泛的应用。

2.6.2FIR滤波器具有以下主要优点:

a) FIR滤波器具有准确的线性相位

b) FIR滤波器永远稳定

c) FIR滤波器设计方法一般是线性的

d) FIR滤波器在硬件上具有更高的运行效率

e) FIR滤波器启动传输时间只需要有限时间

3.等波纹最佳逼近法的原理说明

3.1等波纹最佳逼近法概述

等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为firpm和firpmord。Firpm函数采用数值分析中的firpm多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。

3.2.等波纹最佳逼近法基本思想

用H d(ω)表示希望逼近的幅度特性函数,要求设计线性相位FIR数字滤波器时,H d(ω)必须满足线性相位约束条件。用Hg(ω)表示实际设计的滤波器的幅度特性函数。定义加权误差函数E(ω)为:

E(ω)=W(ω)[H d(ω)-Hg(ω)]

式中,W(ω)成为误差加权函数,用来控制不同频段(一般指通带和阻带)的逼近精度。等波纹最佳逼近基于切比雪夫逼近,在通带和阻带以)

E的最大

(

值最小化为准则,采用firpm多重交换迭代算法求解滤波器系数h(n)。所以

W(ω)取值越大的频段,逼近精度越高,开始设计时应该根据精度要求确定

W(ω),在Firpm多重交换迭代过程中W(ω)是确知函数。

等波纹最佳逼近设计中,把数字频段分为“逼近区域”和“无关区域”。逼近区域一般指通带和阻带,无关区域一般指过渡带。设计过程中只考虑对逼近区域的最佳逼近。应当注意,无关区域不能为零,即H d(ω)不能是理想滤波特性。

利用等波纹最佳逼近准则设计线性相位FIR 数字滤波器数字模型的建立及其求解算法的推导复杂,求解计算必须借助计算机,可借助MATLAB 信号处理工具箱函数firpmzord 和firpm ,简单调用这两个函数就可以完成线性相位FIR 数字滤波器的等波纹最佳逼近设计。

3.3等波纹滤波器的技术指标及其描述参数介绍

3.3.1滤波器的描述参数

一般情况下,用损耗参数ωp ,αp ,ωs ,αs .描述在工程实际中,通常取ωp =π/2,αp =2dB ,ωs =11π/20,αs =20dB .

但是在等波纹最佳逼近设计法求滤波器阶数N 和误差加权函数W (ω)时,要求给出的滤波器通带和阻带的震荡波纹δ1和δ2。这是等波纹法设计滤波器时常使用的描述方法。

两种参数的转换关系:

1

11101020/20/+-=p p ααδ

1020/2s αδ-= 3.3.2 matlab 中的firpm 和firpmord 函数介绍

Firpm 函数实现线性相位FIR 滤波器的等波纹最佳逼近设计。调用格式为:

hn =firpm (M ,f ,m ,w )

Firpm 调用的参数 (M ,f ,m ,w )通常调用firpmord 函数计算,调用格式为:

(M ,f0,m0,w )=firpmord (f ,m ,rip ,Fs )

其中,在低通滤波器设计时:rip =[δ1,δ2] 。

4.手工计算完成等波纹FIR 低通滤波器初始设计

4.1设计要求

滤波器的设计指标要求为:

通带截止频率:Wp =0.25πrad ;

阻带截止频率:Wst =0.4πrad ;

通带最大衰减:αp=2dB;

阻带最小衰减:αs=20dB.

4.2手工计算

设采样频率Fs =100kHz ,由公式f =Fs /2πω可将截止频率的单位转换为Hz :

通带截止频率:fp=12.5kHz

阻带截止频率:fs=20kHz

过度带宽度: △ftz=7.5kHz

过渡带宽度:△Wtz= Wst - Wp =0.15πrad ;

滚 降: αroll=αs-αp=18dB ;

再将其除以采样频率Fs 转换为归一化频率:

通带截止频率:0.1221

阻带截止频率:0.1321

将αp=2dB ,αs=20dB 带入公式

ξ1=(11020-p a )/(11020+p

a ), ξ2=2010

s a - 中: 得ξ1=0.1175,ξ2=0.09548

由凯泽逼近n 的公式:

n =f ?--6.1413

lg 2021ξξ, Δf =π

ωω2p s - 求得ωs -ωp =0.15π;

Δf = 0.0075 , 3673706.2≈=n ;

4.3在Matlab中利用FIRPM函数计算

程序如下:

clc; clear all;

Rp=2;As=20;

Fs=100*10^3;f=[12.5*10^3,20*10^3];a=[1,0];

dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];

[M,f0,a0,weights]=firpmord(f,a,dev,Fs);

h=firpm(M,f0,a0,weights);[H,f]=freqz(h,1,1024,Fs);

subplot(211);plot(2*f/Fs,20*log10(abs(H)),'linewidth',2);

title('幅度响应(dB)');xlabel('f/Fs');

ylabel('20log|H(e^j^\omega)|(dB)');

axis([0,1,-70,20]);

set(gca,'xtickmode','manual','xtick',[0,0.1,0.2,0.25,0.3,0.4,1]); set(gca,'ytickmode','manual','ytick',[-70,-20,-10,-2,0,20]);grid; subplot(212);plot(2*f/Fs,angle(H),'linewidth',2);grid;

title('相位响应');xlabel('f/Fs');ylabel('arg[H(e^j^\omega)]');

4.4基于Matlab的幅频响应曲线

如图4.4.1 是等波纹低通滤波器的幅频响应曲线图。

图4.4.1 等波纹最佳逼近法设计的数字低通滤波器的幅频响应曲线

5.使用FDA工具箱设计FIR低通滤波器

5.1简要介绍FDA工具箱

FDATool(Filter Design & Analysis Tool)是MATLAB信号处理工具箱里专用的滤波器设计分析工具,MATLAB6.0以上的版本还专门增加了滤波器设计工具箱(Filter Design Toolbox) 。FDATool可以设计几乎所有的常规滤波器,包括FIR和IIR的各种设计方法。它操作简单,方便灵活。

FDATool界面总共分两大部分,一部分是Design Filter,在界面的下半部,用来设置滤波器的设计参数;另一部分则是特性区,在界面的上半部分,用来显示滤波器的各种特性。Design Filter部分主要分为:Filter Type(滤波器类型) 选项,包括Lowpass(低通) 、Highpass(高通) 、Bandpass (带通) 、Bandstop(带阻)和特殊的FIR滤波器。

Design Method(设计方法) 选项,包括IIR滤波器的Butterworth(巴特沃思)法、Chebyshev TypeⅠ(切比雪夫Ⅰ型)法、Chebyshev TypeⅡ(切比雪夫Ⅱ型)法、Elliptic(椭圆滤波器)法和FIR滤波器的Equiripple法、Least2Squares(最小乘方)法、Window(窗函数)法。

Filter Order(滤波器阶数)选项,定义滤波器的阶数,包括Specify Order(指定阶数)和MinimumOrder(最小阶数) 。在Specify Order中填入所要设计的滤波器的阶数(N阶滤波器,Specify Order=N-1),如果选择Minimum Order,则MATLAB根据所选择的滤波器类型自动使用最小阶数。

Frenquency Specifications选项,可以详细定义频带的各参数,包括采样频率fs和频带的截止频率。它的具体选项由Filter Type选项和Design Method选项决定,例如Bandpass(带通)滤波器需要定义Fstop1(下阻带截止频率)、Fpass1(通带下限截止频率)、Fpass2(通带上限截止频率)、Fstop2(上阻带截止频率),而Lowpass(低通)滤波器只需要定义Fstop1、Fpass1。采用窗函数设计滤波器时,由于过渡带是由窗函数的类型和阶数所决定的,所以只需要定义通带截止频率,而不必定义阻带参数。

Magnitude Specifications选项,可以定义幅值衰减的情况。例如设计带通滤波器时, 可以定义Wstop1(频率Fstop1处的幅值衰减)、Wpass(通带范围内的幅值衰减)、Wstop2(频率Fstop2处的幅值衰减)。当采用窗函数设计时,通带截止

频率处的幅值衰减固定为6db,所以不必定义。

Window Specifications选项,当选取采用窗函数设计时,该选项可定义,它包含了各种窗函数。

5.2用FDA工具箱实现要求的滤波功能:

调用FDA工具箱程序为:

>>FDAtool

调用后,据前述FDA工具箱简介设置,设置完后的界面截图如下:

图5.2.1 滤波器量化分析图

调用FIRPM函数进行运算的结果如图5.2.2和图5.2.3:

图5.2.2Firpm函数运算结果

图5.2.3hn计算值(传递函数中分子各项前系数)

由图5.2.2和图5.2.3可得:

M为FIR数字滤波器阶数,h长度N=M+1

求得M=9,N=M+1=10

通带振荡波纹幅度ξ1=dat1=0.1164

阻带振荡波纹幅度ξ2=dat2=0.1000

误差加权函数W=[1,6.1462]

5.3手工计算和利用FIRPM函数计算结果比较

通过比较手工计算与运用Matlab中FIRPM函数计算结果可以发现,由手工计算得出的滤波器阶数N、通带振荡波纹幅度ξ1、阻带振荡波纹幅度ξ2与由

FIRPM 函数计算得出的N 、ξ1与ξ2相等,证明计算无误。

6. 滤波器的结构不同对性能指标的影响

6.1 FIR 滤波器的基本结构

FIR 滤波器的单位抽样响应为有限长度,一般采用非递归形式实现。通常的FIR 数字滤波器有横截性和级联型两种。

(a )FIR 滤波器的横截型结构

表示系统输入输出关系的差分方程可写作:

10()()()N m y n hmx n m -==-∑

直接由差分方程得出的实现结构如图6.1.1所示:

图6.1.1 横截型(直接型﹑卷积型)

若h (n )呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化加横截型结构,下面分情况讨论:

图6.1.2 N 为奇数时线形相位FIR 滤波器实现结构

图6.1.3 N 为偶数时线性相位FIR 滤波器实现结构

(b )FIR 滤波器的级联型结构

将H (z )分解成实系数二阶因子的乘积形式: []121201201()()N N N k k k

N k H z h n z b b z bz ----====++∑∏

这时FIR 滤波器可用二阶节的级联结构来实现,每个二阶节用横截型结构实现。如下图所示

6.1.4 FIR 滤波器级联型结构

在设计滤波器时,对于同一个传递函数对应着许多种等效结构,然而这些结构能达到的性能效果却有所不同。在无限参数字长的情况下,所有能实现传递函数的结构之间,其表现完全相同。然而,在实际中,由于参数字长有限的限制,各实现结构的表现并不相同。

在MATLAB 中可以利用FDATool 工具箱构建不同类型的数字滤波器。为了使对比效果明显,将上述初步设计的等波纹数字FIR 带通滤波器的设计参数的字长(即转移函数中分子各项前的系数)进行保留小数点后10位的缩减。

6.1.1利用直接型结构构建数字滤波器

FIR 网络结构特点是没有反馈支路,即没有环路,其单位脉冲响应是有限长的。设单位脉冲响应h (n )长度为N ,由之前算出的h (n )可得出(系数小数点后保留10位)系统函数为:

H (z )=∑+=1

0N n hnz -n =0.012938435023626-0.114399055404857z -1

+0.059367227786797z -2+…-0.114399055404857z -52+0.012938435023626z -53

表示系统输入输出关系的差分方程可写作:

y (n )= )()(1

0m n x m h N m -∑-=

直接型的结构流图如图6.1.5所示:

选择filter structure 选项框中的 Direct -Form I 选项,点击窗口下方的Import Filter 按钮,构建直接2型结构的等波纹数字FIR 低通滤波器,结果如图6.1.6所示:

图6.1.6 Direct -Form I 型结构的滤波器幅频响应图

读图可以得滤波器技术指标(ωsl ,ωpl ,

ωpu ,ωsu ,单位为Hz ;s α,p α,单位为dB )如表6.1.1所示:

表6.1.1 Direct -Form I 结构滤波器对性能指标的影响

FIR数字滤波器设计函数

FIR 数字滤波器设计函数 1. fir1 功能:基于窗函数的FIR 数字滤波器设计——标准频率响应。 格式:b=fir1(n,Wn) b=fir1(n,Wn,'ftype') b=fir1(n,Wn,Window) b=fir1(n,Wn,'ftype',Window) 说明:fir1函数以经典方法实现加窗线性相位FIR 滤波器设计,它可设计出标准的低通、带通、高通和带阻滤波器。 b=fir1(n,Wn)可得到n 阶低通FIR 滤波器,滤波器系数包含在b 中,这可表示成: n z n b z b b z b --++???++=)1()2()1()(1 这是一个截止频率为Wn 的Hamming(汉明)加窗线性相位滤波器,0≤Wn ≤1,Wn=1相应于0.5fs 。 当Wn=[W1 W2]时,fir1函数可得到带通滤波器,其通带为W1<ω< W2。 b=fir1(n,Wn,'ftype')可设计高通和带阻滤波器,由ftype 决定: ·当ftype=high 时,设计高通FIR 滤波器; ·当ftype=stop 时,设计带阻FIR 滤波器。 在设计高通和带阻滤波器时,fir1函数总是使用阶为偶数的结构,因此当输入的阶次为奇数时,fir1函数会自动加1。这是因为对奇数阶的滤波器,其在Nyquist 频率处的频率响应为零,因此不适合于构成高通和带阻滤波器。 b=fir1(n,Wn,Window)则利用列矢量Window 中指定的窗函数进行滤波器设计,Window 长度为n+1。如果不指定Window 参数,则fir1函数采用Hamming 窗。 Blackman 布莱克曼窗 Boxcar 矩形窗 Hamming 海明窗 Hann 汉宁窗 Kaiser 凯瑟窗 Triang 三角窗 b=fir1(n,Wn,'ftype',Window)可利用ftype 和Window 参数,设计各种加窗的滤波器。 由fir1函数设计的FIR 滤波器的群延迟为n/2。 例如: n=32;wn=1/4;window=boxcar(n+1) b=fir1(n,wn,window)

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

FIR数字滤波器设计及MATLAB使用要点

数字信号处理课程设计 《数字信号处理》 课程设计报告 FIR数字滤波器设计及MATLAB实现 专业:通信工程 班级:通信1101班 组次:第9组 姓名及学号: 姓名及学号:

目录 一、设计目的 (3) 二、设计任务 (3) 三、设计原理 (3) 3.1窗函数法 (3) 3.2频率采样法 (4) 3.3最优化设计 (5) 3.3.1等波纹切比雪夫逼近准则 (5) 3.3.2仿真函数 (6) 四、设计过程 (7) 五、收获与体会 (13) 参考文献 (13)

FIR数字滤波器设计及MATLAB实现 一、设计目的 FIR滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基 本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性, 同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR 滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。滤波器设 计是根据给定滤波器的频率特性,求得满足该特性的传输函数。 二、设计任务 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR 数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 三、设计原理 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 3.1窗函数法 设计FIR数字滤波器的最简单的方法是窗函数法,通常也称之为傅立叶级数法。FIR数字滤波器的设计首先给出要求的理想滤波器的频率响应()jw H e,设计 d

FIR数字滤波器设计与实现

FIR 数字滤波器设计与实现 一.摘要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应 用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数系统函数MATLAB 三.内容提要: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系 统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (一)FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-==1 0)()(。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包 含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。则可以直接由差分方程得出FIR 滤波器结构如 下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构

FIR数字滤波器设计与软件实现

实验二:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。(3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止 频率 p 20.24 p f ωπ =T=π,通带最大衰为0.1dB,阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为60dB。 ○4实验程序框图如图2所示,供读者参考。

FIR数字滤波器课程设计报告

吉林建筑大学 电气与电子信息工程学院 数字信号处理课程设计报告 设计题目:FIR数字滤波器的设计 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

目录 一、设计目的 (3) 二、设计内容 (3) 三、设计原理 (3) 3.1 数字低通滤波器的设计原理 (3) 3.1.1 数字滤波器的定义和分类 (3) 3.1.2 数字滤波器的优点 (3) 3.1.3 FIR滤波器基本原理 (4) 3.2变换方法的原理 (7) 四、设计步骤 (8) 五、数字低通滤波器MATLAB编程及幅频特性曲线 (9) 5.1 MATLAB语言编程 (9) 5.2 幅频特性曲线 (10) 六、总结 (11) 七、参考文献 (13)

一、设计目的 课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充 二、设计内容 (1)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 , 阻带衰减dB A s 30>。 (2)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 ,阻带衰减dB A s 50>。 三、设计原理 3.1数字低通滤波器的设计原理 3.1.1 数字滤波器的定义和分类 数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。 从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF) [4]。 3.1.2 数字滤波器的优点 相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。同时DSP 处理器(Digital Signal Processor)的出现和FPGA(FieldProgrammable Gate Array)的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 数字滤波器具有以下显著优点: 精度高:模拟电路中元件精度很难达到10-3,以上,而数字系统17位字长就可以达到10-5精度。因此在一些精度要求很高的滤波系统中,就必须采用数字滤0.2c ωπ=0.4ωπ?<0.2c ωπ=0.4ωπ?<

线性相位FIR数字滤波器设计

一、设计目的 1.掌握窗函数法设计FIR滤波器的原理和方法,观察用几种常用窗函数设计的 FIR数字滤波器技术指标; 2.掌握FIR滤波器的线性相位特性; 3.了解各种窗函数对滤波特性的影响。 二、设计原理 如果所希望的滤波器的理想频率响应函数为H d(e j J,则其对应的单位脉冲 1 响应为h d(n)=——f H (e恋)e j^dB,用窗函数W N(n)将h d(n)截断,并进行加权处 2兀7 理,得到实际滤波器的单位脉冲响应h(n)=h d(n)w N(n),其频率响应函数为 N _! H (e j ^ h(n)e」n。如果要求线性相位特性,贝U h(n)还必须满足 nM h(n)= h(N-1- n)。可根据具体情况选择h(n)的长度及对称性。 可以调用MATLAB工具箱函数firl实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft来计算滤波器的频率响应函数。 fir1是用窗函数法设计线性相位FIRDF hn=fir1(N, wc, ‘ ftype ' , window) fir1实现线性相位FIR滤波器的标准窗函数法设计。 hn=fir1(N,wc)可得到6 dB截止频率为wc的N阶(单位脉冲响应h(n)长度为 N+1)FIR低通滤波器,默认(缺省参数windows)选用hammiing窗。其单位脉冲响应 h(n)满足线性相位条件:h(n)=h(N-1-n) 其中wc为对n归一化的数字频率,OW wc< 1。 当wc= [wc1, wc2]时,得到的是带通滤波器。 hn=fir1(N,wc, ' ftype ') 当ftype=high时,设计高通FIR 当ftype=stop时,设计带阻FIR滤波器。 应当注意,在设计高通和带阻滤波器时,阶数N只能取偶数(h(n)长度N+1 为奇数)。不过,当用户将N设置为奇数时,fir1会自动对N加1。 hn=fir1(N,wc,window)可以指定窗函数向量window。如果缺省window参数,则 fir1默认为hamming窗。可用的其他窗函数有Boxcar, Hanning, Bartlett, Blackman, Kaiser和Chebwin 窗。例如:

基于matlab的FIR数字滤波器设计(带通,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

FIR数字滤波器设计的综述

FIR数字滤波器设计方法的综述 摘要:在数字信号处理中,数字滤波器是一种被广泛使用的信号处理部件,可改变信号中所含频率分量的相对比例或滤除某些频率分量,使其达到所需的效果,具有举足轻重的作用。在数字信号处理系统中,FIR(有限冲激响应)数字滤波器是一类结构简单的最基本的原件,具有严格的相频特性,能保证信号在传输过程中不会有明显的失真,是相当稳定的系统,其确保线性相位的功能进一步使它得到了广泛的应用。本综述分析了FIR数字滤波器的特征和设计的基本原理,得到了满足系统要求的数字滤波器的设计方法。 关键词:数字信号处理,FIR数字滤波器,设计方法

1引言 1.1背景 现在几乎在所有的工程技术领域中都会涉及到信号的处理问题,其信号表现形式有电、磁、机械以及热、光、声等。数字滤波技术可以在放大信号的同时去除噪声和干扰,而在模拟信号号和噪声同时被放大,数字信号还可以不带误差地被存储和恢复、发送和接收、处理和操纵。许多复杂的系统可以用高精度、大信噪比和可重构的数字技术来实现。目前,数字信号处理已经发展成为一项成熟的技术,并且在许多应用领域逐步代替了传统的模拟信号处理系统,如通讯、故障检测、语音、图像、自动化仪器、航空航天、生物医学工程、雷达等。 数字信号处理中一个非常重要且应用普遍的技术就是数字滤波。所谓数字滤波,是指其输入、输出均为数字信号,通过一定的运算关系改变输入信号所含的频率成分的相对比例或滤除某些频率成分,达到提取和加强信号中的有用成份,消弱干扰成份的目的。数字滤波作为数字信号处理的重要组成部分有着十分广泛的应用前景,可作为应用系统对信号的前置处

理。数字滤波器无论是在理论研究上还是在如通讯、雷达、图象处理、数字音频等实际应用上都有着很好的技术前景和巨大的实用价值。 1.2现状与前沿 在近代电信设备和各类控制系统中,滤波器应用极为广泛。在所有的电子部件中,使用最多,技术最为复杂的即为滤波器。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。 目前,国外有许多院校和科研机构在研究基于FPGA的DSP应用,比较突出的有Denmark 大学的研究小组正在从事FPGA实现数字滤波器的研究。而我国在DSP技术起步较早,产品的研究开发成绩斐然,基本上与国外同步发展。 随着电子工业的发展,对滤波器的性能要求越来越高。我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。总之,滤波器的发展始终是顺应电子系统的发展趋势的。如何进一步实现滤波器的小型化、集成化、高效化将是今后很长一段时间不变的研究和发展主题。 2 FIR数字滤波器的原理 2.1 FIR数字滤波器的结构特点 如果滤波器的输人和输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这种滤波器称之为数字滤波器。该滤波器通过对时域中离散的采样数据作差分运算实现滤波。与IIR滤波器相比,FIR(有限长单位冲激响应)的实现是非递归的,总是稳定的。FIR数 字滤波器的特征是冲激响应只能延续一定时间并且很容易实现严格的线性相位,使信号经过处理后不产生相位失真、舍入误差小、稳定等优点,能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器。FIR数字滤波器有以下几个特点: (1)系统的单位冲激响应h(n)在有限个值处不为零; (2)系统函数H(z)在处收敛,在处只有零点,有限z平面只有零点,而全部极点都在z=0处; (3)结构上主要是非递归结构。

FIR数字滤波器的设计与实现

FIR 滤波器的设计 一.摘 要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有 着广泛的应用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数 系统函数 MATLAB 三.引言: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (1).FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-== 1 )()( 。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。 则可以直接由差分方程得出FIR 滤波器 结构如下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构 若h(n)呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化成横截型结构,下面分情况讨论: ①N 为奇数时线性相位FIR 滤波器实现结构如图所示:

实验4 基于MATLAB的FIR数字滤波器设计

实验4 基于MATLAB 的FIR 数字滤波器设计 实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: P P P for H Ω≤Ω+≤Ω≤-,1)(1δδ πδ≤Ω≤Ω≤ΩS S for H ,)( 通带边缘频率P Ω,阻带边缘频率S Ω ,通带起伏 P δ, 通带峰值起伏] )[1(log 2010dB p p δα--=, 阻带起伏s δ,最小阻带衰减])[(log 2010dB s S δα-=。 数字滤波器有IIR 和FIR 两种类型,它们的特点和设计方法不同。 在MATLAB 中,可以用b=fir1(N,Wn,’ftype’,taper) 等函数辅助设计FIR 数字滤波器。N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤波器类型,如’high ’高通,’stop ’带阻等;taper 为窗函数类型,默认为海明窗,窗系数需要实现用窗函数blackman, hamming,hanning chebwin, kaiser 产生。 S P P S Passband Stopband Transition band Fig 1 Typical magnitude specification for a digital LPF

例1 用凯塞窗设计一FIR低通滤波器,通带边界频率π3.0 ,阻带边界频 Ω = p ,阻带衰减不小于 率π5.0 Ω = s 50dB。

解首先由过渡带宽和阻带衰减来决定凯塞窗的N和 π2.0 = Ω - Ω = ?Ω p s , ,

完美版—FIR数字滤波器的设计

1引言 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。 数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。 DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。 1.1DSP微处理器芯片的主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作;

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验内容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB 函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB 函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

fir数字滤波器设计及软件实现

如对您有帮助,请购买打赏,谢谢您! 实验二 FIR 数字滤波器设计与软件实现 1.实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。 (3)掌握FIR 滤波器的快速卷积实现原理。 (4)学会调用MATLAB 函数设计与实现FIR 滤波器。 2. 两种设计FIR 滤波器的方法比较 窗函数法简单方便,易于实现。但存在以下缺点:滤波器边界频率不易精确控制。窗函数法总使通带和阻带波纹幅度相等,不能分别控制通带和阻带波纹幅度。所设计的滤波器在阻带边界频率附近的衰减最小,距阻带边界频率越远,衰减越大。,所以如果在阻带边界频率附近的衰减刚好达到设计指标要求,则阻带中其他频段的衰减就有很大富余量,存在较大的资源浪费。 等波纹最佳逼近法是一种优化设计方法,克服了窗函数法的缺点,使最大误差最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR 数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。与窗函数法相比,由于这种设计法使最大误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计方法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大。指标相同时,这种设计法使滤波器阶数最低。 3. 滤波器参数及实验程序清单 (1) 滤波器参数选取 根据加噪信号频谱图和实验要求,可选择一低通滤波器进行滤波,确定滤波器指标参数:通带截止频率Hz f p 130=,阻带截至频率Hz f s 150=,换算成数字频率,通带截止频率ππω26.02==T f p p ,通带最大衰减为dB p 1.0=α,阻带截至频率π πω3.02==T f s s ,阻带最小衰减为dB s 60=α。 (2) 实验程序清单 图1 程序流程图 信号产生函数xtg 程序清单 function xt=xtg %产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. N=1600; Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10; mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt ,频率为f0 ct=cos(2*pi*fc*t); %产生载波正弦波信号ct ,频率为fc xt=mt.*ct; %相乘产生单频调制信号xt nt=2*rand(1,N)-1; %产生随机噪声nt %=======设计高通滤波器hn,用于滤除噪声nt 中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标

手把手教你设计FIR数字滤波器

手把手教你设计FIR 数字滤波器 1. 滤波器的时域、频域、s 域以及离散化 首先,我们要搞清楚一个概念就是滤波器,其实所谓的滤波器就是一个传递函数,它可是通过改变不同频段上信号的幅值来实现滤波,在知道这一点的前提下,下面的讲述就容易了很多。 这里我们假设滤波器的时域传递函数(连续)s 域为()H s ,时域为()h t ;原始信号s 域为()X s ,时域为()x t ;滤波器的输出s 域为()Y s ,时域为()y t ,如图1所示。(如果分不清楚s 域和时域的童鞋,我觉得你就不要反省了,这个领域不适合你!)我们知道传递函数之间的关系是相乘,而时域的关系是卷积。那么我们就有了下面的两个关系式。 ()()()Y s H s X s = (1) ()()*()y t h t x t =(其中的‘*’表示卷积) (2) 图1 滤波器的传递函数 当然,我们知道在数字滤波器中,当然不可能存在连续函数的,所以我们要对连续函数进行离散化,其实就是一个采样的过程,假设采样频率为S f ,这里我们就需要提到一个定理,就是香农采样定理(采样频率一定要大于传递函数截止频率的两倍,否则就会发生高次谐波的混迭,如果这个道理你不懂的话,建议你去恶补一下信号与系统,这里我只解释一点,便于理解,采样就是以时间间隔为S T 的脉冲采样,那么传递函数的频域就变成了周期为S f 的周期函数,当然如果不理解,也不耽误对下面讲解的理解),所以信号就离散成了()S x nT 、()S h nT 、()S y nT ,其中S T 为采样时间间隔,为了方便下面内容的讲述,这里我们做一个频率的归一化,我们取1S T =,那么采样频率就变成了1S f =,就有了下面的离散时域表示方法。 ()()()k y n h k x n k +∞=-∞= -∑ (3) 值得指出的是再这样种1S T =的归一化过程中,我们认为 2S f 为传递函数系统的最

实验5FIR数字滤波器设计与软件实现汇总

信息院14电信(师范) 实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 程序代码:(信号产生函数xtg程序清单) function xt=xtg(N) %êμ?é??D?o?x(t)2úéú,2¢??ê?D?o?μ?·ù?μì?D??ú?? %xt=xtg(N) 2úéúò???3¤?è?aN,óD?óD????μ??éùμ?μ¥?μμ÷·ùD?o?xt,2é?ù?μ?êFs=10 00Hz

%??2¨?μ?êfc=Fs/10=100Hz,μ÷???y?ò2¨?μ?êf0=fc/10=10Hz. N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %??2¨?μ?êfc=Fs/10£?μ¥?μμ÷??D?o??μ?ê?af0=F c/10; mt=cos(2*pi*f0*t); %2úéúμ¥?μ?y?ò2¨μ÷??D?o?mt£??μ?ê?af0 ct=cos(2*pi*fc*t); %2úéú??2¨?y?ò2¨D?o?ct£??μ?ê?afc xt=mt.*ct; %?à3?2úéúμ¥?μμ÷??D?o?xt nt=2*rand(1,N)-1; %2úéú???ú??éùnt %=======éè????í¨??2¨?÷hn,ó?óú??3y??éùnt?Dμ?μí?μ3é·?,éú3é??í¨ ??éù======= fp=150; fs=200;Rp=0.1;As=70; % ??2¨?÷??±ê fb=[fp,fs];m=[0,1]; % ????remezordoˉêy?ùDè2?êyf,m,dev dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)]; [n,fo,mo,W]=remezord(fb,m,dev,Fs); % è·?¨remezoˉêy?ùDè2?êy hn=remez(n,fo,mo,W); % μ÷ó?remezoˉêy??DDéè??,ó?óú??3y??éùnt?Dμ?μí?μ3é·? yt=filter(hn,1,10*nt); %??3y???ú??éù?Dμí?μ3é·?£?éú3é??í¨ ??éùyt %=========================================================== ===== xt=xt+yt; %??éù?óD?o? fst=fft(xt,N);k=0:N-1;f=k/Tp; subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)'); axis([0,Tp/5,min(xt),max(xt)]);title('(a) D?o??ó??éù2¨D?') subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) D?o??ó??éùμ??μ?×') axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('·ù?è')输出波形: (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅

FIR数字低通滤波器设计

第1章 绪论 1.1设计的作用、目的 课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充。 1.2设计任务及要求 通过课程设计各环节的实践,应使学生达到如下要求: 1.掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器以及窗函数法 设计FIR 数字滤波器的原理、具体方法及计算机编程。 2.观察双线性变换法、脉冲响应不变法及窗函数法设计的滤波器的频域特性,了解各种方法的特点。 3.用MATLAB 画出三种方法设计数字滤波器的幅频特性曲线,记带宽和衰减量,检查结果是否满足要求。 1.3设计内容 设计题目:FIR 数字滤波器的设计 设计内容: (1)设计一线性相位FIR 数字低通滤波器,截止频率π2.0=Ωf ,过渡带宽度 π4.0≤?Ω,阻带衰减dB A s 30>。 (2)设计一线性相位FIR 数字低通滤波器,截止频率π2.0=Ωf ,过渡带宽度π4.0≤?Ω,阻带衰减dB A s 50>。

第2章FIR 数字低通滤波器的原理 2.1 数字低通滤波器的设计原理 FIR 数字滤波器传统的设计方法有窗函数法、频率抽样法和等波纹逼近法。用窗函数设计FIR 数字滤波器就是用有限长的脉冲相应逼近序列,其基本设计思想为:首先选定一个理想的选频滤波器,然后截取它的脉冲响应得到线性相位。 滤波器(filter ),是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。 1.滤波器的概念 滤波器是对输入信号起滤波的作用的装置。当输入、输出是离散信号,滤波器的冲激响应是单位抽样响应()n h 时,这样的滤波器称作数字滤波器(DF )。DF 是由差分方程描述的一类特殊的离散时间系统。 2.数字滤波器的系统函数与差分方程: 系统函数 (2-1) 差分方程 对上式进行 Z 反变换,即得: (2-2) 3.数字滤波器结构的表示 数字滤波器分FIR 数字滤波器和IIR 数字低通滤波器。其中FIR 低通滤波器分直接型和级联型,IIR 分直接型、级联型和并联型。 方框图法、信号流图法 ∑∑==-+-= N k M k k k k n x b k n y a n y 1 )()()(∑∑=-=--= = N k k M k k z a z b z X z Y z H k k 1 1) ()()(

相关主题
文本预览
相关文档 最新文档